1
|
Wang W, Qu Y, Chen H, Huang L, Gu L. The microbial co-infection interaction network in apical periodontitis with sinus tracts. J Dent 2025; 153:105496. [PMID: 39626841 DOI: 10.1016/j.jdent.2024.105496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/19/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024] Open
Abstract
OBJECTIVES This study aims to characterize the bacterial co-occurrence features and potential interactions associated with the presence of sinus tracts in apical periodontitis in a Chinese population by using 16S rRNA next-generation sequencing (NGS). METHODS Thirty-one samples from twenty-six patients were collected from root canals. Following the extraction of the bacterial DNA, the V3-V4 hypervariable regions of the 16S rRNA gene were sequenced. Compositional diversity, prominent taxa and co-occurrence network analysis were compared according to the presence or absence of sinus tracts. RESULTS The overall microbiota in two groups exhibited distinguished patterns. Actinomyces dominated in samples with sinus tracts while Prevotella was the most abundant in samples without sinus tracts. The major pathogens in sinus tracts exhibited a complex co-occurrence network, in which Pseudomonas formed a distinctive cluster with enriched abundance, and the extensive correlations centered on Desulfovibrio and Pseudoramibacter may suggest novel dependencies. In the network without sinus tracts, the Bacteroidetes and Firmicutes taxa presented close internal associations. CONCLUSIONS The sequencing results confirmed the complexity of the microbiota in AP. The presence of sinus tracts was associated with distinctive infective patterns and complicated microbial co-infection interaction networks. Further investigations should be adopted to elucidate the relationship between the novel interactions and disease progression. CLINICAL SIGNIFICANCE Exploring the microbial interactions leads to a better understanding of etiology of apical periodontitis. Utilizing next generation sequencing techniques, our research uncovered the bacterial community structure and observed co-infection networks associated with sinus tracts, providing potential insights for prognosis prediction and targeted therapeutics of persistent inflammation.
Collapse
Affiliation(s)
- Wenying Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yang Qu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lijia Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Lisha Gu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Nandanwar N, Gu G, Gibson JE, Neely MN. Polymicrobial interactions influence Mycobacterium abscessus co-existence and biofilm forming capabilities. Front Microbiol 2024; 15:1484510. [PMID: 39654682 PMCID: PMC11627178 DOI: 10.3389/fmicb.2024.1484510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
The lungs of patients with cystic fibrosis (CF) are vulnerable to persistent polymicrobial colonization by bacterial pathogens including Pseudomonas aeruginosa, Staphylococcus aureus, and the non-tuberculous mycobacterium (NTM) Mycobacterium abscessus. The polymicrobial milieu within the CF lung impacts individual species fitness, influences biofilm-forming capabilities, pathogenicity, production of virulence factors and even antimicrobial responses, all potentially compromising therapeutic success. Interaction studies among these CF pathogens are very limited, especially studies on the influences of P. aeruginosa and S. aureus on M. abscessus co-existence and virulence. Based on the little known thus far about coinfection of these pathogens, we hypothesize that the co-existence of P. aeruginosa and S. aureus alters M. abscessus virulence and phenotypic characteristics. We evaluated the direct (co-culture) and indirect (using supernatant) effects of P. aeruginosa and S. aureus on M. abscessus growth rate, biofilm formation, macrophage internalization and glycopeptidolipids (GPL) expression. Our observations indicate that P. aeruginosa and S. aureus exert a competitive behavior toward M. abscessus during direct contact or indirect interaction in-vitro, probably as is the case of polymicrobial infections in the lungs of patients with CF. This is the first report that demonstrates S. aureus inhibitory effects on M. abscessus growth and biofilm forming capabilities. Collectively, co-culture studies enhance our understanding of polymicrobial interactions during coinfection and can guide to establish better management of coinfections and treatment strategies for M. abscessus.
Collapse
Affiliation(s)
- Nishant Nandanwar
- Division of Infectious Diseases, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Geoffery Gu
- Division of Infectious Diseases, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Joy E. Gibson
- Division of Infectious Diseases, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Michael N. Neely
- Division of Infectious Diseases, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
3
|
Wei X, Wang W, Cheng H, Huang Y, Zhou Q, Yuan X. Distinct lower respiratory tract microbiota profiles linked to airway mucus hypersecretion in children with Mycoplasma pneumoniae pneumonia. Front Microbiol 2024; 15:1491506. [PMID: 39483762 PMCID: PMC11524823 DOI: 10.3389/fmicb.2024.1491506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Background Airway mucus hypersecretion (AMH) can occur in children with acute respiratory diseases, but its underlying mechanisms and relationship with the lower respiratory tract microbiota (LRTM) are not yet fully understood. This study investigates the characteristics of LRTM in children with Mycoplasma pneumoniae pneumonia (MPP) and its impact on AMH. Methods We collected bronchoalveolar lavage fluid and related clinical indicators from 202 children with MPP. 16S rRNA gene amplicon sequencing was used for detection and identification. Microbial diversity and characteristic genera were compared, and their abundance was analyzed for correlations with clinical factors. Results As the disease course (days from onset to bronchoscopy, grouped into T1, T2, T3) extended, α-diversity of the LRTM gradually increased, particularly in the T3 hypersecretion group. Moreover, significant differences were observed in the incidence of AMH, co-infection rates, peripheral white blood cell (WBC) count, and C-reactive protein levels. In AMH, Mycoplasmoides and Veillonella abundance and peripheral neutrophils were risk factors for increased secretions. In addition, in the T3 co-infection group, Streptococcus and Prevotella increased, replacing Stenotrophomonas as the dominant genus, possibly due to β-lactam antibiotic use. Prevotella abundance was strongly correlated with WBC. Conclusion The composition and structure of LRTM in children with MPP played a crucial role in AMH and disease progression.
Collapse
Affiliation(s)
- Xiwen Wei
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Laboratory Medicine, The Affiliated Foshan Women and Children Hospital, Guangdong Medical University, Foshan, China
| | - Wan Wang
- Department of Laboratory Medicine, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Hang Cheng
- Department of Laboratory Medicine, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yin Huang
- Department of Pediatrics, The Affiliated Foshan Women and Children Hospital, Guangdong Medical University, Foshan, China
| | - Qixian Zhou
- Department of Laboratory Medicine, The Affiliated Foshan Women and Children Hospital, Guangdong Medical University, Foshan, China
| | - Xiaopeng Yuan
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Laboratory Medicine, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| |
Collapse
|
4
|
Raboso B, Pou C, Abril R, Erro M, Sánchez C, Manzano C, Zamarrón E, Suarez-Cuartin G, González J. Bronchiectasis. OPEN RESPIRATORY ARCHIVES 2024; 6:100339. [PMID: 39026515 PMCID: PMC11255363 DOI: 10.1016/j.opresp.2024.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/02/2024] [Indexed: 07/20/2024] Open
Abstract
Non-cystic fibrosis bronchiectasis, a condition that remains relatively underrecognized, has garnered increasing research focus in recent years. This scientific interest has catalyzed advancements in diagnostic methodologies, enabling comprehensive clinical and molecular profiling. Such progress facilitates the development of personalized treatment strategies, marking a significant step toward precision medicine for these patients. Bronchiectasis poses significant diagnostic challenges in both clinical settings and research studies. While computed tomography (CT) remains the gold standard for diagnosis, novel alternatives are emerging. These include artificial intelligence-powered algorithms, ultra-low dose chest CT, and magnetic resonance imaging (MRI) techniques, all of which are becoming recognized as feasible diagnostic tools. The precision medicine paradigm calls for refined characterization of bronchiectasis patients by analyzing their inflammatory and molecular profiles. Research into the underlying mechanisms of inflammation and the evaluation of biomarkers such as neutrophil elastase, mucins, and antimicrobial peptides have led to the identification of distinct patient endotypes. These endotypes present variable clinical outcomes, necessitating tailored therapeutic interventions. Among these, eosinophilic bronchiectasis is notable for its prevalence and specific prognostic factors, calling for careful consideration of treatable traits. A deeper understanding of the microbiome's influence on the pathogenesis and progression of bronchiectasis has inspired a holistic approach, which considers the multibiome as an interconnected microbial network rather than treating pathogens as solitary entities. Interactome analysis therefore becomes a vital tool for pinpointing alterations during both stable phases and exacerbations. This array of innovative approaches has revolutionized the personalization of treatments, incorporating therapies such as inhaled mannitol or ARINA-1, brensocatib for anti-inflammatory purposes, and inhaled corticosteroids specifically for patients with eosinophilic bronchiectasis.
Collapse
Affiliation(s)
| | | | - Rosa Abril
- University Hospital Complex Insular-Materno Infantil (CHUIMI) of Gran Canaria, Gran Canaria, Spain
| | - Marta Erro
- Puerta del Hierro University Hospital, Madrid, Spain
| | | | - Carlos Manzano
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | | | - Guillermo Suarez-Cuartin
- Hospital Universitari Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Jessica González
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Grassi L, Asfahl KL, Van den Bossche S, Maenhout I, Sass A, Vande Weygaerde Y, Van Braeckel E, Verhasselt B, Boelens J, Tunney MM, Dandekar AA, Coenye T, Crabbé A. Antibiofilm activity of Prevotella species from the cystic fibrosis lung microbiota against Pseudomonas aeruginosa. Biofilm 2024; 7:100206. [PMID: 38975276 PMCID: PMC11225020 DOI: 10.1016/j.bioflm.2024.100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/06/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
It is increasingly recognized that interspecies interactions may modulate the pathogenicity of Pseudomonas aeruginosa during chronic lung infections. Nevertheless, while the interaction between P. aeruginosa and pathogenic microorganisms co-infecting the lungs has been widely investigated, little is known about the influence of other members of the lung microbiota on the infection process. In this study, we focused on investigating the impact of Prevotella species isolated from the sputum of people with cystic fibrosis (pwCF) on biofilm formation and virulence factor production by P. aeruginosa. Screening of a representative collection of Prevotella species recovered from clinical samples showed that several members of this genus (8 out 10 isolates) were able to significantly reduce biofilm formation of P. aeruginosa PAO1, without impact on growth. Among the tested isolates, the strongest biofilm-inhibitory activity was observed for Prevotella intermedia and Prevotella nigrescens, which caused a reduction of up to 90% in the total biofilm biomass of several P. aeruginosa isolates from pwCF. In addition, a strain-specific effect of P. nigrescens on the ability of P. aeruginosa to produce proteases and pyocyanin was observed, with significant alterations in the levels of these virulence factors detected in LasR mutant strains. Overall, these results suggest that non-pathogenic bacteria from the lung microbiota may regulate pathogenicity traits of P. aeruginosa, and possibly affect the outcome of chronic lung infections.
