1
|
Mansjö M, Espinosa-Gongora C, Samanci I, Groenheit R, Werngren J. Performance of a broth microdilution assay for routine minimum inhibitory concentration determination of 14 anti-tuberculous drugs against the Mycobacterium tuberculosis complex based on the EUCAST reference protocol. Antimicrob Agents Chemother 2025; 69:e0094624. [PMID: 39692505 PMCID: PMC11823602 DOI: 10.1128/aac.00946-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024] Open
Abstract
This comparative study aimed at qualifying a broth microdilution (BMD) assay for phenotypic drug susceptibility testing (pDST) of Mycobacterium tuberculosis complex (MTBC) strains for implementation in a routine DST workflow. The assay was developed based on the EUCAST (European Committee on Antimicrobial Susceptibility Testing) reference protocol for determination of the minimum inhibitory concentration (MIC) of 14 anti-tuberculous drugs (isoniazid [INH], rifampicin [RIF], ethambutol [EMB], amikacin [AMI], moxifloxacin [MFX], levofloxacin [LFX], bedaquiline [BDQ], clofazimine [CFZ], delamanid [DLM], pretomanid [PA], para-aminosalicylic acid [PAS], linezolid [LZD], ethionamide [ETH], and cycloserine [CS]). Forty MTBC strains with various drug resistance profiles were tested to determine the agreement between MIC results and genotypic drug susceptibility testing (gDST) results derived from whole-genome sequencing (WGS). The agreement between the BMD and gDST results was solid for the majority of the drugs (average agreement 98%, range 90%-100%), including key drugs such as INH, RIF, MFX, LFX, BDQ, DLM, and PA. Ten discrepancies were identified (corresponding to 1.8% of the total number of MIC determinations) and most (8/10) were characterized by MICs equal or close to the potential critical concentration (pCC) applied in the BMD assay. Importantly, the assay can be adjusted to new drug recommendations and concentrations, tailored to local needs. We conclude that the BMD assay provides reliable results, and its implementation in our MTBC routine workflow will produce valuable data that improve our understanding and management of MTBC drug resistance.
Collapse
Affiliation(s)
| | - Carmen Espinosa-Gongora
- Public Health Agency of Sweden, Solna, Sweden
- ECDC Fellowship Programme, Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | | | | | | |
Collapse
|
2
|
Trang TPH, Kessels R, Decroo T, Van Rie A. Impact of bedaquiline resistance probability on treatment decision for rifampicin-resistant TB. IJTLD OPEN 2024; 1:384-390. [PMID: 39301135 PMCID: PMC11409166 DOI: 10.5588/ijtldopen.24.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/14/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Accurate diagnosis of bedaquiline (BDQ) resistance remains challenging. A Bayesian approach expresses this uncertainty as a probability of BDQ resistance (prBDQR) with a 95% credible interval. We investigated how prBDQR information influences BDQ prescribing decisions. METHOD We performed a discrete choice experiment with 55 international rifampicin-resistant tuberculosis physicians. We employed mixed-effects multinomial logistic regression to quantify the effect of prBDQR, patient attributes, and contextual factors on the decision to continue BDQ or not when sequencing results become available. RESULTS PrBDQR was the most influential factor for BDQ decision-making, three times greater than treatment response. Each percentage point increase in prBDQR resulted in 8.2% lower odds (OR 0.92, 95% CI 0.90-0.93) of continuing BDQ as a fully effective drug and 5.0% lower odds (OR 0.95, 95% CI 0.94-0.96) of continuing it but not counting it as an effective drug. The most favourable patient profile for prescribing BDQ as a fully effective drug was a patient receiving the BPaLM regimen (BDQ, pretomanid, linezolid and moxifloxacin) with low prBDQR, good 1-month treatment response, fluoroquinolone-susceptible TB, and no prior BDQ treatment. Physicians with higher discomfort with uncertainty and more years of experience with BDQ were more inclined to stop BDQ. CONCLUSION Given the uncertainty of genotype-phenotype associations, physicians valued prBDQR for BDQ decision-making in rifampicin-resistant TB treatment.
