1
|
Shiomi M, Watanabe R, Ishihara R, Tanaka S, Nakazawa T, Hashimoto M. Comparative Insights on IL-5 Targeting with Mepolizumab and Benralizumab: Enhancing EGPA Treatment Strategies. Biomolecules 2025; 15:544. [PMID: 40305320 PMCID: PMC12025051 DOI: 10.3390/biom15040544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/28/2025] [Accepted: 04/05/2025] [Indexed: 05/02/2025] Open
Abstract
Eosinophilic granulomatosis with polyangiitis (EGPA) is a necrotizing vasculitis characterized by extravascular granulomas and eosinophilia in both blood and tissues. Eosinophils, which play a critical role in the pathophysiology of EGPA, require interleukin (IL)-5 for maturation in the bone marrow and migration to tissues. Glucocorticoids and immunosuppressants have been the cornerstone of treatment; however, their side effects have imposed a significant burden on many patients. Mepolizumab, an antibody that binds to and neutralizes IL-5, demonstrated efficacy in controlling disease activity in EGPA in the MIRRA trial conducted in 2017. In 2024, benralizumab, an IL-5 receptor alpha antagonist, was shown to be non-inferior to mepolizumab in efficacy against EGPA in the MANDARA trial. Both drugs were originally used for severe asthma and have benefited EGPA by reducing eosinophil counts. Due to differences in pharmacological structure and pharmacokinetics, the degree of eosinophil suppression varies between the two agents, and recent studies suggest that they may also affect inflammatory and homeostatic eosinophils differently. This review summarizes the latest insights into the pathophysiology of EGPA, highlights the similarities and differences between the two drugs, and discusses future treatment strategies for EGPA based on current clinical unmet needs, including drug selection.
Collapse
Affiliation(s)
- Mayu Shiomi
- Department of Rheumatology, Osaka Saiseikai Nakatsu Hospital, Osaka 530-0012, Japan
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-Ku, Osaka 545-8585, Japan
| | - Ryu Watanabe
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-Ku, Osaka 545-8585, Japan
| | - Ryuhei Ishihara
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-Ku, Osaka 545-8585, Japan
| | - Sayaka Tanaka
- Department of Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Takashi Nakazawa
- Department of Rheumatology, Osaka Saiseikai Nakatsu Hospital, Osaka 530-0012, Japan
| | - Motomu Hashimoto
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-Ku, Osaka 545-8585, Japan
| |
Collapse
|
2
|
Pereira De Oliveira R, Droillard C, Devouassoux G, Rosa-Calatrava M. In vitro models to study viral-induced asthma exacerbation: a short review for a key issue. FRONTIERS IN ALLERGY 2025; 6:1530122. [PMID: 40224321 PMCID: PMC11987631 DOI: 10.3389/falgy.2025.1530122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/27/2025] [Indexed: 04/15/2025] Open
Abstract
Asthma is a heterogenous inflammatory bronchial disease involving complex mechanisms, several inflammatory pathways, and multiples cell-type networks. Bronchial inflammation associated to asthma is consecutive to multiple aggressions on epithelium, such as microbiologic, pollutant, and antigenic agents, which are responsible for both T2 and non-T2 inflammatory responses and further airway remodeling. Because asthma physiopathology involves multiple crosstalk between several cell types from different origins (epithelial, mesenchymal, and immune cells) and numerous cellular effectors, no single and/or representative in vitro model is suitable to study the overall of this disease. In this short review, we present and discuss the advantages and limitations of different in vitro models to decipher different aspects of virus-related asthma physiopathology and exacerbation.