Collapse
Affiliation(s)
- Lucia Grassi
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Kyle L. Asfahl
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | | | - Ine Maenhout
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Andrea Sass
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Yannick Vande Weygaerde
- Cystic Fibrosis Reference Centre, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Eva Van Braeckel
- Cystic Fibrosis Reference Centre, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Bruno Verhasselt
- Laboratory of Medical Microbiology, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Jerina Boelens
- Laboratory of Medical Microbiology, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Michael M. Tunney
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Ajai A. Dandekar
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
O’Toole GA. We have a community problem. J Bacteriol 2024; 206:e0007324. [PMID: 38529952 PMCID: PMC11025320 DOI: 10.1128/jb.00073-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Affiliation(s)
- George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
7
|
Cauwenberghs E, De Boeck I, Spacova I, Van Tente I, Bastiaenssen J, Lammertyn E, Verhulst S, Van Hoorenbeeck K, Lebeer S. Positioning the preventive potential of microbiome treatments for cystic fibrosis in the context of current therapies. Cell Rep Med 2024; 5:101371. [PMID: 38232705 PMCID: PMC10829789 DOI: 10.1016/j.xcrm.2023.101371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/24/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
Antibiotics and cystic fibrosis transmembrane conductance regulator (CFTR) modulators play a pivotal role in cystic fibrosis (CF) treatment, but both have limitations. Antibiotics are linked to antibiotic resistance and disruption of the airway microbiome, while CFTR modulators are not widely accessible, and structural lung damage and pathogen overgrowth still occur. Complementary strategies that can beneficially modulate the airway microbiome in a preventive way are highly needed. This could be mediated via oral probiotics, which have shown some improvement of lung function and reduction of airway infections and exacerbations, as a cost-effective approach. However, recent data suggest that specific and locally administered probiotics in the respiratory tract might be a more targeted approach to prevent pathogen outgrowth in the lower airways. This review aims to summarize the current knowledge on the CF airway microbiome and possibilities of microbiome treatments to prevent bacterial and/or viral infections and position them in the context of current CF therapies.
Collapse
Affiliation(s)
- Eline Cauwenberghs
- University of Antwerp, Department of Bioscience Engineering, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Ilke De Boeck
- University of Antwerp, Department of Bioscience Engineering, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Irina Spacova
- University of Antwerp, Department of Bioscience Engineering, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Ilke Van Tente
- University of Antwerp, Department of Bioscience Engineering, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Joke Bastiaenssen
- University of Antwerp, Department of Bioscience Engineering, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Elise Lammertyn
- Belgian CF Association, Driebruggenstraat 124, 1160 Brussels, Belgium; Cystic Fibrosis Europe, Driebruggenstraat 124, 1160 Brussels, Belgium
| | - Stijn Verhulst
- University of Antwerp, Laboratory of Experimental Medicine and Pediatrics, Universiteitsplein 1, 2610 Wilrijk, Belgium; Antwerp University Hospital, Department of Pediatric Pulmonology, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Kim Van Hoorenbeeck
- University of Antwerp, Laboratory of Experimental Medicine and Pediatrics, Universiteitsplein 1, 2610 Wilrijk, Belgium; Antwerp University Hospital, Department of Pediatric Pulmonology, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Sarah Lebeer
- University of Antwerp, Department of Bioscience Engineering, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| |
Collapse
|
8
|
Coenye T. Biofilm antimicrobial susceptibility testing: where are we and where could we be going? Clin Microbiol Rev 2023; 36:e0002423. [PMID: 37812003 PMCID: PMC10732061 DOI: 10.1128/cmr.00024-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/27/2023] [Indexed: 10/10/2023] Open
Abstract
Our knowledge about the fundamental aspects of biofilm biology, including the mechanisms behind the reduced antimicrobial susceptibility of biofilms, has increased drastically over the last decades. However, this knowledge has so far not been translated into major changes in clinical practice. While the biofilm concept is increasingly on the radar of clinical microbiologists, physicians, and healthcare professionals in general, the standardized tools to study biofilms in the clinical microbiology laboratory are still lacking; one area in which this is particularly obvious is that of antimicrobial susceptibility testing (AST). It is generally accepted that the biofilm lifestyle has a tremendous impact on antibiotic susceptibility, yet AST is typically still carried out with planktonic cells. On top of that, the microenvironment at the site of infection is an important driver for microbial physiology and hence susceptibility; but this is poorly reflected in current AST methods. The goal of this review is to provide an overview of the state of the art concerning biofilm AST and highlight the knowledge gaps in this area. Subsequently, potential ways to improve biofilm-based AST will be discussed. Finally, bottlenecks currently preventing the use of biofilm AST in clinical practice, as well as the steps needed to get past these bottlenecks, will be discussed.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
Moazami Goudarzi S, Shahpouri Arani Y, Abdi Ali A, Mohammadi P, Ghorbanmehr N, Modaresi M, Ghorban Movahed M, Ghazanfari T. Comparison of culture and PCR-DGGE methods to evaluate the airways of cystic fibrosis patients and determination of their antibiotic resistance profile. IRANIAN JOURNAL OF MICROBIOLOGY 2023; 15:750-758. [PMID: 38156302 PMCID: PMC10751606 DOI: 10.18502/ijm.v15i6.14135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Background and Objectives Respiratory infections are the most serious condition in cystic fibrosis (CF) patients; therefore, a thorough comprehension of the diversity and dominant microbial species in CF airways has a crucial role in treatment. Our objective was to determine the antibiotic resistance profile of CF airways microbiota and compare culture methods and PCR-DGGE to evaluate bacterial diversity. Materials and Methods Pharyngeal swabs from 121 CF patients were collected. The samples were then cultured, identified and antibiotic resistance testing was performed. Thirty samples were subjected to further molecular surveys. DNA contents of these samples were extracted and amplified using nested-PCR technique and their bacterial diversity was assessed by DGGE. The DGGE patterns were visualized and certain bands were excised and purified. Next, the DNA was amplified by another round of PCR and sent out for sequencing. Results Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae were the most prevalent species isolated using culture methods. S. aureus was the most common bacteria among 6 years and younger patients; while, P. aeruginosa had more prevalence among older ones. The PCR-DGGE results showed more diversity than culture methods, particularly in younger patients who exhibited more bacterial diversity than the older groups. Sequencing results unveiled the presence of certain bacterial species including Haemophilus parainfluenzae and Stenotrophomonas maltophilia which were completely missed in culture. Conclusion Even though culture-dependent methods are cost-effective, PCR-DGGE appeared to be more efficient to determine bacterial diversity. PCR-DGGE detects less abundant species, though their viability could not be determined using this method.
Collapse
Affiliation(s)
- Somayeh Moazami Goudarzi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
- Cystic Fibrosis Research Center, Iran CF Foundation (ICFF), Tehran, Iran
| | - Yasamin Shahpouri Arani
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Ahya Abdi Ali
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Parisa Mohammadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Nassim Ghorbanmehr
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Mohammadreza Modaresi
- Cystic Fibrosis Research Center, Iran CF Foundation (ICFF), Tehran, Iran
- Pediatric Pulmonary Disease and Sleep Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahtab Ghorban Movahed
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
10
|
Jean-Pierre F, Hampton TH, Schultz D, Hogan DA, Groleau MC, Déziel E, O'Toole GA. Community composition shapes microbial-specific phenotypes in a cystic fibrosis polymicrobial model system. eLife 2023; 12:81604. [PMID: 36661299 PMCID: PMC9897730 DOI: 10.7554/elife.81604] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/19/2023] [Indexed: 01/21/2023] Open
Abstract
Interspecies interactions can drive the emergence of unexpected microbial phenotypes that are not observed when studying monocultures. The cystic fibrosis (CF) lung consists of a complex environment where microbes, living as polymicrobial biofilm-like communities, are associated with negative clinical outcomes for persons with CF (pwCF). However, the current lack of in vitro models integrating the microbial diversity observed in the CF airway hampers our understanding of why polymicrobial communities are recalcitrant to therapy in this disease. Here, integrating computational approaches informed by clinical data, we built a mixed community of clinical relevance to the CF lung composed of Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus sanguinis, and Prevotella melaninogenica. We developed and validated this model biofilm community with multiple isolates of these four genera. When challenged with tobramycin, a front-line antimicrobial used to treat pwCF, the microorganisms in the polymicrobial community show altered sensitivity to this antibiotic compared to monospecies biofilms. We observed that wild-type P. aeruginosa is sensitized to tobramycin in a mixed community versus monoculture, and this observation holds across a range of community relative abundances. We also report that LasR loss-of-function, a variant frequently detected in the CF airway, drives tolerance of P. aeruginosa to tobramycin specifically in the mixed community. Our data suggest that the molecular basis of this community-specific recalcitrance to tobramycin for the P. aeruginosa lasR mutant is increased production of phenazines. Our work supports the importance of studying a clinically relevant model of polymicrobial biofilms to understand community-specific traits relevant to infections.
Collapse
Affiliation(s)
- Fabrice Jean-Pierre
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| | - Thomas H Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| | - Daniel Schultz
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| | - Marie-Christine Groleau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche ScientifiqueLavalCanada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche ScientifiqueLavalCanada
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at DartmouthHanoverUnited States
| |
Collapse
|
11
|
Quinn AM, Bottery MJ, Thompson H, Friman VP. Resistance evolution can disrupt antibiotic exposure protection through competitive exclusion of the protective species. THE ISME JOURNAL 2022; 16:2433-2447. [PMID: 35859161 PMCID: PMC9477885 DOI: 10.1038/s41396-022-01285-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/05/2022]
Abstract
Antibiotic degrading bacteria can reduce the efficacy of drug treatments by providing antibiotic exposure protection to pathogens. While this has been demonstrated at the ecological timescale, it is unclear how exposure protection might alter and be affected by pathogen antibiotic resistance evolution. Here, we utilised a two-species model cystic fibrosis (CF) community where we evolved the bacterial pathogen Pseudomonas aeruginosa in a range of imipenem concentrations in the absence or presence of Stenotrophomonas maltophilia, which can detoxify the environment by hydrolysing β-lactam antibiotics. We found that P. aeruginosa quickly evolved resistance to imipenem via parallel loss of function mutations in the oprD porin gene. While the level of resistance did not differ between mono- and co-culture treatments, the presence of S. maltophilia increased the rate of imipenem resistance evolution in the four μg/ml imipenem concentration. Unexpectedly, imipenem resistance evolution coincided with the extinction of S. maltophilia due to increased production of pyocyanin, which was cytotoxic to S. maltophilia. Together, our results show that pathogen resistance evolution can disrupt antibiotic exposure protection due to competitive exclusion of the protective species. Such eco-evolutionary feedbacks may help explain changes in the relative abundance of bacterial species within CF communities despite intrinsic resistance to anti-pseudomonal drugs.
