1
|
Kress S, Kilanowski A, Wigmann C, Zhao Q, Zhao T, Abramson MJ, Gappa M, Standl M, Unfried K, Schikowski T. Airway inflammation in adolescents and elderly women: Chronic air pollution exposure and polygenic susceptibility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156655. [PMID: 35697214 DOI: 10.1016/j.scitotenv.2022.156655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIM The fractional exhaled nitric oxide (FeNO) concentration in the exhaled breath is a biomarker for eosinophilic airway inflammation. We explored the interplay between chronic air pollution exposure and polygenic susceptibility to airway inflammation at different critical age stages. METHODS Adolescents (15 yr) enrolled in the GINIplus/LISA birth cohorts (n = 2434) and 220 elderly women (75 yr on average) enrolled in the SALIA cohort with FeNO measurements available were investigated. Environmental main effects of the mean of ESCAPE land-use regression air pollutant concentrations within a time window of 15 years and main effects of the polygenic risk scores (PRS) using internal weights from elastic net regression of genome-wide derived single nucleotide polymorphisms were investigated. Furthermore, we examined gene-environment interaction (GxE) effects on natural log-transformed FeNO levels by adjusted linear regression models. RESULTS While we observed no significant environmental and polygenic main effects on airway inflammation in either age group, we found robust harmful effects of chronic nitrogen dioxide (NO2) exposure in the GxE models for elderly women (16.2 % increase in FeNO, p-value = 0.027). Stratified analyses found GxE effects between the PRS and chronic NO2 exposure in never-smoker elderly women and in adolescents without any inflammatory respiratory conditions. CONCLUSIONS FeNO measurement is a useful biomarker to detect higher risk of NO2-induced eosinophilic airway inflammation in the elderly. There was limited evidence for GxE effects on airway inflammation in adolescents or the elderly. Further GxE studies in subpopulations should be conducted to investigate the assumption that susceptibility to airway inflammation differs between age stages.
Collapse
Affiliation(s)
- Sara Kress
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, Düsseldorf 40225, Germany; Medical Research School Düsseldorf, Heinrich Heine University, Universitätsstraße 1, Düsseldorf 40225, Germany.
| | - Anna Kilanowski
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, Neuherberg 85764, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology; Pettenkofer School of Public Health, LMU Munich, Geschwister-Scholl-Platz 1, Munich 80539, Germany; Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, Lindwurmstr. 4, Munich 80337, Germany.
| | - Claudia Wigmann
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, Düsseldorf 40225, Germany.
| | - Qi Zhao
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, Düsseldorf 40225, Germany; Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan City 250012, Shandong Province, China; School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Rd, Melbourne, VIC 3004, Australia.
| | - Tianyu Zhao
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, Neuherberg 85764, Germany.
| | - Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Rd, Melbourne, VIC 3004, Australia.
| | - Monika Gappa
- Department of Paediatrics, Evangelisches Krankenhaus, Kirchfeldstraße 40, Düsseldorf 40217, Germany.
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, Neuherberg 85764, Germany; German Center for Lung Research (DZL), Aulweg 130, Gießen 35392, Germany.
| | - Klaus Unfried
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, Düsseldorf 40225, Germany.
| | - Tamara Schikowski
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, Düsseldorf 40225, Germany.