Collapse
Affiliation(s)
- Rémi Pereira De Oliveira
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- International Research Laboratory RESPIVIR France - Canada, Centre Hospitalier Universitaire de Québec- Université Laval, Québec, QC, Canada
- International Research Laboratory RESPIVIR France – Canada, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Clément Droillard
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- International Research Laboratory RESPIVIR France - Canada, Centre Hospitalier Universitaire de Québec- Université Laval, Québec, QC, Canada
- International Research Laboratory RESPIVIR France – Canada, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Gilles Devouassoux
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- International Research Laboratory RESPIVIR France - Canada, Centre Hospitalier Universitaire de Québec- Université Laval, Québec, QC, Canada
- International Research Laboratory RESPIVIR France – Canada, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Department of Respiratory Diseases, CIERA, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Lyon et CRISALIS/F-CRIN INSERM Network, Lyon, France
| | - Manuel Rosa-Calatrava
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- International Research Laboratory RESPIVIR France - Canada, Centre Hospitalier Universitaire de Québec- Université Laval, Québec, QC, Canada
- International Research Laboratory RESPIVIR France – Canada, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec - Université Laval, Faculté de Médecine, Département de Pédiatrie de l’Université Laval, Québec, QC, Canada
| |
Collapse
|
3
|
Ekpruke CD, Borges-Sosa O, Hassel CA, Rousselle D, Dinwiddie L, Babayev M, Bakare A, Silveyra P. Sex-Specific Anti-Inflammatory Effects of a Ketogenic Diet in a Mouse Model of Allergic Airway Inflammation. Int J Mol Sci 2025; 26:3046. [PMID: 40243683 PMCID: PMC11989016 DOI: 10.3390/ijms26073046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Asthma, a chronic inflammatory airway disease, leads to airflow obstruction and exhibits sex differences in prevalence and severity. Immunomodulatory diets, such as the ketogenic diet (high fat, low carbohydrate, moderate protein), may offer complementary benefits in managing airway inflammation. While anti-inflammatory effects of ketogenic diets are documented in cardiovascular diseases, their impact on asthma, especially regarding sex-specific differences, remains unexplored. Few studies on diet and asthma have considered sex as a biological factor. To test the hypothesis that a ketogenic diet affects airway inflammation in a sex-specific manner, we used a mouse allergic airway inflammation model. Male and female C57BL/6J mice (3-4 weeks old, n = 5-6/group) were fed a ketogenic diet or normal chow for 12 weeks. From weeks 7 to 12, mice were challenged intranasally with house dust mite allergens (HDM) 5 days/week to induce airway inflammation. Lung tissue was analyzed 72 h post-exposure using flow cytometry to assess immune cell populations, and data were analyzed with two-way ANOVA. The ketogenic diet increased body weight in allergen-exposed mice, with a greater effect in males than females (p = 0.0512). Significant sex-diet interactions were noted for alveolar macrophages, CD103+, CD11B+, and plasmacytoid dendritic cells (p < 0.05). Eosinophil reductions were observed in males but not females on the ketogenic diet. The diet also increased NKT cells and decreased NK cells in males but not females (p < 0.001). These findings highlight sex-specific effects of ketogenic diets on lung immune responses, with stronger impacts in males.
Collapse
Affiliation(s)
- Carolyn D. Ekpruke
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (C.D.E.); (O.B.-S.); (D.R.); (L.D.); (M.B.)
| | - Omar Borges-Sosa
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (C.D.E.); (O.B.-S.); (D.R.); (L.D.); (M.B.)
| | | | - Dustin Rousselle
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (C.D.E.); (O.B.-S.); (D.R.); (L.D.); (M.B.)
| | - Lyidia Dinwiddie
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (C.D.E.); (O.B.-S.); (D.R.); (L.D.); (M.B.)
| | - Maksat Babayev
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (C.D.E.); (O.B.-S.); (D.R.); (L.D.); (M.B.)
| | - Ahmed Bakare
- School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (C.D.E.); (O.B.-S.); (D.R.); (L.D.); (M.B.)
- School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
4
|
Pianigiani T, Paggi I, Cooper GE, Staples KJ, McDonnell M, Bergantini L. Natural killer cells in the lung: novel insight and future challenge in the airway diseases. ERJ Open Res 2025; 11:00683-2024. [PMID: 40071269 PMCID: PMC11895099 DOI: 10.1183/23120541.00683-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/13/2024] [Indexed: 03/14/2025] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells which are present in the lung as circulating and resident cells. They are key players both in airway surveillance and in crosstalk with (COPD) pathogenesis, and they seem to contribute to the development of bronchiectasis. In asthma, NK cell dysfunction was observed mainly in severe forms, and it can lead to a biased type-2 immune response and failure in the resolution of eosinophilic inflammation that characterise both allergic and eosinophilic phenotypes. Moreover, aberrant NK cell functions may interfere with antimicrobial immune response contributing to the frequency and severity of virus-induced exacerbations. In COPD, lung NK cells exhibit increased cytotoxicity against lung epithelium contributing to lung tissue destruction and emphysema. This cell destruction may be exacerbated by viral infections and cigarette smoke exposure through NKG2D-dependent detection of cellular stress. Lastly, in bronchiectasis, the airway NK cells might both promote neutrophil survival following stimulation by proinflammatory cytokines and promote neutrophil apoptosis. Systemic steroid treatment seemingly compromises NK activity, while biologic treatment with benralizumab could enhance NK cell proliferation, maturation and activation. This narrative review gives an overview of NK cells in airway diseases focusing on pathophysiological and clinical implications. Together, our findings emphasise the pleiotropic role of NK cells in airway diseases underscoring their possible implications as to therapeutical approaches.