Collapse
|
12
|
Roberts AEL, Xanthe C, Hopkins AL, Bodger O, Lewis P, Mahenthiralingam E, Duckers J, Jenkins RE. A pilot study investigating the effects of a manuka honey sinus rinse compared to a standard sinus rinse on sino-nasal outcome test scores in cystic fibrosis patients. Pilot Feasibility Stud 2022; 8:216. [PMID: 36153609 PMCID: PMC9508718 DOI: 10.1186/s40814-022-01175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/15/2022] [Indexed: 11/15/2022] Open
Abstract
Background People with cystic fibrosis (CF) are prone to bacterial respiratory infections; these are often antibiotic resistant, are difficult to treat, and impact on the quality of life and lung function. The upper respiratory tract can act as a reservoir for these pathogens, and as part of clinical care, sinus rinses are used to alleviate symptoms in the upper airway. We have developed a sinus rinse containing manuka honey, to identify whether it can help improve symptoms or reduce the bacterial load. Methods We will undertake a randomised controlled trial where 30 adults with CF will be recruited and randomised to either the control or intervention group. Both groups will follow a sinus rinse protocol for 30 days (± 7 days); the control group will use the standard of care rinse, and the intervention group will use a manuka honey rinse. Both groups will provide samples at day 0 and day 30. The primary outcome measure will be a change in the 22-item Sino-Nasal Outcome Test (SNOT-22) score. Secondary outcomes will include changes to quality of life (questionnaire), bacterial load/community composition, and sputum viscosity. Discussion This trial will look at the use of a manuka honey-infused sinus rinse solution on patients diagnosed with cystic fibrosis (CF) suffering with sinusitis; it will allow us to determine the efficacy of the manuka honey sinus rinse compared to standard rinse and will allow us to determine if molecular bacterial diversity analysis will provide in-depth information beyond the usual conventional microbiological. It will allow us to determine the feasibility of recruiting participants to this type of trial, allow us to check participant compliance with the protocol, and inform future studies. Trial registration Approval was obtained from the Research Ethics Committee Wales REC7 reference 18/WA/0319. Results of this study will be published at international conferences and in peer-reviewed journals; they will also be presented to the relevant stakeholders and research networks. Trial registration number: ClinicalTrials.gov Identifier NCT04589897 (retrospectively registered)
Collapse
|
13
|
Inam Z, Felton E, Burrell A, Chaney H, Sami I, Koumbourlis AC, Freishtat RJ, Zemanick ET, Crandall KA, Hahn A. Impact of Antibiotics on the Lung Microbiome and Lung Function in Children with Cystic Fibrosis One Year after Hospitalization for an Initial Pulmonary Exacerbation. Open Forum Infect Dis 2022; 9:ofac466. [PMID: 36168550 PMCID: PMC9511275 DOI: 10.1093/ofid/ofac466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/09/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
Cystic fibrosis (CF) is characterized by recurrent pulmonary exacerbations (PEx) and lung function decline. PEx are frequently treated with antibiotics. However, little is known about the cumulative effects of antibiotics on the airway microbiome of persons with CF over time. The purpose of this study was to evaluate changes in the microbiome and lung function in persons with CF over one-year following an initial study pulmonary exacerbation (iPEx).
Methods
Twenty children with CF ≤18 years of age were enrolled in the study which occurred prior to the routine administration of highly effective modulator therapy. Respiratory samples and spirometry were obtained at a minimum of quarterly visits and up to 1-year after an iPEx. Metagenomic sequencing was performed, and bacterial taxa were assigned using MetaPhlAn 2.0. Paired t test, ANOVA, and GLS regression were used to compare outcome variables.
Results
The mean (±SD) age of study participants at the time of the iPEx was 10.6 years. There was 3 ± 1.6 PEx treated with antibiotics per person with CF during the study period. Bacterial richness was similar at 1 year compared to iPEx (40.3 vs 39.3, p = 0.852), whereas the mean Shannon diversity index was significantly higher at one year (2.84 vs 1.62, p < 0.001). The number of PEx treated with IV or oral antibiotics over the year was not associated with changes in microbial diversity but was associated with changes in ppFVC (p < 0.001).
Conclusions
In our one-year prospective evaluation of children with CF hospitalized for IV antibiotic treatment of an initial PEx we found microbial diversity increased despite decreases in lung function associated with repeated PEx events requiring antibiotic therapy.
Collapse
Affiliation(s)
- Zaina Inam
- Pediatric Residency Program, Children’s National Hospital (CNH) , Washington, DC , USA
| | - Erin Felton
- George Washington University School of Medicine and Health Sciences (GWU SMHS) , Washington, DC , USA
| | - Aszia Burrell
- Center for Genetic Medicine, Children’s National Research Institute , Washington, DC , USA
| | - Hollis Chaney
- Division of Pulmonary and Sleep Medicine, CNH , Washington, DC , USA
- Department of Pediatrics, GWU SMHS , Washington, DC , USA
| | - Iman Sami
- Division of Pulmonary and Sleep Medicine, CNH , Washington, DC , USA
- Department of Pediatrics, GWU SMHS , Washington, DC , USA
| | - Anastassios C Koumbourlis
- Division of Pulmonary and Sleep Medicine, CNH , Washington, DC , USA
- Department of Pediatrics, GWU SMHS , Washington, DC , USA
| | - Robert J Freishtat
- George Washington University School of Medicine and Health Sciences (GWU SMHS) , Washington, DC , USA
- Department of Pediatrics, GWU SMHS , Washington, DC , USA
- Division of Emergency Medicine, CNH , Washington, DC , USA
| | - Edith T Zemanick
- Department of Pediatrics, University of Colorado Anschutz Medical Campus , Aurora, CO , USA
| | - Keith A Crandall
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, GWU , Washington, DC , USA
| | - Andrea Hahn
- George Washington University School of Medicine and Health Sciences (GWU SMHS) , Washington, DC , USA
- Department of Pediatrics, GWU SMHS , Washington, DC , USA
- Division of Infectious Diseases, CNH , Washington, DC , USA
| |
Collapse
|
14
|
Juarez VM, Montalbine AN, Singh A. Microbiome as an immune regulator in health, disease, and therapeutics. Adv Drug Deliv Rev 2022; 188:114400. [PMID: 35718251 PMCID: PMC10751508 DOI: 10.1016/j.addr.2022.114400] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/11/2022] [Accepted: 06/12/2022] [Indexed: 11/27/2022]
Abstract
New discoveries in drugs and drug delivery systems are focused on identifying and delivering a pharmacologically effective agent, potentially targeting a specific molecular component. However, current drug discovery and therapeutic delivery approaches do not necessarily exploit the complex regulatory network of an indispensable microbiota that has been engineered through evolutionary processes in humans or has been altered by environmental exposure or diseases. The human microbiome, in all its complexity, plays an integral role in the maintenance of host functions such as metabolism and immunity. However, dysregulation in this intricate ecosystem has been linked with a variety of diseases, ranging from inflammatory bowel disease to cancer. Therapeutics and bacteria have an undeniable effect on each other and understanding the interplay between microbes and drugs could lead to new therapies, or to changes in how existing drugs are delivered. In addition, targeting the human microbiome using engineered therapeutics has the potential to address global health challenges. Here, we present the challenges and cutting-edge developments in microbiome-immune cell interactions and outline novel targeting strategies to advance drug discovery and therapeutics, which are defining a new era of personalized and precision medicine.
Collapse
Affiliation(s)
- Valeria M Juarez
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
| | - Alyssa N Montalbine
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
| | - Ankur Singh
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
15
|
Zarrella TM, Khare A. Systematic identification of molecular mediators of interspecies sensing in a community of two frequently coinfecting bacterial pathogens. PLoS Biol 2022; 20:e3001679. [PMID: 35727825 PMCID: PMC9249247 DOI: 10.1371/journal.pbio.3001679] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/01/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
Bacteria typically exist in dynamic, multispecies communities where polymicrobial interactions influence fitness. Elucidating the molecular mechanisms underlying these interactions is critical for understanding and modulating bacterial behavior in natural environments. While bacterial responses to foreign species are frequently characterized at the molecular and phenotypic level, the exogenous molecules that elicit these responses are understudied. Here, we outline a systematic strategy based on transcriptomics combined with genetic and biochemical screens of promoter-reporters to identify the molecules from one species that are sensed by another. We utilized this method to study interactions between the pathogens Pseudomonas aeruginosa and Staphylococcus aureus that are frequently found in coinfections. We discovered that P. aeruginosa senses diverse staphylococcal exoproducts including the metallophore staphylopine (StP), intermediate metabolites citrate and acetoin, and multiple molecules that modulate its iron starvation response. We observed that StP inhibits biofilm formation and that P. aeruginosa can utilize citrate and acetoin for growth, revealing that these interactions have both antagonistic and beneficial effects. Due to the unbiased nature of our approach, we also identified on a genome scale the genes in S. aureus that affect production of each sensed exoproduct, providing possible targets to modify multispecies community dynamics. Further, a combination of these identified S. aureus products recapitulated a majority of the transcriptional response of P. aeruginosa to S. aureus supernatant, validating our screening strategy. Cystic fibrosis (CF) clinical isolates of both S. aureus and P. aeruginosa also showed varying degrees of induction or responses, respectively, which suggests that these interactions are widespread among pathogenic strains. Our screening approach thus identified multiple S. aureus secreted molecules that are sensed by P. aeruginosa and affect its physiology, demonstrating the efficacy of this approach, and yielding new insight into the molecular basis of interactions between these two species.