| |
Collapse
|
2
|
Kress S, Wigmann C, Zhao Q, Herder C, Abramson MJ, Schwender H, Schikowski T. Chronic air pollution-induced subclinical airway inflammation and polygenic susceptibility. Respir Res 2022; 23:265. [PMID: 36151579 PMCID: PMC9508765 DOI: 10.1186/s12931-022-02179-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Background Air pollutants can activate low-grade subclinical inflammation which further impairs respiratory health. We aimed to investigate the role of polygenic susceptibility to chronic air pollution-induced subclinical airway inflammation. Methods We used data from 296 women (69–79 years) enrolled in the population-based SALIA cohort (Study on the influence of Air pollution on Lung function, Inflammation and Aging). Biomarkers of airway inflammation were measured in induced-sputum samples at follow-up investigation in 2007–2010. Chronic air pollution exposures at residential addresses within 15 years prior to the biomarker assessments were used to estimate main environmental effects on subclinical airway inflammation. Furthermore, we calculated internally weighted polygenic risk scores based on genome-wide derived single nucleotide polymorphisms. Polygenic main and gene-environment interaction (GxE) effects were investigated by adjusted linear regression models. Results Higher exposures to nitrogen dioxide (NO2), nitrogen oxides (NOx), particulate matter with aerodynamic diameters of ≤ 2.5 μm, ≤ 10 μm, and 2.5–10 µm significantly increased the levels of leukotriene (LT)B4 by 19.7% (p-value = 0.005), 20.9% (p = 0.002), 22.1% (p = 0.004), 17.4% (p = 0.004), and 23.4% (p = 0.001), respectively. We found significant effects of NO2 (25.9%, p = 0.008) and NOx (25.9%, p-value = 0.004) on the total number of cells. No significant GxE effects were observed. The trends were mostly robust in sensitivity analyses. Conclusions While this study confirms that higher chronic exposures to air pollution increase the risk of subclinical airway inflammation in elderly women, we could not demonstrate a significant role of polygenic susceptibility on this pathway. Further studies are required to investigate the role of polygenic susceptibility. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02179-3.
Collapse
Affiliation(s)
- Sara Kress
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.,Medical Research School Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Claudia Wigmann
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Qi Zhao
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.,Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.,School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany.,Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Holger Schwender
- Mathematical Institute, Heinrich Heine University, Düsseldorf, Germany
| | - Tamara Schikowski
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.
| |
Collapse
|
3
|
Melbourne CA, Mesut Erzurumluoglu A, Shrine N, Chen J, Tobin MD, Hansell AL, Wain LV. Genome-wide gene-air pollution interaction analysis of lung function in 300,000 individuals. ENVIRONMENT INTERNATIONAL 2022; 159:107041. [PMID: 34923368 PMCID: PMC8739564 DOI: 10.1016/j.envint.2021.107041] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/25/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Impaired lung function is predictive of mortality and is a key component of chronic obstructive pulmonary disease. Lung function has a strong genetic component but is also affected by environmental factors such as increased exposure to air pollution, but the effect of their interactions is not well understood. OBJECTIVES To identify interactions between genetic variants and air pollution measures which affect COPD risk and lung function. Additionally, to determine whether previously identified lung function genetic association signals showed evidence of interaction with air pollution, considering both individual effects and combined effects using a genetic risk score (GRS). METHODS We conducted a genome-wide gene-air pollution interaction analysis of spirometry measures with three measures of air pollution at home address: particulate matter (PM2.5 & PM10) and nitrogen dioxide (NO2), in approximately 300,000 unrelated European individuals from UK Biobank. We explored air pollution interactions with previously identified lung function signals and determined their combined interaction effect using a GRS. RESULTS We identified seven new genome-wide interaction signals (P<5×10-8), and a further ten suggestive interaction signals (P<5×10-7). Additionally, we found statistical evidence of interaction for FEV1/FVC between PM2.5 and previously identified lung function signal, rs10841302, near AEBP2, suggesting increased susceptibility as copies of the G allele increased (but size of the impact was small - interaction beta: -0.363 percentage points, 95% CI: -0.523, -0.203 per 5 µg/m3). There was no observed interaction between air pollutants and the weighted GRS. DISCUSSION We carried out the largest genome-wide gene-air pollution interaction study of lung function and identified potential effects of clinically relevant size and significance. We observed up to 440 ml lower lung function for certain genotypes when exposed to mean levels of outdoor air pollution, which is approximately equivalent to nine years of average normal loss of lung function in adults.
Collapse
Affiliation(s)
- Carl A Melbourne
- Department of Health Sciences, University of Leicester, Leicester, UK
| | | | - Nick Shrine
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Jing Chen
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, UK; National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Anna L Hansell
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK; National Institute for Health Research Health Protection Research Unit in Environmental Exposures and Health at the University of Leicester, Leicester, UK.