Collapse
Affiliation(s)
- Tommaso Pianigiani
- Respiratory Diseases Unit, Department of Medical Sciences, Surgery and Neurosciences, Siena University Hospital, Siena, Italy
| | - Irene Paggi
- Respiratory Diseases Unit, Department of Medical Sciences, Surgery and Neurosciences, Siena University Hospital, Siena, Italy
| | - Grace E. Cooper
- Clinical & Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Karl J. Staples
- Clinical & Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - Melissa McDonnell
- Department of Respiratory Medicine, Galway University Hospital, Galway, Ireland
| | - Laura Bergantini
- Respiratory Diseases Unit, Department of Medical Sciences, Surgery and Neurosciences, Siena University Hospital, Siena, Italy
| |
Collapse
|
5
|
Vultaggio A, Bergantini L, Crimi C, Matucci A, Menzella F, Schroeder JWV, Senna G, Cameli P. Benralizumab: from tissue distribution to eosinophilic cytotoxicity up to potential immunoregulation. Expert Opin Biol Ther 2025; 25:175-185. [PMID: 39708290 DOI: 10.1080/14712598.2024.2446600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
INTRODUCTION Benralizumab, a monoclonal IgG antibody, has emerged as a key therapeutic agent in severe asthma by specifically targeting eosinophils, pivotal cells that drive inflammation and tissue damage. Over the past two decades, the availability of such targeted therapies has allowed patients to achieve better disease control. Real-world evidence has consistently demonstrated the effectiveness of benralizumab in managing severe asthma. AREAS COVERED This paper discusses the kinetic and potential mechanism of action of benralizumab beyond the well-known antibody-dependent cell-mediated cytotoxicity involving natural killer cells. EXPERT OPINION The available data so far clearly show that reducing eosinophils, one of the main drivers of inflammation and tissue damage in SA, accounts for clinical benefits to these patients. Benralizumab is able to directly reduce tissue levels of eosinophils via multiple mechanisms, and additionally, it is potentially able to modulate the innate immune response. The complex and unique multiple modes of action of benralizumab and its pharmacokinetic features, seem to be the milestone on which the effectiveness of benralizumab is founded.
Collapse
Affiliation(s)
- Alessandra Vultaggio
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Bergantini
- Respiratory Diseases Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Claudia Crimi
- Respiratory Medicine Unit, Policlinico "G. Rodolico-San Marco" University Hospital, Catania, Italy
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Andrea Matucci
- Immunoallergology Unit, Careggi University Hospital, Florence, Italy
| | | | | | - Gianenrico Senna
- Allergy Unit and Asthma Center, Verona University Hospital, Verona, Italy
| | - Paolo Cameli
- Respiratory Diseases Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
6
|
He J, Qing Z, Li Y, Lin J, Wang D, Xu W, Chen X, Meng X, Duan J. MiR-214 promotes the antitumor effect of NK cells in colorectal cancer liver metastasis through USP27X/Bim. Cytotechnology 2024; 76:667-681. [PMID: 39435421 PMCID: PMC11490475 DOI: 10.1007/s10616-024-00642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/25/2024] [Indexed: 10/23/2024] Open
Abstract
Colorectal cancer (CRC) is a common tumor type, and liver metastasis reduces the long-term survival in CRC patients. Natural killer (NK) cells play an important role in anti-tumor immunity. The aim of this study was to investigate the mechanism of miR-214-5p on NK cells in CRC liver metastasis. We collected clinical samples of CRC liver metastasis and nonmetastatic tissues and purchased the human NK cell lines NK92 and liver metastatic CRC cells KM12L4 for research. RT‒qPCR, Western blot, CCK-8, Transwell, and flow cytometry methods were used to evaluate the effect of miR-214-5p/USP27X/Bim pathway regulating NK cell activity on CRC liver metastasis. In addition, we also investigated the potential targets and regulatory mechanisms of the signaling pathway of miR-214-5p. In this study, we found that miR-214-5p was downregulated in CRC liver metastasis tissues. After transfection of miR-214-5p mimic, the activity of NK cells was significantly enhanced, and the proliferation and migration ability of CRC liver metastasis cells were inhibited, while inducing tumor cell apoptosis. Further research proved that USP27X is a potential target for miR-214-5p and upregulates Bim level through deubiquitination. In addition, miR-214-5p mimic reduced the level of USP27X and Bim, thereby enhancing the antitumor effect of NK cells. In conclusion, our research results show that miR-214-5p promotes the antitumor effect of NK cells by regulating the USP27X/Bim pathway, thereby inhibiting CRC liver metastasis. This finding reveals the important role of miR-214-5p in regulating the immune function of NK cells, and provides new ideas for developing new immunotherapy strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00642-1.