Collapse
Affiliation(s)
- Tiffany M. Zarrella
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anupama Khare
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
16
|
Sur S, Patra T, Karmakar M, Banerjee A. Mycobacterium abscessus: insights from a bioinformatic perspective. Crit Rev Microbiol 2022:1-16. [PMID: 35696783 DOI: 10.1080/1040841x.2022.2082268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mycobacterium abscessus is a nontuberculous mycobacterium, associated with broncho-pulmonary infections in individuals suffering from cystic fibrosis, bronchiectasis, and pulmonary diseases. The risk factors for transmission include biofilms, contaminated water resources, fomites, and infected individuals. M. abscessus is extensively resistant to antibiotics. To date, there is no vaccine and combination antibiotic therapy is followed. However, drug toxicities, low cure rates, and high cost of treatment make it imperfect. Over the last 20 years, bioinformatic studies on M. abscessus have advanced our understanding of the pathogen. This review integrates knowledge from the analysis of genomes, microbiomes, genomic variations, phylogeny, proteome, transcriptome, secretome, antibiotic resistance, and vaccine design to further our understanding. The utility of genome-based studies in comprehending disease progression, surveillance, tracing transmission routes, and epidemiological outbreaks on a global scale has been highlighted. Furthermore, this review underlined the importance of using computational methodologies for pinpointing factors responsible for pathogen survival and resistance. We reiterate the significance of interdisciplinary research to fight M. abscessus. In a nutshell, the outcome of computational studies can go a long way in creating novel therapeutic avenues to control M. abscessus mediated pulmonary infections.
Collapse
Affiliation(s)
- Saubashya Sur
- Postgraduate Department of Botany, Ramananda College, Bishnupur, India
| | - Tanushree Patra
- Postgraduate Department of Botany, Ramananda College, Bishnupur, India
| | - Mistu Karmakar
- Postgraduate Department of Botany, Ramananda College, Bishnupur, India
| | - Anindita Banerjee
- Postgraduate Department of Botany, Ramananda College, Bishnupur, India
| |
Collapse
|
17
|
Subinhibitory Cefotaxime and Levofloxacin Concentrations Contribute to Selection of Pseudomonas aeruginosa in Coculture with Staphylococcus aureus. Appl Environ Microbiol 2022; 88:e0059222. [PMID: 35638844 DOI: 10.1128/aem.00592-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bacterial species in the polymicrobial community evolve interspecific interaction relationships to adapt to the survival stresses imposed by neighbors or environmental cues. Pseudomonas aeruginosa and Staphylococcus aureus are two common bacterial pathogens frequently coisolated from patients with burns and respiratory disease. Whether the application of commonly used antibiotics influences the interaction dynamics of the two species still remains largely unexplored. By performing a series of on-plate competition assays and RNA sequencing-based transcriptional profiling, we showed that the presence of the cephalosporin antibiotic cefotaxime or the quinolone antibiotic levofloxacin at subinhibitory concentration contributes to selecting P. aeruginosa from the coculture with S. aureus by modulating the quorum-sensing (QS) system of P. aeruginosa. Specifically, a subinhibitory concentration of cefotaxime promotes the growth suppression of S. aureus by P. aeruginosa in coculture. This process may be related to the increased production of the antistaphylococcal molecule pyocyanin and the expression of lasR, which is the central regulatory gene of the P. aeruginosa QS hierarchy. On the other hand, subinhibitory concentrations of levofloxacin decrease the competitive advantage of P. aeruginosa over S. aureus by inhibiting the growth and the las QS system of P. aeruginosa. However, pqs signaling of P. aeruginosa can be activated instead to overcome S. aureus. Therefore, this study contributes to understanding the interaction dynamics of P. aeruginosa and S. aureus during antibiotic treatment and provides an important basis for studying the pathogenesis of polymicrobial infections. IMPORTANCE Increasing evidence has demonstrated the polymicrobial characteristics of most chronic infections, and the frequent communications among bacterial pathogens result in many difficulties for clinical therapy. Exploring bacterial interspecific interaction during antibiotic treatment is an emerging endeavor that may facilitate the understanding of polymicrobial infections and the optimization of clinical therapies. Here, we investigated the interaction of cocultured P. aeruginosa and S. aureus with the intervention of commonly used antibiotics in clinic. We found that the application of subinhibitory concentrations of cefotaxime and levofloxacin can select P. aeruginosa in coculture with S. aureus by modulating P. aeruginosa QS regulation to enhance the production of antistaphylococcal metabolites in different ways. This study emphasizes the role of the QS system in the interaction of P. aeruginosa with other bacterial species and provides an explanation for the persistence and enrichment of P. aeruginosa in patients after antibiotic treatment and a reference for further clinical therapy.
Collapse
|
18
|
Antibiotic-loaded lipid-based nanocarrier: a promising strategy to overcome bacterial infection. Int J Pharm 2022; 621:121782. [PMID: 35489605 DOI: 10.1016/j.ijpharm.2022.121782] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/11/2022] [Accepted: 04/25/2022] [Indexed: 12/18/2022]
Abstract
According to the World Health Organization (WHO) and Centers for Disease Control and Prevention (CDC), bacterial infections are one of the greatest threats to global health, food production, and life expectancy. In this sense, the development of innovative formulations aiming at greater therapeutic efficacy, safety, and shorter treatment duration compared to conventional products is urgently needed. Lipid-based nanocarriers (LBNs) have demonstrated the potential to enhance the effectiveness of available antibiotics. Among them, liposome, nanoemulsion, solid lipid nanoparticle (SLN), and nanostructured lipid carrier (NLC) are the most promising due to their solid technical background for laboratory and industrial production. This review describes recent advances in developing antibiotic-loaded LBNs against susceptible and resistant bacterial strains and biofilm. LBNs revealed to be a promising alternative to deliver antibiotics due to their superior characteristics compared to conventional preparations, including their modified drug release, improved bioavailability, drug protection against chemical or enzymatic degradation, greater drug loading capacity, and biocompatibility. Antibiotic-loaded LBNs can improve current clinical drug therapy, bring innovative products and rescue discarded antibiotics. Thus, antibiotic-loaded LBNs have potential to open a window of opportunities to continue saving millions of lives and prevent the devastating impact of bacterial infection.
Collapse
|
19
|
Saluzzo F, Riberi L, Messore B, Loré NI, Esposito I, Bignamini E, De Rose V. CFTR Modulator Therapies: Potential Impact on Airway Infections in Cystic Fibrosis. Cells 2022; 11:cells11071243. [PMID: 35406809 PMCID: PMC8998122 DOI: 10.3390/cells11071243] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disease caused by mutations in the gene encoding for the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein, expressed on the apical surface of epithelial cells. CFTR absence/dysfunction results in ion imbalance and airway surface dehydration that severely compromise the CF airway microenvironment, increasing infection susceptibility. Recently, novel therapies aimed at correcting the basic CFTR defect have become available, leading to substantial clinical improvement of CF patients. The restoration or increase of CFTR function affects the airway microenvironment, improving local defence mechanisms. CFTR modulator drugs might therefore affect the development of chronic airway infections and/or improve the status of existing infections in CF. Thus far, however, the full extent of these effects of CFTR-modulators, especially in the long-term remains still unknown. This review aims to provide an overview of current evidence on the potential impact of CFTR modulators on airway infections in CF. Their role in affecting CF microbiology, the susceptibility to infections as well as the potential efficacy of their use in preventing/decreasing the development of chronic lung infections and the recurrent acute exacerbations in CF will be critically analysed.
Collapse
Affiliation(s)
- Francesca Saluzzo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Luca Riberi
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy;
| | - Barbara Messore
- Adult Cystic Fibrosis Centre, Azienda Ospedaliero-Universitaria San Luigi Gonzaga, 10043 Orbassano, Italy;
| | - Nicola Ivan Loré
- WHO Collaborating Centre and TB Supranational Reference Laboratory, Emerging Bacterial Pathogens Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Irene Esposito
- Paediatric Pulmonology Unit, Regina Margherita Hospital AOU Città della Salute e della Scienza, 10126 Torino, Italy; (I.E.); (E.B.)
| | - Elisabetta Bignamini
- Paediatric Pulmonology Unit, Regina Margherita Hospital AOU Città della Salute e della Scienza, 10126 Torino, Italy; (I.E.); (E.B.)
| | - Virginia De Rose
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Correspondence:
| |
Collapse
|
20
|
New Auranofin Analogs with Antibacterial Properties against Burkholderia Clinical Isolates. Antibiotics (Basel) 2021; 10:antibiotics10121443. [PMID: 34943654 PMCID: PMC8697972 DOI: 10.3390/antibiotics10121443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Bacteria of the genus Burkholderia include pathogenic Burkholderia mallei, Burkholderia pseudomallei and the Burkholderia cepacia complex (Bcc). These Gram-negative pathogens have intrinsic drug resistance, which makes treatment of infections difficult. Bcc affects individuals with cystic fibrosis (CF) and the species B. cenocepacia is associated with one of the worst clinical outcomes. Following the repurposing of auranofin as an antibacterial against Gram-positive bacteria, we previously synthetized auranofin analogs with activity against Gram-negatives. In this work, we show that two auranofin analogs, MS-40S and MS-40, have antibiotic activity against Burkholderia clinical isolates. The compounds are bactericidal against B. cenocepacia and kill stationary-phase cells and persisters without selecting for multistep resistance. Caenorhabditis elegans and Galleria mellonella tolerated high concentrations of MS-40S and MS-40, demonstrating that these compounds have low toxicity in these model organisms. In summary, we show that MS-40 and MS-40S have antimicrobial properties that warrant further investigations to determine their therapeutic potential against Burkholderia infections.
Collapse
|
21
|
New Auranofin Analogs with Antibacterial Properties against Burkholderia Clinical Isolates. Antibiotics (Basel) 2021. [PMID: 34943654 DOI: 10.3390/antibiotics10121443/s1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Bacteria of the genus Burkholderia include pathogenic Burkholderia mallei, Burkholderia pseudomallei and the Burkholderia cepacia complex (Bcc). These Gram-negative pathogens have intrinsic drug resistance, which makes treatment of infections difficult. Bcc affects individuals with cystic fibrosis (CF) and the species B. cenocepacia is associated with one of the worst clinical outcomes. Following the repurposing of auranofin as an antibacterial against Gram-positive bacteria, we previously synthetized auranofin analogs with activity against Gram-negatives. In this work, we show that two auranofin analogs, MS-40S and MS-40, have antibiotic activity against Burkholderia clinical isolates. The compounds are bactericidal against B. cenocepacia and kill stationary-phase cells and persisters without selecting for multistep resistance. Caenorhabditis elegans and Galleria mellonella tolerated high concentrations of MS-40S and MS-40, demonstrating that these compounds have low toxicity in these model organisms. In summary, we show that MS-40 and MS-40S have antimicrobial properties that warrant further investigations to determine their therapeutic potential against Burkholderia infections.