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, UK; National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
4
|
Bo Y, Chang LY, Guo C, Lin C, Lau AKH, Tam T, Lao XQ. Reduced ambient PM 2.5, better lung function, and decreased risk of chronic obstructive pulmonary disease. ENVIRONMENT INTERNATIONAL 2021; 156:106706. [PMID: 34153892 DOI: 10.1016/j.envint.2021.106706] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Several studies reported that long-term exposure to fine particulate matter (PM2.5) was associated with an increased risk of chronic obstructive pulmonary disease (COPD). It remains unclear whether reduced PM2.5 can decrease the risk of COPD development. OBJECTIVE To investigate the associations of dynamic changes (including deterioration and improvement) in long-term exposure to ambient PM2.5 with changes in lung function and the incidence of COPD. METHODS A total of 133,119 adults (aged 18 years or older) were recruited in Taiwan between 2001 and 2014. All participants underwent at least two standard medical examinations including spirometry test. We estimated PM2.5 concentrations using a high-resolution (1 km2) satellite-based spatio-temporal model. The change in PM2.5 (ΔPM2.5) was defined as the difference in concentration of PM2.5 between the respective visit and the previous visit. We used a multivariable mixed linear model and time-varying Cox model to investigate the associations of change in PM2.5 with annual change of lung function and the incidence of COPD, respectively. RESULT The PM2.5 concentration in Taiwan increased during 2002-2004 and began to decrease around 2005. Every 5-µg/m3/year decrease in the annual change of PM2.5 (i.e., ΔPM2.5/year of 5 µg/m3/year) was associated with an average increase of 19.93 mL/year (95 %CI: 17.42,22.43) in forced expiratory volume in 1 s (FEV1), 12.76 mL/year (95 %CI: 9.84,15.66) in forced vital capacity (FVC), 70.22 mL/s/year (95 %CI: 64.69,76.16) in midexpiratory flow between 25 and 75% of the forced vital capacity (MEF25-75), 0.27%/year (95 %CI: 0.21%, 0.32%) in FEV1/FVC/year. Every 5 µg/m3 decrease in PM2.5 (i.e., ΔPM2.5 of 5 µg/m3) was associated with a 12% (95 %CI: 7%, 17%) reduced risk of COPD development. The stratified and sensitivity analyses generally yielded similar results. CONCLUSION An improvement in PM2.5 pollution exposure was associated with an attenuated decline in lung function parameters of FEV1, FVC, MEF25-75, and FEV1/FVC, and a decreased risk of COPD development. Our findings suggest that strategies aimed at reducing air pollution may effectively combat the risk of COPD development.
Collapse
Affiliation(s)
- Yacong Bo
- Jockey Club School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong; Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, China
| | - Ly-Yun Chang
- Gratia Christian College, Hong Kong; Institute of Sociology, Academia Sinica, Taiwan
| | - Cui Guo
- Jockey Club School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong
| | - Changqing Lin
- Division of Environment and Sustainability, the Hong Kong University of Science and Technology, Hong Kong
| | - Alexis K H Lau
- Division of Environment and Sustainability, the Hong Kong University of Science and Technology, Hong Kong; Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Hong Kong
| | - Tony Tam
- Department of Sociology, the Chinese University of Hong Kong, Hong Kong
| | - Xiang Qian Lao
- Jockey Club School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong; Shenzhen Research Institute of The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
5
|
Bo Y, Chang LY, Guo C, Lin C, Lau AKH, Tam T, Yeoh EK, Lao XQ. Associations of Reduced Ambient PM2.5 Level With Lower Plasma Glucose Concentration and Decreased Risk of Type 2 Diabetes in Adults: A Longitudinal Cohort Study. Am J Epidemiol 2021; 190:2148-2157. [PMID: 34038953 DOI: 10.1093/aje/kwab159] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 01/09/2023] Open
Abstract
It remains unknown whether reduced air pollution levels can prevent type 2 diabetes mellitus. In this study, we investigated the associations between dynamic changes in long-term exposure to ambient fine particulate matter, defined as particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5), and changes in fasting plasma glucose (FPG) levels and incidence of type 2 diabetes. A total of 151,398 adults (ages ≥18 years) were recruited in Taiwan between 2001 and 2014. All participants were followed up for a mean duration of 5.0 years. Change in PM2.5 (ΔPM2.5) was defined as the value at a follow-up visit minus the corresponding value at the immediately preceding visit. The PM2.5 concentration in Taiwan increased during 2002-2004 and began to decrease in 2005. Compared with participants with little or no change in PM2.5 exposure, those with the largest decrease in PM2.5 had a decreased FPG level (β = -0.39, 95% confidence interval: -0.47, -0.32) and lower risk of type 2 diabetes (hazard ratio = 0.86, 95% confidence interval: 0.80, 0.93). The sensitivity analysis and analyses stratified by sex, age, body mass index, smoking, alcohol drinking, and hypertension generally yielded similar results. Improved PM2.5 air quality is associated with a better FPG level and a decreased risk of type 2 diabetes development.