Collapse
Affiliation(s)
- Jinlan He
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000 Yunnan China
| | - Zhe Qing
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000 Yunnan China
| | - Yifei Li
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000 Yunnan China
| | - Jie Lin
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000 Yunnan China
| | - Dan Wang
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000 Yunnan China
| | - Wanggang Xu
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000 Yunnan China
| | - Xiyuan Chen
- Department of Hepatological Surgery, The Third People’s Hospital of Honghe Hani and Yi Autonomous Prefecture, Gejiu, 661000 Yunnan China
| | - Xiangyu Meng
- Department of Hepatological Surgery, Peace Hospital Affiliated to Changzhi Medical College, Changzhi, 046000 Shanxi China
| | - Jian Duan
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000 Yunnan China
| |
Collapse
|
7
|
Vázquez-Mera S, Martelo-Vidal L, Miguéns-Suárez P, Bravo SB, Saavedra-Nieves P, Arias P, Ferreiro-Posse A, Vázquez-Lago J, Salgado FJ, González-Barcala FJ, Nieto-Fontarigo JJ. Exploring CD26 -/lo subpopulations of lymphocytes in asthma phenotype and severity: A novel CD4 + T cell subset expressing archetypical granulocyte proteins. Allergy 2024; 79:3005-3021. [PMID: 39319599 DOI: 10.1111/all.16327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/20/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Asthma pathology may induce changes in naïve/memory lymphocyte proportions assessable through the evaluation of surface CD26 (dipeptidyl peptidase 4/DPP4) levels. Our aim was to investigate the association of asthma phenotype/severity with the relative frequency of CD26-/lo, CD26int and CD26hi subsets within different lymphocyte populations. METHODS The proportion of CD26-/lo, CD26int and CD26hi subsets within CD4+ effector T cells (Teff), total CD4- lymphocytes, γδ-T cells, NK cells and NKT cells was measured in peripheral blood samples from healthy (N = 30) and asthma (N = 119) donors with different phenotypes/severities by flow cytometry. We performed K-means clustering analysis and further characterised the CD4+CD26-/lo Teff cell subset by LC-MS/MS and immunofluorescence. RESULTS Cluster analysis including clinical and flow cytometry data resulted in four groups, two of them with opposite inflammatory profiles (neutrophilic vs. eosinophilic). Neutrophilic asthma presented reduced CD4-CD26hi cells, which negatively correlated with systemic inflammation. Eosinophilic asthma displayed a general expansion of CD26-/lo subsets. Specifically, CD4+CD26-/lo Teff expansion was confirmed in asthma, especially in atopic patients. Proteomic characterisation of this subset with a TEM/TEMRA phenotype revealed upregulated levels of innate (e.g. MPO and RNASE2) and cytoskeleton/extracellular matrix (e.g. MMP9 and ACTN1) proteins. Immunofluorescence assays confirmed the presence of atypical proteins for CD4+ T cells, and an enrichment in 'flower-like' nuclei and MMP9/RNASE2 levels in CD4+CD26-/lo Teff compared to CD4+ T lymphocytes. CONCLUSION There is an association between CD26 levels in different lymphocyte subsets and asthma phenotype/severity. CD4+CD26-/loTEMRA cells expressing innate proteins specific to eosinophils/neutrophils could be determinant in sustaining long-term inflammation in adult allergic asthma.