Collapse
|
22
|
Van den Bossche S, De Broe E, Coenye T, Van Braeckel E, Crabbé A. The cystic fibrosis lung microenvironment alters antibiotic activity: causes and effects. Eur Respir Rev 2021; 30:30/161/210055. [PMID: 34526313 DOI: 10.1183/16000617.0055-2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/23/2021] [Indexed: 01/08/2023] Open
Abstract
Chronic airway colonisation by Pseudomonas aeruginosa, a hallmark of cystic fibrosis (CF) lung disease, is associated with increased morbidity and mortality and despite aggressive antibiotic treatment, P. aeruginosa is able to persist in CF airways. In vitro antibiotic susceptibility assays are poor predictors of antibiotic efficacy to treat respiratory tract infections in the CF patient population and the selection of the antibiotic(s) is often made on an empirical base. In the current review, we discuss the factors that are responsible for the discrepancies between antibiotic activity in vitro and clinical efficacy in vivo We describe how the CF lung microenvironment, shaped by host factors (such as iron, mucus, immune mediators and oxygen availability) and the microbiota, influences antibiotic activity and varies widely between patients. A better understanding of the CF microenvironment and population diversity may thus help improve in vitro antibiotic susceptibility testing and clinical decision making, in turn increasing the success rate of antibiotic treatment.
Collapse
Affiliation(s)
| | - Emma De Broe
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Eva Van Braeckel
- Dept of Respiratory Medicine, Cystic Fibrosis Reference Centre, Ghent University Hospital, Ghent, Belgium.,Dept of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
23
|
Rebelo JS, Domingues CPF, Monteiro F, Nogueira T, Dionisio F. Bacterial persistence is essential for susceptible cell survival in indirect resistance, mainly for lower cell densities. PLoS One 2021; 16:e0246500. [PMID: 34473689 PMCID: PMC8412311 DOI: 10.1371/journal.pone.0246500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022] Open
Abstract
Antibiotic-susceptible bacteria may survive bactericidal antibiotics if other co-inhabiting bacteria detoxify the medium through antibiotic degradation or modification, a phenomenon denominated as indirect resistance. However, it is unclear how susceptible cells survive while the medium is still toxic. One explanation relies on the speed of detoxification, and another, non-exclusive explanation, relies on persistence, a state of bacterial dormancy where cells with low metabolic activity and growth rates are phenotypically tolerant to antibiotics and other cytotoxic substances. Here we simulated the fate of susceptible cells in laboratory experiments in the context of indirect resistance to understand whether persistence is necessary to explain the survival of susceptible cells. Depending on the strain and experimental conditions, the decay of persister populations may follow an exponential or a power-law distribution. Therefore, we studied the impact of both distributions in the simulations. Moreover, we studied the impact of considering that persister cells have a mechanism to sense the presence of a toxic substance-a mechanism that would enable cells to leave the dormant state when the medium becomes nontoxic. The simulations show that surviving susceptible cells under indirect resistance may originate both from persister and non-persister populations if the density of detoxifying cells is high. However, persistence was necessary when the initial density of detoxifying cells was low, although persister cells remained in that dormancy state for just a few hours. Finally, the results of our simulations are consistent both with exponential and power-law decay of the persistence population. Whether indirect resistance involves persistence should impact antibiotic treatments.
Collapse
Affiliation(s)
- João S. Rebelo
- cE3c –Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Célia P. F. Domingues
- cE3c –Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- INIAV, Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal
| | - Francisca Monteiro
- cE3c –Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Teresa Nogueira
- cE3c –Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- INIAV, Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal
| | - Francisco Dionisio
- cE3c –Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
24
|
McGinniss JE, Whiteside SA, Simon-Soro A, Diamond JM, Christie JD, Bushman FD, Collman RG. The lung microbiome in lung transplantation. J Heart Lung Transplant 2021; 40:733-744. [PMID: 34120840 PMCID: PMC8335643 DOI: 10.1016/j.healun.2021.04.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/21/2022] Open
Abstract
Culture-independent study of the lower respiratory tract after lung transplantation has enabled an understanding of the microbiome - that is, the collection of bacteria, fungi, and viruses, and their respective gene complement - in this niche. The lung has unique features as a microbial environment, with balanced entry from the upper respiratory tract, clearance, and local replication. There are many pressures impacting the microbiome after transplantation, including donor allograft factors, recipient host factors such as underlying disease and ongoing exposure to the microbe-rich upper respiratory tract, and transplantation-related immunosuppression, antimicrobials, and postsurgical changes. To date, we understand that the lung microbiome after transplant is dysbiotic; that is, it has higher biomass and altered composition compared to a healthy lung. Emerging data suggest that specific microbiome features may be linked to host responses, both immune and non-immune, and clinical outcomes such as chronic lung allograft dysfunction (CLAD), but many questions remain. The goal of this review is to put into context our burgeoning understanding of the lung microbiome in the postlung transplant patient, the interactions between microbiome and host, the role the microbiome may play in post-transplant complications, and critical outstanding research questions.
Collapse
Affiliation(s)
- John E McGinniss
- Division of Pulmonary, Allergy and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Samantha A Whiteside
- Division of Pulmonary, Allergy and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Aurea Simon-Soro
- Department of Orthodontics and Divisions of Community Oral Health and Pediatric Dentistry, School of Dental Medicine at the University of Pennsylvania
| | - Joshua M Diamond
- Division of Pulmonary, Allergy and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jason D Christie
- Division of Pulmonary, Allergy and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fredrick D Bushman
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ronald G Collman
- Division of Pulmonary, Allergy and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
Reece E, Bettio PHDA, Renwick J. Polymicrobial Interactions in the Cystic Fibrosis Airway Microbiome Impact the Antimicrobial Susceptibility of Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10070827. [PMID: 34356747 PMCID: PMC8300716 DOI: 10.3390/antibiotics10070827] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most dominant pathogens in cystic fibrosis (CF) airway disease and contributes to significant inflammation, airway damage, and poorer disease outcomes. The CF airway is now known to be host to a complex community of microorganisms, and polymicrobial interactions have been shown to play an important role in shaping P. aeruginosa pathogenicity and resistance. P. aeruginosa can cause chronic infections that once established are almost impossible to eradicate with antibiotics. CF patients that develop chronic P. aeruginosa infection have poorer lung function, higher morbidity, and a reduced life expectancy. P. aeruginosa adapts to the CF airway and quickly develops resistance to several antibiotics. A perplexing phenomenon is the disparity between in vitro antimicrobial sensitivity testing and clinical response. Considering the CF airway is host to a diverse community of microorganisms or 'microbiome' and that these microorganisms are known to interact, the antimicrobial resistance and progression of P. aeruginosa infection is likely influenced by these microbial relationships. This review combines the literature to date on interactions between P. aeruginosa and other airway microorganisms and the influence of these interactions on P. aeruginosa tolerance to antimicrobials.
Collapse
|
26
|
Mucus, Microbiomes and Pulmonary Disease. Biomedicines 2021; 9:biomedicines9060675. [PMID: 34199312 PMCID: PMC8232003 DOI: 10.3390/biomedicines9060675] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022] Open
Abstract
The respiratory tract harbors a stable and diverse microbial population within an extracellular mucus layer. Mucus provides a formidable defense against infection and maintaining healthy mucus is essential to normal pulmonary physiology, promoting immune tolerance and facilitating a healthy, commensal lung microbiome that can be altered in association with chronic respiratory disease. How one maintains a specialized (healthy) microbiome that resists significant fluctuation remains unknown, although smoking, diet, antimicrobial therapy, and infection have all been observed to influence microbial lung homeostasis. In this review, we outline the specific role of polymerizing mucin, a key functional component of the mucus layer that changes during pulmonary disease. We discuss strategies by which mucin feed and spatial orientation directly influence microbial behavior and highlight how a compromised mucus layer gives rise to inflammation and microbial dysbiosis. This emerging field of respiratory research provides fresh opportunities to examine mucus, and its function as predictors of infection risk or disease progression and severity across a range of chronic pulmonary disease states and consider new perspectives in the development of mucolytic treatments.
Collapse
|
27
|
Willis JR, Saus E, Iraola-Guzmán S, Cabello-Yeves E, Ksiezopolska E, Cozzuto L, Bejarano LA, Andreu-Somavilla N, Alloza-Trabado M, Blanco A, Puig-Sola A, Broglio E, Carolis C, Ponomarenko J, Hecht J, Gabaldón T. Citizen-science based study of the oral microbiome in Cystic fibrosis and matched controls reveals major differences in diversity and abundance of bacterial and fungal species. J Oral Microbiol 2021; 13:1897328. [PMID: 34104346 PMCID: PMC8143623 DOI: 10.1080/20002297.2021.1897328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Introduction: Cystic fibrosis (CF) is an autosomal genetic disease, associated with the production of excessively thick mucosa and with life-threatening chronic lung infections. The microbiota of the oral cavity can act as a reservoir or as a barrier for infectious microorganisms that can colonize the lungs. However, the specific composition of the oral microbiome in CF is poorly understood.Methods: In collaboration with CF associations in Spain, we collected oral rinse samples from 31 CF persons (age range 7-47) and matched controls, and then performed 16S rRNA metabarcoding and high-throughput sequencing, combined with culture and proteomics-based identification of fungi to survey the bacterial and fungal oral microbiome.Results: We found that CF is associated with less diverse oral microbiomes, which were characterized by higher prevalence of Candida albicans and differential abundances of a number of bacterial taxa that have implications in both the connection to lung infections in CF, as well as potential oral health concerns, particularly periodontitis and dental caries.Conclusion: Overall, our study provides a first global snapshot of the oral microbiome in CF. Future studies are required to establish the relationships between the composition of the oral and lung microbiomes in CF.