Collapse
|
6
|
Dalecká A, Wigmann C, Kress S, Altug H, Jiřík V, Heinrich J, Abramson MJ, Schikowski T. The mediating role of lung function on air pollution-induced cardiopulmonary mortality in elderly women: The SALIA cohort study with 22-year mortality follow-up. Int J Hyg Environ Health 2021; 233:113705. [PMID: 33582605 DOI: 10.1016/j.ijheh.2021.113705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Air pollution exposure is associated with reduced lung function and increased cardio-pulmonary mortality (CPM). OBJECTIVES We analyzed the potential mediating effect of reduced lung function on the association between air pollution exposure and CPM. METHODS We used data from the German SALIA cohort including 2527 elderly women (aged 51-56 years at baseline 1985-1994) with 22-year follow-up to CPM. Exposures to PM10, PM2.5, PM2.5 absorbance, NO2 and NOx were assessed by land-use regression modelling and back-extrapolated to estimate exposures at baseline. Lung function (FVC, FEV1) was measured by spirometry and transformed to GLI z-scores. Adjusted Cox proportional hazards and causal proportional hazards mediation analysis models were fitted. RESULTS The survival analysis showed that reduced lung function (z-scores of FVC or FEV1 below 5% predicted) reflected significantly lower survival probability from CPM (p < 0.0001). Longterm exposures to NOx and NO2 were associated with increased risks of CPM (eg. HR = 1.215; 95%CI: 1.017-1.452 for IQR increase in NOx and HR = 1.209; 95%CI: 1.011-1.445 for IQR increase in NO2) after adjusting for reduced lung function and additional covariates. The associations of PM2.5 absorbance and CPM remained significant in models adjusted for FEV1/FVC, but the associations with PM10 and PM2.5 were not significant. The mediation analysis showed significant indirect effects of NO2 and NOx on CPM mediated through reduced FEV1 and FVC. The largest indirect effects were found for exposures to NO2 (HR = 1.037; 95%CI: 1.005-1.070) and NOx (HR = 1.028; 95%CI: 1.004-1.052) mediated through reduced FVC. The mediated proportion effect ranged from 13.9% to 19.6% in fully adjusted models. DISCUSSION This study provides insights into the mechanism of reduced lung function in association between long-term air pollution exposure and CPM. The mediated effect was substantial for exposure to nitrogen oxides (NOx and NO2), but less pronounced for PM10 and PM2.5.
Collapse
Affiliation(s)
- Andrea Dalecká
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Syllabova 19, 70300, Ostrava, Czech Republic; Centre for Epidemiological Research, Faculty of Medicine, University of Ostrava, Syllabova 19, 70300, Ostrava, Czech Republic.
| | - Claudia Wigmann
- IUF-Leibniz Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.
| | - Sara Kress
- IUF-Leibniz Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.
| | - Hicran Altug
- IUF-Leibniz Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.
| | - Vítězslav Jiřík
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Syllabova 19, 70300, Ostrava, Czech Republic; Centre for Epidemiological Research, Faculty of Medicine, University of Ostrava, Syllabova 19, 70300, Ostrava, Czech Republic.
| | - Joachim Heinrich
- Ludwig-Maximilians-University Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ziemssenstrasse 1, 80336, Munich, Germany.
| | - Michael J Abramson
- School of Public Health & Preventive Medicine, Monash University, 553 St Kilda Road, VIC, 3004, Melbourne, Australia.
| | - Tamara Schikowski
- IUF-Leibniz Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.