Collapse
Affiliation(s)
- T P H Trang
- Department of Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - R Kessels
- Department of Data Analytics and Digitalization, Maastricht University, Maastricht, The Netherlands
- Department of Economics, University of Antwerp, Antwerp, Belgium
| | - T Decroo
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - A Van Rie
- Department of Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
3
|
Rupasinghe P, Reenaers R, Vereecken J, Mulders W, Cogneau S, Merker M, Niemann S, Vally Omar S, Rigouts L, Köser CU, Decroo T, de Jong BC. Refined understanding of the impact of the Mycobacterium tuberculosis complex diversity on the intrinsic susceptibility to pretomanid. Microbiol Spectr 2024; 12:e0007024. [PMID: 38334384 PMCID: PMC10913522 DOI: 10.1128/spectrum.00070-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
Previous work reported unprecedented differences in the intrinsic in vitro susceptibility of the Mycobacterium tuberculosis complex (MTBC) to pretomanid (Pa) using the Mycobacteria Growth Indicator Tube (MGIT) system. We tested 125 phylogenetically diverse strains from all known MTBC lineages (1-9) without known Pa resistance mutations and four strains with known resistance mutations as controls. This confirmed that MTBC, unlike most bacteria-antimicrobial combinations, displayed substantial differences in the intrinsic susceptibility relative to the technical variation of Pa MIC testing. This was also the case for the Middlebrook 7H11 (7H11) medium, demonstrating that these differences were not specific to MGIT. Notably, lineage 1 was confirmed to have intrinsically elevated MICs compared with lineages 2, 3, 4, and 7 (L2-4/7), underlining the urgent need for WHO to publish its decision of whether lineage 1 should be deemed treatable by BPaL(M), the now preferred all-oral regimen for treating rifampin-resistant tuberculosis. Lineages 5 and 6, which are most frequent in West Africa, responded differently to Pa, with lineage 5 being more similar to L2-4/7 and lineage 6 being more susceptible. More data are needed to determine whether 7H11 MICs are systematically lower than those in MGIT. IMPORTANCE This study confirmed that the Mycobacterium tuberculosis complex lineage 1, responsible for 28% of global tuberculosis cases, is less susceptible to pretomanid (Pa). It also refined the understanding of the intrinsic susceptibilities of lineages 5 and 6, most frequent in West Africa, and lineages 8 and 9. Regulators must review whether these in vitro differences affect the clinical efficacy of the WHO-recommended BPaL(M) regimen and set breakpoints for antimicrobial susceptibility testing accordingly. Notably, regulators should provide detailed justifications for their decisions to facilitate public scrutiny.