Collapse
Affiliation(s)
- Jesse R Willis
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ester Saus
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Susana Iraola-Guzmán
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Elena Cabello-Yeves
- Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ewa Ksiezopolska
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luca Cozzuto
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Luis A Bejarano
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nuria Andreu-Somavilla
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Miriam Alloza-Trabado
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Andrea Blanco
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Puig-Sola
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Elisabetta Broglio
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carlo Carolis
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Julia Ponomarenko
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jochen Hecht
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Programme, Barcelona Supercomputing Centre (BSC-CNS) Jordi Girona, Barcelona, Spain.,Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), the Barcelona Institute of Science and Technology, Barcelona, Spain.,Experimental and Health Sciences Department, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
28
|
d'Enfert C, Kaune AK, Alaban LR, Chakraborty S, Cole N, Delavy M, Kosmala D, Marsaux B, Fróis-Martins R, Morelli M, Rosati D, Valentine M, Xie Z, Emritloll Y, Warn PA, Bequet F, Bougnoux ME, Bornes S, Gresnigt MS, Hube B, Jacobsen ID, Legrand M, Leibundgut-Landmann S, Manichanh C, Munro CA, Netea MG, Queiroz K, Roget K, Thomas V, Thoral C, Van den Abbeele P, Walker AW, Brown AJP. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Rev 2021; 45:fuaa060. [PMID: 33232448 PMCID: PMC8100220 DOI: 10.1093/femsre/fuaa060] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans. It exists as a commensal in the oral cavity, gut or genital tract of most individuals, constrained by the local microbiota, epithelial barriers and immune defences. Their perturbation can lead to fungal outgrowth and the development of mucosal infections such as oropharyngeal or vulvovaginal candidiasis, and patients with compromised immunity are susceptible to life-threatening systemic infections. The importance of the interplay between fungus, host and microbiota in driving the transition from C. albicans commensalism to pathogenicity is widely appreciated. However, the complexity of these interactions, and the significant impact of fungal, host and microbiota variability upon disease severity and outcome, are less well understood. Therefore, we summarise the features of the fungus that promote infection, and how genetic variation between clinical isolates influences pathogenicity. We discuss antifungal immunity, how this differs between mucosae, and how individual variation influences a person's susceptibility to infection. Also, we describe factors that influence the composition of gut, oral and vaginal microbiotas, and how these affect fungal colonisation and antifungal immunity. We argue that a detailed understanding of these variables, which underlie fungal-host-microbiota interactions, will present opportunities for directed antifungal therapies that benefit vulnerable patients.
Collapse
Affiliation(s)
- Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Ann-Kristin Kaune
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Leovigildo-Rey Alaban
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Sayoni Chakraborty
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Nathaniel Cole
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Margot Delavy
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Daria Kosmala
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Benoît Marsaux
- ProDigest BV, Technologiepark 94, B-9052 Gent, Belgium
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 9000 Ghent, Belgium
| | - Ricardo Fróis-Martins
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Moran Morelli
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Marisa Valentine
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Zixuan Xie
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Yoan Emritloll
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Peter A Warn
- Magic Bullet Consulting, Biddlecombe House, Ugbrook, Chudleigh Devon, TQ130AD, UK
| | - Frédéric Bequet
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Stephanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF0545, 20 Côte de Reyne, 15000 Aurillac, France
| | - Mark S Gresnigt
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Bernhard Hube
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Ilse D Jacobsen
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Mélanie Legrand
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Salomé Leibundgut-Landmann
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Chaysavanh Manichanh
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Karla Queiroz
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Karine Roget
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | - Vincent Thomas
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Claudia Thoral
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | | | - Alan W Walker
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alistair J P Brown
- MRC Centre for Medical Mycology, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
29
|
Mac Aogáin M, Narayana JK, Tiew PY, Ali NABM, Yong VFL, Jaggi TK, Lim AYH, Keir HR, Dicker AJ, Thng KX, Tsang A, Ivan FX, Poh ME, Oriano M, Aliberti S, Blasi F, Low TB, Ong TH, Oliver B, Giam YH, Tee A, Koh MS, Abisheganaden JA, Tsaneva-Atanasova K, Chalmers JD, Chotirmall SH. Integrative microbiomics in bronchiectasis exacerbations. Nat Med 2021; 27:688-699. [PMID: 33820995 DOI: 10.1038/s41591-021-01289-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/16/2021] [Indexed: 02/01/2023]
Abstract
Bronchiectasis, a progressive chronic airway disease, is characterized by microbial colonization and infection. We present an approach to the multi-biome that integrates bacterial, viral and fungal communities in bronchiectasis through weighted similarity network fusion ( https://integrative-microbiomics.ntu.edu.sg ). Patients at greatest risk of exacerbation have less complex microbial co-occurrence networks, reduced diversity and a higher degree of antagonistic interactions in their airway microbiome. Furthermore, longitudinal interactome dynamics reveals microbial antagonism during exacerbation, which resolves following treatment in an otherwise stable multi-biome. Assessment of the Pseudomonas interactome shows that interaction networks, rather than abundance alone, are associated with exacerbation risk, and that incorporation of microbial interaction data improves clinical prediction models. Shotgun metagenomic sequencing of an independent cohort validated the multi-biome interactions detected in targeted analysis and confirmed the association with exacerbation. Integrative microbiomics captures microbial interactions to determine exacerbation risk, which cannot be appreciated by the study of a single microbial group. Antibiotic strategies probably target the interaction networks rather than individual microbes, providing a fresh approach to the understanding of respiratory infection.
Collapse
Affiliation(s)
- Micheál Mac Aogáin
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jayanth Kumar Narayana
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Pei Yee Tiew
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | | | - Valerie Fei Lee Yong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Tavleen Kaur Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Albert Yick Hou Lim
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Holly R Keir
- School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Alison J Dicker
- School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Kai Xian Thng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Akina Tsang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | | | - Mau Ern Poh
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Martina Oriano
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Stefano Aliberti
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Francesco Blasi
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Teck Boon Low
- Department of Respiratory and Critical Care Medicine, Changi General Hospital, Singapore, Singapore
| | - Thun How Ong
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | - Brian Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Yan Hui Giam
- School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Augustine Tee
- Department of Respiratory and Critical Care Medicine, Changi General Hospital, Singapore, Singapore
| | - Mariko Siyue Koh
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | | | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Living Systems Institute, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - James D Chalmers
- School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
30
|
Transmission and Antibiotic Resistance of Achromobacter in Cystic Fibrosis. J Clin Microbiol 2021; 59:JCM.02911-20. [PMID: 33472899 PMCID: PMC8092725 DOI: 10.1128/jcm.02911-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022] Open
Abstract
Achromobacter species are increasingly being detected in patients with cystic fibrosis (CF), and this emerging pathogen is associated with antibiotic resistance and more-severe disease outcomes. Nonetheless, little is known about the extent of transmission and antibiotic resistance development in Achromobacter infections. We sequenced the genomes of 101 Achromobacter clinical isolates (identified as Achromobacter xylosoxidans based on matrix-assister laser desorption ionization-time of flight [MALDI-TOF] or API N20 typing) collected from 51 patients with CF-the largest longitudinal data set to date. We performed phylogenetic analysis on the genomes and combined this with epidemiological and antibiotic resistance data to identify patient-to-patient transmission and the development of antibiotic resistance. We confirmed that the MALDI-TOF or API N20 method was not sufficient for Achromobacter species-level typing and that the population of Achromobacter isolates was composed of five different species, among which A. xylosoxidans accounted for 52% of infections. Most patients were infected by unique Achromobacter clone types; nonetheless, suspected patient-to-patient transmission cases identified by shared clone types were observed in 35% (n = 18) of patients. In 15 of 16 cases, the suspected transmissions were further supported by genome- or clinic visit-based epidemiological analysis. Finally, we found that resistance developed over time. We show that whole-genome sequencing (WGS) is essential for Achromobacter species typing and identification of patient-to-patient transmission, which was revealed for Achromobacter ruhlandii, A. xylosoxidans, and, for the first time, Achromobacter insuavis Furthermore, we show that the development of antibiotic resistance is associated with chronic Achromobacter infections. Our findings emphasize that transmission and antibiotic resistance should be considered in future treatment strategies.
Collapse
|
31
|
Abstract
Culture-independent studies have revealed that chronic lung infections in persons with cystic fibrosis (pwCF) are rarely limited to one microbial species. Interactions among bacterial members of these polymicrobial communities in the airways of pwCF have been reported to modulate clinically relevant phenotypes. Furthermore, it is clear that a single polymicrobial community in the context of CF airway infections cannot explain the diversity of clinical outcomes. While large 16S rRNA gene-based studies have allowed us to gain insight into the microbial composition and predicted functional capacities of communities found in the CF lung, here we argue that in silico approaches can help build clinically relevant in vitro models of polymicrobial communities that can in turn be used to experimentally test and validate computationally generated hypotheses. Furthermore, we posit that combining computational and experimental approaches will enhance our understanding of mechanisms that drive microbial community function and identify new therapeutics to target polymicrobial infections.
Collapse
|
32
|
Li J, Chen X, Lin J, Yuan Y, Huang T, Du L, Prithiviraj B, Zhang A, Wang X, Chu Y, Zhao K. Antibiotic intervention redisposes bacterial interspecific interacting dynamics in competitive environments. Environ Microbiol 2021; 23:7432-7444. [PMID: 33723911 DOI: 10.1111/1462-2920.15461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 02/21/2021] [Accepted: 03/10/2021] [Indexed: 12/25/2022]
Abstract
Interspecific interaction happens frequently among bacterial species and can promote the colonization of polymicrobial community in various environments. However, it is not clear whether the intervention of antibiotics, which is a common therapeutic method for infectious disease, will influence the interacting dynamics of different pathogenic bacteria. By using the frequently co-isolated bacteria Pseudomonas aeruginosa and Staphylococcus aureus as models, here we identify an antibiotic-determined mutual invasion relationship between bacterial pathogens. We show that although P. aeruginosa has a significant intrinsic competitive advantage over S. aureus by producing the quorum-sensing (QS)-controlled anti-staphylococcal molecules, methicillin-resistant S. aureus (MRSA) can inhibit neighbouring P. aeruginosa in the presence of subinhibitory aminoglycoside antibiotics (e.g. streptomycin) to P. aeruginosa. Importantly, subinhibitory streptomycin decreases the expression of QS-regulated genes in P. aeruginosa and thus relieves the survival stress of MRSA brought by P. aeruginosa. On the other side, the iron-uptake systems and pathogenicity of MRSA can be enhanced by the extracellular products of streptomycin-treated P. aeruginosa. Therefore, this study provides an explanation for the substitution of dominant species and persistent coexistence of bacterial pathogens in the host with repeated antibiotic therapies and contributes to further understanding the pathogenesis of chronic polymicrobial infections.