Collapse
Affiliation(s)
- Sara Vázquez-Mera
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Laura Martelo-Vidal
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Pablo Miguéns-Suárez
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Susana Belén Bravo
- Proteomic Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Paula Saavedra-Nieves
- Department of Statistics, Mathematical Analysis and Optimization, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Pilar Arias
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Antía Ferreiro-Posse
- Department of Respiratory Medicine, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan Vázquez-Lago
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco Javier Salgado
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco Javier González-Barcala
- Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Department of Respiratory Medicine, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Medicine, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan José Nieto-Fontarigo
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
8
|
Devulder J, Barrier M, Carrard J, Amniai L, Plé C, Marquillies P, Ledroit V, Ryffel B, Tsicopoulos A, de Nadai P, Duez C. Pulmonary Administration of TLR2/6 Agonist after Allergic Sensitization Inhibits Airway Hyper-Responsiveness and Recruits Natural Killer Cells in Lung Parenchyma. Int J Mol Sci 2024; 25:9606. [PMID: 39273551 PMCID: PMC11394962 DOI: 10.3390/ijms25179606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Asthma is a chronic lung disease with persistent airway inflammation, bronchial hyper-reactivity, mucus overproduction, and airway remodeling. Antagonizing T2 responses by triggering the immune system with microbial components such as Toll-like receptors (TLRs) has been suggested as a therapeutic concept for allergic asthma. The aim of this study was to evaluate the effect of a TLR2/6 agonist, FSL-1 (Pam2CGDPKHPKSF), administered by intranasal instillation after an allergic airway reaction was established in the ovalbumin (OVA) mouse model and to analyze the role of natural killer (NK) cells in this effect. We showed that FSL-1 decreased established OVA-induced airway hyper-responsiveness and eosinophilic inflammation but did not reduce the T2 or T17 response. FSL-1 increased the recruitment and activation of NK cells in the lung parenchyma and modified the repartition of NK cell subsets in lung compartments. Finally, the transfer or depletion of NK cells did not modify airway hyper-responsiveness and eosinophilia after OVA and/or FSL-1 treatment. Thus, the administration of FSL-1 reduces airway hyper-responsiveness and bronchoalveolar lavage eosinophilia. However, despite modifications of their functions following OVA sensitization, NK cells play no role in OVA-induced asthma and its inhibition by FSL-1. Therefore, the significance of NK cell functions and localization in the airways remains to be unraveled in asthma.
Collapse
Affiliation(s)
- Justine Devulder
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France; (J.D.); (A.T.); (P.d.N.)
| | - Mathieu Barrier
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France; (J.D.); (A.T.); (P.d.N.)
| | - Julie Carrard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France; (J.D.); (A.T.); (P.d.N.)
| | - Latiffa Amniai
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France; (J.D.); (A.T.); (P.d.N.)
| | - Coline Plé
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France; (J.D.); (A.T.); (P.d.N.)
| | - Philippe Marquillies
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France; (J.D.); (A.T.); (P.d.N.)
| | - Valérie Ledroit
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France; (J.D.); (A.T.); (P.d.N.)
| | - Bernhard Ryffel
- CNRS and University Orleans—INEM (Immuno-Neuro Modulation), UMR7355 INEM, 45071 Orleans , France;
| | - Anne Tsicopoulos
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France; (J.D.); (A.T.); (P.d.N.)
| | - Patricia de Nadai
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France; (J.D.); (A.T.); (P.d.N.)
| | - Catherine Duez
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France; (J.D.); (A.T.); (P.d.N.)