| |
Collapse
|
7
|
Fuertes E, van der Plaat DA, Portas L, Minelli C. Effects of the Environment and Its Interplay with Genetics in Lung Function throughout Life. Am J Respir Crit Care Med 2020; 201:1425-1427. [PMID: 32293903 DOI: 10.1164/rccm.201910-1937rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/14/2020] [Indexed: 11/16/2022] Open
Affiliation(s)
- Elaine Fuertes
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Laura Portas
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Cosetta Minelli
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Hüls A, Vanker A, Gray D, Koen N, MacIsaac JL, Lin DTS, Ramadori KE, Sly PD, Stein DJ, Kobor MS, Zar HJ. Genetic susceptibility to asthma increases the vulnerability to indoor air pollution. Eur Respir J 2020; 55:13993003.01831-2019. [PMID: 31949118 PMCID: PMC7931665 DOI: 10.1183/13993003.01831-2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/21/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Indoor air pollution and maternal smoking during pregnancy are associated with respiratory symptoms in infants, but little is known about the direct association with lung function or interactions with genetic risk factors. We examined associations of exposure to indoor particulate matter with a 50% cut-off aerodynamic diameter of 10 µm (PM10) and maternal smoking with infant lung function and the role of gene-environment interactions. METHODS Data from the Drakenstein Child Health Study, a South African birth cohort, were analysed (n=270). Lung function was measured at 6 weeks and 1 year of age, and lower respiratory tract infection episodes were documented. We measured pre- and postnatal PM10 exposures using devices placed in homes, and prenatal tobacco smoke exposure using maternal urine cotinine levels. Genetic risk scores determined from associations with childhood-onset asthma in the UK Biobank were used to investigate effect modifications. RESULTS Pre- and postnatal exposure to PM10 as well as maternal smoking during pregnancy were associated with reduced lung function at 6 weeks and 1 year as well as with lower respiratory tract infection in the first year. Due to a significant interaction between the genetic risk score and prenatal exposure to PM10, infants carrying more asthma-related risk alleles were more susceptible to PM10-associated reduced lung function (pinteraction=0.007). This interaction was stronger in infants with Black African ancestry (pinteraction=0.001) and nonexistent in children with mixed ancestry (pinteraction=0.876). CONCLUSIONS PM10 and maternal smoking exposures were associated with reduced lung function, with a higher susceptibility for infants with an adverse genetic predisposition for asthma that also depended on the infant's ancestry.
Collapse
Affiliation(s)
- Anke Hüls
- Depts of Epidemiology and Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA .,Dept of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.,Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Dept of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Aneesa Vanker
- Dept of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and South African Medical Research Council Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Diane Gray
- Dept of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and South African Medical Research Council Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Nastassja Koen
- Dept of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa.,South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
| | - Julia L MacIsaac
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Dept of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - David T S Lin
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Dept of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Katia E Ramadori
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Dept of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | - Dan J Stein
- Dept of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa.,South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Dept of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Heather J Zar
- Dept of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and South African Medical Research Council Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
9
|
Hüls A, Czamara D. Methodological challenges in constructing DNA methylation risk scores. Epigenetics 2020; 15:1-11. [PMID: 31318318 PMCID: PMC6961658 DOI: 10.1080/15592294.2019.1644879] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/28/2019] [Accepted: 07/09/2019] [Indexed: 12/23/2022] Open
Abstract
Polygenic approaches often access more variance of complex traits than is possible by single variant approaches. For genotype data, genetic risk scores (GRS) are widely used for risk prediction as well as in association and interaction studies. Recently, interest has been growing in transferring GRS approaches to DNA methylation data (methylation risk scores, MRS), which can be used 1) as biomarkers for environmental exposures, 2) in association analyses in which single CpG sites do not achieve significance, 3) as dimension reduction approach in interaction and mediation analyses, and 4) to predict individual risks of disease or treatment success. Most GRS approaches can directly be transferred to methylation data. However, since methylation data is more sensitive to confounding, e.g. by age and tissue, it is more complex to find appropriate external weights. In this review, we will outline the adaption of current GRS approaches to methylation data and highlight occurring challenges.
Collapse
Affiliation(s)
- Anke Hüls
- Department of Human Genetics, Emory University, Atlanta, GA, USA
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
10
|
Milanzi EB, Gehring U. Detrimental effects of air pollution on adult lung function. Eur Respir J 2019; 54:54/1/1901122. [DOI: 10.1183/13993003.01122-2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022]
|
11
|
Gehring U, Koppelman GH. Improvements in air quality: whose lungs benefit? Eur Respir J 2019; 53:53/4/1900365. [PMID: 31023867 DOI: 10.1183/13993003.00365-2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 02/24/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Gerard H Koppelman
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Dept of Pediatric Pulmonology and Pediatric Allergology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| |
Collapse
|