Collapse
Affiliation(s)
- Jing Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, China
| | - Xiaojie Chen
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jiafu Lin
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, China
| | - Yang Yuan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, China
| | - Ting Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, China
| | - Lianming Du
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, China
| | - Balakrishnan Prithiviraj
- Marine Bio-products Research Laboratory, Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Aixue Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, China
| | - Xinrong Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, China
| | - Yiwen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, China
| | - Kelei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
33
|
Jean-Pierre F, Henson MA, O’Toole GA. Metabolic Modeling to Interrogate Microbial Disease: A Tale for Experimentalists. Front Mol Biosci 2021; 8:634479. [PMID: 33681294 PMCID: PMC7930556 DOI: 10.3389/fmolb.2021.634479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
The explosion of microbiome analyses has helped identify individual microorganisms and microbial communities driving human health and disease, but how these communities function is still an open question. For example, the role for the incredibly complex metabolic interactions among microbial species cannot easily be resolved by current experimental approaches such as 16S rRNA gene sequencing, metagenomics and/or metabolomics. Resolving such metabolic interactions is particularly challenging in the context of polymicrobial communities where metabolite exchange has been reported to impact key bacterial traits such as virulence and antibiotic treatment efficacy. As novel approaches are needed to pinpoint microbial determinants responsible for impacting community function in the context of human health and to facilitate the development of novel anti-infective and antimicrobial drugs, here we review, from the viewpoint of experimentalists, the latest advances in metabolic modeling, a computational method capable of predicting metabolic capabilities and interactions from individual microorganisms to complex ecological systems. We use selected examples from the literature to illustrate how metabolic modeling has been utilized, in combination with experiments, to better understand microbial community function. Finally, we propose how such combined, cross-disciplinary efforts can be utilized to drive laboratory work and drug discovery moving forward.
Collapse
Affiliation(s)
- Fabrice Jean-Pierre
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Michael A. Henson
- Department of Chemical Engineering and Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, United States
| | - George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| |
Collapse
|
34
|
Influence of relevant cystic fibrosis bacteria on Scedosporium apiospermum and Scedosporium boydii growth and viability. Braz J Microbiol 2021; 52:185-193. [PMID: 33442865 DOI: 10.1007/s42770-020-00415-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022] Open
Abstract
Cystic fibrosis (CF) causes a variety of symptoms in different organs, but the majority of the morbidity and mortality of CF is related with pulmonary conditions. Primary infections are usually bacterial, and when treated with antibiotics, yeast infections appear or become more evident. Studies show that different microorganisms can co-inhabit the same environment and the interactions could be synergistic or antagonistic. Using techniques including viable and non-viable cell-to-cell interactions, mixed culture in liquid, and solid media sharing or not the supernatant, this study has evaluated interactions between the fungal species Scedosporium apiospermum and Scedosporium boydii with the bacterial species Staphylococcus aureus, Pseudomonas aeruginosa, and Burkholderia cepacia. Cell-to-cell interactions in liquid medium showed that P. aeruginosa and B. cepacia were able to reduce fungal viability but only in the presence of alive bacteria. Interactions without cell contact using a semi-permeable membrane showed that all bacteria were able to inhibit both fungal growths/viabilities. Cell-free supernatants from bacterial growth reduced fungal viability in planktonic fungal cells as well as in some conditions for preformed fungal biomass. According to the chemical analysis of the bacterial supernatants, the predominant component is protein. In this work, we verified that bacterial cells and their metabolites, present in the supernatants, can play anti-S. apiospermum and anti-S. boydii roles on fungal growth and viability.
Collapse
|
35
|
Extracellular products-mediated interspecific interaction between Pseudomonas aeruginosa and Escherichia coli. J Microbiol 2020; 59:29-40. [PMID: 33355890 DOI: 10.1007/s12275-021-0478-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 10/22/2022]
Abstract
The Gram-negative pathogen Pseudomonas aeruginosa adopts several elaborate strategies to colonize a wide range of natural or clinical niches and to overcome the neighboring bacterial competitors in polymicrobial communities. However, the relationship and interaction mechanism of P. aeruginosa with other bacterial pathogens remains largely unexplored. Here we explore the interaction dynamics of P. aeruginosa and Escherichia coli, which frequently coinfect the lungs of immunocompromised hosts, by using a series of on-plate proximity assays and RNA-sequencing. We show that the extracellular products of P. aeruginosa can inhibit the growth of neighboring E. coli and induce a large-scale of transcriptional reprogramming of E. coli, especially in terms of cellular respiration-related primary metabolisms and membrane components. In contrast, the presence of E. coli has no significant effect on the growth of P. aeruginosa in short-term culture, but causes a dysregulated expression of genes positively controlled by the quorum-sensing (QS) system of P. aeruginosa during subsequent pairwise culture. We further demonstrate that the divergent QS-regulation of P. aeruginosa may be related to the function of the transcriptional regulator PqsR, which can be enhanced by E. coli culture supernatant to increase the pyocyanin production by P. aeruginosa in the absence of the central las-QS system. Moreover, the extracellular products of E. coli promote the proliferation and lethality of P. aeruginosa in infecting the Caenorhabditis elegans model. The current study provides a general characterization of the extracellular products-mediated interactions between P. aeruginosa and E. coli, and may facilitate the understanding of polymicrobial infections.
Collapse
|
36
|
de Oliveira EB, Xisto MIDDS, Rollin-Pinheiro R, Rochetti VP, Barreto-Bergter E. Peptidorhamnomannans From Scedosporium and Lomentospora Species Display Microbicidal Activity Against Bacteria Commonly Present in Cystic Fibrosis Patients. Front Cell Infect Microbiol 2020; 10:598823. [PMID: 33251161 PMCID: PMC7673444 DOI: 10.3389/fcimb.2020.598823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/07/2020] [Indexed: 11/13/2022] Open
Abstract
Scedosporium and Lomentospora species are filamentous fungi that cause a wide range of infections in humans. They are usually found in the lungs of cystic fibrosis (CF) patients and are the second most frequent fungal genus after Aspergillus species. Several studies have been recently performed in order to understand how fungi and bacteria interact in CF lungs, since both can be isolated simultaneously from patients. In this context, many bacterial molecules were shown to inhibit fungal growth, but little is known about how fungi could interfere in bacterial development in CF lungs. Scedosporium and Lomentospora species present peptidorhamnomannans (PRMs) in their cell wall that play crucial roles in fungal adhesion and interaction with host epithelial cells and the immune system. The present study aimed to analyze whether PRMs extracted from Lomentospora prolificans, Scedosporium apiospermum, Scedosporium boydii, and Scedosporium aurantiacum block bacterial growth and biofilm formation in vitro. PRM from L. prolificans and S. boydii displayed the best bactericidal effect against methicillin resistant Staphylococcus aureus (MRSA), Burkholderia cepacia, and Escherichia coli, but not Pseudomonas aeruginosa, all of which are the most frequently found bacteria in CF lungs. In addition, biofilm formation was inhibited in all bacteria tested using PRMs at minimal inhibitory concentration (MIC). These results suggest that PRMs from the Scedosporium and Lomentospora surface seem to play an important role in Scedosporium colonization in CF patients, helping to clarify how these pathogens interact to each other in CF lungs.
Collapse
Affiliation(s)
- Evely Bertulino de Oliveira
- Laboratório de Química Biológica de Microrganismos, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Mariana Ingrid Dutra da Silva Xisto
- Laboratório de Química Biológica de Microrganismos, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Rodrigo Rollin-Pinheiro
- Laboratório de Química Biológica de Microrganismos, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Victor Pereira Rochetti
- Laboratório de Química Biológica de Microrganismos, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Eliana Barreto-Bergter
- Laboratório de Química Biológica de Microrganismos, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
37
|
de Almeida OGG, Capizzani CPDC, Tonani L, Grizante Barião PH, da Cunha AF, De Martinis ECP, Torres LAGMM, von Zeska Kress MR. The Lung Microbiome of Three Young Brazilian Patients With Cystic Fibrosis Colonized by Fungi. Front Cell Infect Microbiol 2020; 10:598938. [PMID: 33262957 PMCID: PMC7686462 DOI: 10.3389/fcimb.2020.598938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/09/2020] [Indexed: 12/29/2022] Open
Abstract
Microbial communities infiltrate the respiratory tract of cystic fibrosis patients, where chronic colonization and infection lead to clinical decline. This report aims to provide an overview of the diversity of bacterial and fungal species from the airway secretion of three young CF patients with severe pulmonary disease. The bacterial and fungal microbiomes were investigated by culture isolation, metataxonomics, and metagenomics shotgun. Virulence factors and antibiotic resistance genes were also explored. A. fumigatus was isolated from cultures and identified in high incidence from patient sputum samples. Candida albicans, Penicillium sp., Hanseniaspora sp., Torulaspora delbrueckii, and Talaromyces amestolkiae were isolated sporadically. Metataxonomics and metagenomics detected fungal reads (Saccharomyces cerevisiae, A. fumigatus, and Schizophyllum sp.) in one sputum sample. The main pathogenic bacteria identified were Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia complex, and Achromobacter xylosoxidans. The canonical core CF microbiome is composed of species from the genera Streptococcus, Neisseria, Rothia, Prevotella, and Haemophilus. Thus, the airways of the three young CF patients presented dominant bacterial genera and interindividual variability in microbial community composition and diversity. Additionally, a wide diversity of virulence factors and antibiotic resistance genes were identified in the CF lung microbiomes, which may be linked to the clinical condition of the CF patients. Understanding the microbial community is crucial to improve therapy because it may have the opposite effect, restructuring the pathogenic microbiota. Future studies focusing on the influence of fungi on bacterial diversity and microbial interactions in CF microbiomes will be welcome to fulfill this huge gap of fungal influence on CF physiopathology.