| |
Collapse
|
9
|
Zaid AB, Almady SK, Awad SM, Elabd MG, Saied SA, Saied AA, Elmalawany AM. Sofosbuvir (+) daclatasvir (+) ribavirin in Egyptian patients with hepatitis C virus: Therapeutic outcomes and the prognostic role of natural killer cells. Curr Res Transl Med 2024; 72:103443. [PMID: 38447269 DOI: 10.1016/j.retram.2024.103443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/02/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND One of the prominent causes of chronic liver disease worldwide is the hepatitis C virus (HCV). HCV believed that innate immunity contributes to a sustained virological response (SVR) to the treatment of Sofosbuvir (SOF) (+) Daclatasvir (DCV) (+) Ribavirin (RBV). This study aimed to evaluate the impact of SOF (+) DCV (+) RBV therapy and persistent HCV infection on the subset of natural killer cells (NK) in HCV genotype four patients from Egypt. MATERIALS AND METHODS One hundred and ten patients with persistent HCV infections requiring SOF (+) DCV (+) RBV therapy were grouped, and a flow cytometry (FCM) study of the NK cell subset in peripheral blood was performed. The assessment was performed before and after three and/or six months of the cessation of viral suppression therapy when a patient had a long-term viral response (SVR). One hundred and ten volunteers from the National Liver Institute's (NLI) blood bank were selected as controls. RESULTS Patients with chronic HCV infection before therapy had considerably lower CD16+ and CD3- CD56+ cells than controls. Their levels increase during SOF (+) DCV (+) RBV therapy. In patients with SVR during treatment, CD16+ and CD3- CD56+ cells increased significantly compared to those who did not get SVR. Furthermore, CD56+ cells were significantly higher in patients with persistent infection before treatment than controls but diminished with the response to treatment. CONCLUSION NK cell activation following SOF (+) DCV (+) RBV therapy and polarization to cytotoxicity occurred early in HCV antiviral therapy and was elevated in the respondents. Our data illustrated that establishing an inhibitory cytotoxic NK profile is related to therapeutic outcomes.
Collapse
Affiliation(s)
- Ahmed B Zaid
- Department of Clinical Pathology, National Liver Institute, Menoufia University, Shibin Elkom 32511, Egypt
| | - Shimaa K Almady
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shibin-Elkom 32511, Egypt
| | - Samah M Awad
- Department of Clinical Microbiology, National Liver Institute, Menoufia University, Shibin Elkom 32511, Egypt
| | - Mona G Elabd
- Department of Clinical Pathology, National Liver Institute, Menoufia University, Shibin Elkom 32511, Egypt
| | - Sara A Saied
- Department of Clinical Pathology, National Liver Institute, Menoufia University, Shibin Elkom 32511, Egypt
| | | | - Alshimaa M Elmalawany
- Department of Clinical Pathology, National Liver Institute, Menoufia University, Shibin Elkom 32511, Egypt.
| |
Collapse
|
10
|
Durojaye O, Vankayalapati A, Paidipally P, Mukherjee T, Vankayalapati R, Radhakrishnan RK. Lung-resident CD3-NK1.1+CD69+CD103+ Cells Play an Important Role in Bacillus Calmette-Guérin Vaccine-Induced Protective Immunity against Mycobacterium tuberculosis Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:669-677. [PMID: 39007739 DOI: 10.4049/jimmunol.2200728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 06/17/2024] [Indexed: 07/16/2024]
Abstract
Tissue-resident immune cells play important roles in local tissue homeostasis and infection control. There is no information on the functional role of lung-resident CD3-NK1.1+CD69+CD103+ cells in intranasal Bacillus Calmette-Guérin (BCG)-vaccinated and/or Mycobacterium tuberculosis (Mtb)-infected mice. Therefore, we phenotypically and functionally characterized these cells in mice vaccinated intranasally with BCG. We found that intranasal BCG vaccination increased CD3-NK1.1+ cells with a tissue-resident phenotype (CD69+CD103+) in the lungs during the first 7 d after BCG vaccination. Three months post-BCG vaccination, Mtb infection induced the expansion of CD3-NK1.1+CD69+CD103+ (lung-resident) cells in the lung. Adoptive transfer of lung-resident CD3-NK1.1+CD69+CD103+ cells from the lungs of BCG-vaccinated mice to Mtb-infected naive mice resulted in a lower bacterial burden and reduced inflammation in the lungs. Our findings demonstrated that intranasal BCG vaccination induces the expansion of CD3-NK1.1+CD69+CD103+ (lung-resident) cells to provide protection against Mtb infection.