Collapse
Affiliation(s)
- Praharshinie Rupasinghe
- Unit of Mycobacteriology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Rabab Reenaers
- Unit of Mycobacteriology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jens Vereecken
- Unit of Mycobacteriology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Wim Mulders
- Unit of Mycobacteriology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Sari Cogneau
- Unit of Mycobacteriology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Matthias Merker
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- Evolution of the Resistome, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Parkallee, Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Parkallee, Borstel, Germany
| | - Shaheed Vally Omar
- Center for Tuberculosis, National Institute of Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Leen Rigouts
- Unit of Mycobacteriology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Claudio U. Köser
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Tom Decroo
- Unit of HIV and TB, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Bouke C. de Jong
- Unit of Mycobacteriology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
4
|
Nimmo C, Ortiz AT, Tan CCS, Pang J, Acman M, Millard J, Padayatchi N, Grant AD, O'Donnell M, Pym A, Brynildsrud OB, Eldholm V, Grandjean L, Didelot X, Balloux F, van Dorp L. Detection of a historic reservoir of bedaquiline/clofazimine resistance-associated variants in Mycobacterium tuberculosis. Genome Med 2024; 16:34. [PMID: 38374151 PMCID: PMC10877763 DOI: 10.1186/s13073-024-01289-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Drug resistance in tuberculosis (TB) poses a major ongoing challenge to public health. The recent inclusion of bedaquiline into TB drug regimens has improved treatment outcomes, but this advance is threatened by the emergence of strains of Mycobacterium tuberculosis (Mtb) resistant to bedaquiline. Clinical bedaquiline resistance is most frequently conferred by off-target resistance-associated variants (RAVs) in the mmpR5 gene (Rv0678), the regulator of an efflux pump, which can also confer cross-resistance to clofazimine, another TB drug. METHODS We compiled a dataset of 3682 Mtb genomes, including 180 carrying variants in mmpR5, and its immediate background (i.e. mmpR5 promoter and adjacent mmpL5 gene), that have been associated to borderline (henceforth intermediate) or confirmed resistance to bedaquiline. We characterised the occurrence of all nonsynonymous mutations in mmpR5 in this dataset and estimated, using time-resolved phylogenetic methods, the age of their emergence. RESULTS We identified eight cases where RAVs were present in the genomes of strains collected prior to the use of bedaquiline in TB treatment regimes. Phylogenetic reconstruction points to multiple emergence events and circulation of RAVs in mmpR5, some estimated to predate the introduction of bedaquiline. However, epistatic interactions can complicate bedaquiline drug-susceptibility prediction from genetic sequence data. Indeed, in one clade, Ile67fs (a RAV when considered in isolation) was estimated to have emerged prior to the antibiotic era, together with a resistance reverting mmpL5 mutation. CONCLUSIONS The presence of a pre-existing reservoir of Mtb strains carrying bedaquiline RAVs prior to its clinical use augments the need for rapid drug susceptibility testing and individualised regimen selection to safeguard the use of bedaquiline in TB care and control.
Collapse
Affiliation(s)
- Camus Nimmo
- UCL Genetics Institute, University College London, Darwin Building, Gower Street, London, UK.
- Division of Infection and Immunity, University College London, London, UK.
- Africa Health Research Institute, Durban, South Africa.
| | - Arturo Torres Ortiz
- UCL Genetics Institute, University College London, Darwin Building, Gower Street, London, UK
- Department of Medicine, Imperial College, London, UK
| | - Cedric C S Tan
- UCL Genetics Institute, University College London, Darwin Building, Gower Street, London, UK
| | - Juanita Pang
- UCL Genetics Institute, University College London, Darwin Building, Gower Street, London, UK
- Division of Infection and Immunity, University College London, London, UK
| | - Mislav Acman
- UCL Genetics Institute, University College London, Darwin Building, Gower Street, London, UK
| | - James Millard
- Africa Health Research Institute, Durban, South Africa
- Wellcome Trust Liverpool Glasgow Centre for Global Health Research, Liverpool, UK
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Nesri Padayatchi
- CAPRISA MRC-HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Alison D Grant
- Africa Health Research Institute, Durban, South Africa
- TB Centre, London School of Hygiene & Tropical Medicine, London, UK
| | - Max O'Donnell
- CAPRISA MRC-HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
- Department of Medicine & Epidemiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Alex Pym
- Africa Health Research Institute, Durban, South Africa
| | - Ola B Brynildsrud
- Division of Infectious Diseases and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Vegard Eldholm
- Division of Infectious Diseases and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Louis Grandjean
- Division of Infection and Immunity, University College London, London, UK
- Laboratorio de Investigacion y Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
- Department of Infection, Immunity and Inflammation, Institute of Child Health, University College London, London, UK
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, UK
| | - François Balloux
- UCL Genetics Institute, University College London, Darwin Building, Gower Street, London, UK.
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, Darwin Building, Gower Street, London, UK.
| |
Collapse
|