Collapse
Affiliation(s)
- Olamipejo Durojaye
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Abhinav Vankayalapati
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Padmaja Paidipally
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Tanmoy Mukherjee
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX
| | | | | |
Collapse
|
11
|
Mohammad Taheri M, Javan F, Poudineh M, Athari SS. Beyond CAR-T: The rise of CAR-NK cell therapy in asthma immunotherapy. J Transl Med 2024; 22:736. [PMID: 39103889 PMCID: PMC11302387 DOI: 10.1186/s12967-024-05534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Asthma poses a major public health burden. While existing asthma drugs manage symptoms for many, some patients remain resistant. The lack of a cure, especially for severe asthma, compels exploration of novel therapies. Cancer immunotherapy successes with CAR-T cells suggest its potential for asthma treatment. Researchers are exploring various approaches for allergic diseases including membrane-bound IgE, IL-5, PD-L2, and CTLA-4 for asthma, and Dectin-1 for fungal asthma. NK cells offer several advantages over T cells for CAR-based immunotherapy. They offer key benefits: (1) HLA compatibility, meaning they can be used in a wider range of patients without the need for matching tissue types. (2) Minimal side effects (CRS and GVHD) due to their limited persistence and cytokine profile. (3) Scalability for "off-the-shelf" production from various sources. Several strategies have been introduced that highlight the superiority and challenges of CAR-NK cell therapy for asthma treatment including IL-10, IFN-γ, ADCC, perforin-granzyme, FASL, KIR, NCRs (NKP46), DAP, DNAM-1, TGF-β, TNF-α, CCL, NKG2A, TF, and EGFR. Furthermore, we advocate for incorporating AI for CAR design optimization and CRISPR-Cas9 gene editing technology for precise gene manipulation to generate highly effective CAR constructs. This review will delve into the evolution and production of CAR designs, explore pre-clinical and clinical studies of CAR-based therapies in asthma, analyze strategies to optimize CAR-NK cell function, conduct a comparative analysis of CAR-T and CAR-NK cell therapy with their respective challenges, and finally present established novel CAR designs with promising potential for asthma treatment.
Collapse
Affiliation(s)
| | - Fatemeh Javan
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Shamseddin Athari
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Immunology, Zanjan School of Medicine, Zanjan University of Medical Sciences, 12th Street, Shahrake Karmandan, Zanjan, 45139-561111, Iran.
| |
Collapse
|
12
|
Taheri MM, Javan F, Poudineh M, Athari SS. CAR-NKT Cells in Asthma: Use of NKT as a Promising Cell for CAR Therapy. Clin Rev Allergy Immunol 2024; 66:328-362. [PMID: 38995478 DOI: 10.1007/s12016-024-08998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
NKT cells, unique lymphocytes bridging innate and adaptive immunity, offer significant potential for managing inflammatory disorders like asthma. Activating iNKT induces increasing IFN-γ, TGF-β, IL-2, and IL-10 potentially suppressing allergic asthma. However, their immunomodulatory effects, including granzyme-perforin-mediated cytotoxicity, and expression of TIM-3 and TRAIL warrant careful consideration and targeted approaches. Although CAR-T cell therapy has achieved remarkable success in treating certain cancers, its limitations necessitate exploring alternative approaches. In this context, CAR-NKT cells emerge as a promising approach for overcoming these challenges, potentially achieving safer and more effective immunotherapies. Strategies involve targeting distinct IgE-receptors and their interactions with CAR-NKT cells, potentially disrupting allergen-mast cell/basophil interactions and preventing inflammatory cytokine release. Additionally, targeting immune checkpoints like PDL-2, inducible ICOS, FASL, CTLA-4, and CD137 or dectin-1 for fungal asthma could further modulate immune responses. Furthermore, artificial intelligence and machine learning hold immense promise for revolutionizing NKT cell-based asthma therapy. AI can optimize CAR-NKT cell functionalities, design personalized treatment strategies, and unlock a future of precise and effective care. This review discusses various approaches to enhancing CAR-NKT cell efficacy and longevity, along with the challenges and opportunities they present in the treatment of allergic asthma.
Collapse
Affiliation(s)
| | - Fatemeh Javan
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyyed Shamsadin Athari
- Cancer Gene therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
13
|
Zhang H, Wang J, Li F. Modulation of natural killer cell exhaustion in the lungs: the key components from lung microenvironment and lung tumor microenvironment. Front Immunol 2023; 14:1286986. [PMID: 38022613 PMCID: PMC10657845 DOI: 10.3389/fimmu.2023.1286986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Lung cancer is the leading cause of tumor-induced death worldwide and remains a primary global health concern. In homeostasis, due to its unique structure and physiological function, the lung microenvironment is in a state of immune tolerance and suppression, which is beneficial to tumor development and metastasis. The lung tumor microenvironment is a more complex system that further enhances the immunosuppressive features in the lungs. NK cells are abundantly located in the lungs and play crucial roles in lung tumor surveillance and antitumor immunity. However, the immunosuppressive microenvironment promotes significant challenges to NK cell features, leading to their hypofunction, exhaustion, and compromised antitumor activity. Thus, understanding the complex interactions among the lung microenvironment, lung tumor microenvironment, and NK cell exhaustion is critical for the development of effective cancer immunotherapeutic strategies. The present review will discuss NK cell hypofunction and exhaustion within the lung microenvironment and lung tumor microenvironment, focusing on lung tissue-specific factors, including key cytokines and unique environmental components, that modulate NK cell activation and function. Understanding the functional mechanisms of key factors would help to design strategies to reverse NK cell exhaustion and restore their antitumor function within the lung tumor microenvironment.
Collapse
Affiliation(s)
- Hongxia Zhang
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| | - Jian Wang
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Department of Neurology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Fengqi Li
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| |
Collapse
|
14
|
Liu M, Zhang Y, Hu Y, Guo Z, Dong L. The upregulation of peripheral CD3 -CD56 +CD16 + natural killer cells correlates with Th1/Th2 imbalance in asthma patients during acute upper respiratory viral infections. BMC Immunol 2023; 24:40. [PMID: 37865742 PMCID: PMC10590514 DOI: 10.1186/s12865-023-00575-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023] Open
Abstract
PURPOSE The aim of this study is to clarify the changes of peripheral CD3-CD56+CD16+ NK cells and their correlation with Th1/Th2 immunity profiles in asthma during the phase of acute upper respiratory viral infections (AURVIs). METHODS Peripheral venous blood and induced sputum samples were collected from 56 mild asthma patients, 49 asthma patients with AURVIs and 50 healthy subjects. Peripheral CD3-CD56+CD16+ NK cells were monitored by flow cytometry during the course of acute viral infections. Meanwhile, the induced sputum Th2 cytokines IL-4 and IL-5, and Th1 cytokine IFN-γ were also detected by ELISA assay. RESULTS The asthmatics had lower levels of peripheral CD3-CD56+CD16+ NK cells populations as well as higher induced sputum cytokines (IL-4, IL-5 and IFN-γ) compared to healthy controls at baseline. Upon upper respiratory viral infections, peripheral CD3-CD56+CD16+ NK cells numbers in asthma patients sharply elevated on day 3 and slowly decreased by day 14, in accordance with induced sputum IFN-γ changes. IL-4 and IL-5 levels spiked much later (day 8) and lasted until day 14. Compared with asthma alone group, the IFN-γ/IL-4 and IFN-γ/IL-5 ratios of the asthma patients with AURVIs on day 1 were higher and peaked on day 3. The changes of peripheral CD3-CD56+CD16+ NK cells proportions positively correlated with the IFN-γ/IL-4 and IFN-γ/IL-5 ratios on day 1 to day 3 in asthma subsequent to upper respiratory viral infections. CONCLUSIONS Our findings showed an imbalanced Th1/Th2 immunity in airways of asthma with acute upper respiratory viral infections. Upregulated peripheral CD3-CD56+CD16+ NK cells play a crucial role in biased Th1 immunity of airways in asthma during the acute phase of viral infections. The anti-viral Th1 immunity by targeting NK cells may be a possible therapeutic option for virus-induced asthma exacerbation.
Collapse
Affiliation(s)
- Meixuan Liu
- Department of Respiratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 200123, Shanghai, China
| | - Yunxuan Zhang
- Department of Pharmacy, Huadong Hospital, Fudan University, 200120, Shanghai, China
| | - Yunqian Hu
- Department of Respiratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 200123, Shanghai, China
| | - Zhongliang Guo
- Department of Respiratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 200123, Shanghai, China.
| | - Lin Dong
- Department of Thoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, 200123, Shanghai, China.
| |
Collapse
|