Collapse
Affiliation(s)
- Otávio Guilherme Gonçalves de Almeida
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Carolina Paulino da Costa Capizzani
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ludmilla Tonani
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patrícia Helena Grizante Barião
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Anderson Ferreira da Cunha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Elaine Cristina Pereira De Martinis
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Marcia Regina von Zeska Kress
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
38
|
Berry SB, Haack AJ, Theberge AB, Brighenti S, Svensson M. Host and Pathogen Communication in the Respiratory Tract: Mechanisms and Models of a Complex Signaling Microenvironment. Front Med (Lausanne) 2020; 7:537. [PMID: 33015094 PMCID: PMC7511576 DOI: 10.3389/fmed.2020.00537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/29/2020] [Indexed: 01/15/2023] Open
Abstract
Chronic lung diseases are a leading cause of morbidity and mortality across the globe, encompassing a diverse range of conditions from infections with pathogenic microorganisms to underlying genetic disorders. The respiratory tract represents an active interface with the external environment having the primary immune function of resisting pathogen intrusion and maintaining homeostasis in response to the myriad of stimuli encountered within its microenvironment. To perform these vital functions and prevent lung disorders, a chemical and biological cross-talk occurs in the complex milieu of the lung that mediates and regulates the numerous cellular processes contributing to lung health. In this review, we will focus on the role of cross-talk in chronic lung infections, and discuss how different cell types and signaling pathways contribute to the chronicity of infection(s) and prevent effective immune clearance of pathogens. In the lung microenvironment, pathogens have developed the capacity to evade mucosal immunity using different mechanisms or virulence factors, leading to colonization and infection of the host; such mechanisms include the release of soluble and volatile factors, as well as contact dependent (juxtracrine) interactions. We explore the diverse modes of communication between the host and pathogen in the lung tissue milieu in the context of chronic lung infections. Lastly, we review current methods and approaches used to model and study these host-pathogen interactions in vitro, and the role of these technological platforms in advancing our knowledge about chronic lung diseases.
Collapse
Affiliation(s)
- Samuel B. Berry
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Amanda J. Haack
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | | | - Susanna Brighenti
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Svensson
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
39
|
Mac Aogáin M, Lau KJX, Cai Z, Kumar Narayana J, Purbojati RW, Drautz-Moses DI, Gaultier NE, Jaggi TK, Tiew PY, Ong TH, Siyue Koh M, Lim Yick Hou A, Abisheganaden JA, Tsaneva-Atanasova K, Schuster SC, Chotirmall SH. Metagenomics Reveals a Core Macrolide Resistome Related to Microbiota in Chronic Respiratory Disease. Am J Respir Crit Care Med 2020; 202:433-447. [PMID: 32320621 PMCID: PMC7397787 DOI: 10.1164/rccm.201911-2202oc] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Rationale: Long-term antibiotic use for managing chronic respiratory disease is increasing; however, the role of the airway resistome and its relationship to host microbiomes remains unknown.Objectives: To evaluate airway resistomes and relate them to host and environmental microbiomes using ultradeep metagenomic shotgun sequencing.Methods: Airway specimens from 85 individuals with and without chronic respiratory disease (severe asthma, chronic obstructive pulmonary disease, and bronchiectasis) were subjected to metagenomic sequencing to an average depth exceeding 20 million reads. Respiratory and device-associated microbiomes were evaluated on the basis of taxonomical classification and functional annotation including the Comprehensive Antibiotic Resistance Database to determine airway resistomes. Co-occurrence networks of gene-microbe association were constructed to determine potential microbial sources of the airway resistome. Paired patient-inhaler metagenomes were compared (n = 31) to assess for the presence of airway-environment overlap in microbiomes and/or resistomes.Measurements and Main Results: Airway metagenomes exhibit taxonomic and metabolic diversity and distinct antimicrobial resistance patterns. A "core" airway resistome dominated by macrolide but with high prevalence of β-lactam, fluoroquinolone, and tetracycline resistance genes exists and is independent of disease status or antibiotic exposure. Streptococcus and Actinomyces are key potential microbial reservoirs of macrolide resistance including the ermX, ermF, and msrD genes. Significant patient-inhaler overlap in airway microbiomes and their resistomes is identified where the latter may be a proxy for airway microbiome assessment in chronic respiratory disease.Conclusions: Metagenomic analysis of the airway reveals a core macrolide resistome harbored by the host microbiome.
Collapse
Affiliation(s)
| | - Kenny J. X. Lau
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Zhao Cai
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | | | - Rikky W. Purbojati
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Daniela I. Drautz-Moses
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Nicolas E. Gaultier
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | | | - Pei Yee Tiew
- Lee Kong Chian School of Medicine and
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | - Thun How Ong
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | - Mariko Siyue Koh
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | - Albert Lim Yick Hou
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore; and
| | - John A. Abisheganaden
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore; and
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
| | - Stephan C. Schuster
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | | |
Collapse
|
40
|
Lira-Lucio JA, Falfán-Valencia R, Ramírez-Venegas A, Buendía-Roldán I, Rojas-Serrano J, Mejía M, Pérez-Rubio G. Lung Microbiome Participation in Local Immune Response Regulation in Respiratory Diseases. Microorganisms 2020; 8:E1059. [PMID: 32708647 PMCID: PMC7409050 DOI: 10.3390/microorganisms8071059] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
The lung microbiome composition has critical implications in the regulation of innate and adaptive immune responses. Next-generation sequencing techniques have revolutionized the understanding of pulmonary physiology and pathology. Currently, it is clear that the lung is not a sterile place; therefore, the investigation of the participation of the pulmonary microbiome in the presentation, severity, and prognosis of multiple pathologies, such as asthma, chronic obstructive pulmonary disease, and interstitial lung diseases, contributes to a better understanding of the pathophysiology. Dysregulation of microbiota components in the microbiome-host interaction is associated with multiple lung pathologies, severity, and prognosis, making microbiome study a useful tool for the identification of potential therapeutic strategies. This review integrates the findings regarding the activation and regulation of the innate and adaptive immune response pathways according to the microbiome, including microbial patterns that could be characteristic of certain diseases. Further studies are required to verify whether the microbial profile and its metabolites can be used as biomarkers of disease progression or poor prognosis and to identify new therapeutic targets that restore lung dysbiosis safely and effectively.
Collapse
Affiliation(s)
- Juan Alberto Lira-Lucio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.A.L.-L.); (R.F.-V.)
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.A.L.-L.); (R.F.-V.)
| | - Alejandra Ramírez-Venegas
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Ivette Buendía-Roldán
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Jorge Rojas-Serrano
- Interstitial Lung Disease and Rheumatology Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.R.-S.); (M.M.)
| | - Mayra Mejía
- Interstitial Lung Disease and Rheumatology Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.R.-S.); (M.M.)
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.A.L.-L.); (R.F.-V.)
| |
Collapse
|
41
|
Vandeplassche E, Sass A, Ostyn L, Burmølle M, Kragh KN, Bjarnsholt T, Coenye T, Crabbé A. Antibiotic susceptibility of cystic fibrosis lung microbiome members in a multispecies biofilm. Biofilm 2020; 2:100031. [PMID: 33447816 PMCID: PMC7798459 DOI: 10.1016/j.bioflm.2020.100031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
The lungs of cystic fibrosis (CF) patients are often chronically colonized by multiple microbial species that can form biofilms, including the major CF pathogen Pseudomonas aeruginosa. Herewith, lower microbial diversity in CF airways is typically associated with worse health outcomes. In an attempt to treat CF lung infections patients are frequently exposed to antibiotics, which may affect microbial diversity. This study aimed at understanding if common antibiotics that target P. aeruginosa influence microbial diversity. To this end, a microaerophilic multispecies biofilm model of frequently co-isolated members of the CF lung microbiome (Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus anginosus, Achromobacter xylosoxidans, Rothia mucilaginosa, and Gemella haemolysans) was exposed to antipseudomonal antibiotics. We found that antibiotics that affected several dominant species (i.e. ceftazidime, tobramycin) resulted in higher species evenness compared to colistin, which is only active against P. aeruginosa. Furthermore, susceptibility of individual species in the multispecies biofilm following antibiotic treatment was compared to that of the respective single-species biofilms, showing no differences. Adding three anaerobic species (Prevotella melaninogenica, Veillonella parvula, and Fusobacterium nucleatum) to the multispecies biofilm did not influence antibiotic susceptibility. In conclusion, our study demonstrates antibiotic-dependent effects on microbial community diversity of multispecies biofilms comprised of CF microbiome members.
Collapse
Affiliation(s)
- Eva Vandeplassche
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - Andrea Sass
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - Lisa Ostyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - Mette Burmølle
- Department of Microbiology, University of Copenhagen, Denmark
| | - Kasper Nørskov Kragh
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital, Denmark
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| |
Collapse
|
42
|
Scoffone VC, Barbieri G, Buroni S, Scarselli M, Pizza M, Rappuoli R, Riccardi G. Vaccines to Overcome Antibiotic Resistance: The Challenge of Burkholderia cenocepacia. Trends Microbiol 2020; 28:315-326. [DOI: 10.1016/j.tim.2019.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 12/26/2022]
|
43
|
Coenye T, Kjellerup B, Stoodley P, Bjarnsholt T. The future of biofilm research - Report on the '2019 Biofilm Bash'. Biofilm 2019; 2:100012. [PMID: 33447799 PMCID: PMC7798458 DOI: 10.1016/j.bioflm.2019.100012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022] Open
Abstract
In May 2019, 29 scientists with expertise in various subdisciplines of biofilm research got together in Leavenworth (WA, USA) at an event designated as the ‘2019 Biofilm Bash’. The goal of this informal two-day meeting was first to identify gaps in our knowledge, and then to come up with ways how the biofilm community can fill these gaps. The meeting was organized around six questions that covered the most important items brought forward by the organizers and participants. The outcome of these discussions is summarized in the present paper. We are aware that these views represent a small subset of our field, and that inevitably we will have inadvertently overlooked important developing research areas and ideas. We are nevertheless hopeful that this report will stimulate discussions and help create new ways of how we can advance our field.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.,ESCMID Study Group on Biofilms, Basel, Switzerland
| | - Birthe Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA.,Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA.,Department of Orthopaedics, The Ohio State University, Columbus, OH, USA.,National Biofilms Innovation Centre (NBIC), UK.,National Centre for Advanced Tribology at Southampton, University of Southampton, Southampton, UK
| | - Thomas Bjarnsholt
- ESCMID Study Group on Biofilms, Basel, Switzerland.,Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark.,Department of Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | | |
Collapse
|
44
|
Orazi G, O'Toole GA. "It Takes a Village": Mechanisms Underlying Antimicrobial Recalcitrance of Polymicrobial Biofilms. J Bacteriol 2019; 202:e00530-19. [PMID: 31548277 PMCID: PMC6932244 DOI: 10.1128/jb.00530-19] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic infections are frequently caused by polymicrobial biofilms. Importantly, these infections are often difficult to treat effectively in part due to the recalcitrance of biofilms to antimicrobial therapy. Emerging evidence suggests that polymicrobial interactions can lead to dramatic and unexpected changes in the ability of antibiotics to eradicate biofilms and often result in decreased antimicrobial efficacy in vitro In this review, we discuss the influence of polymicrobial interactions on the antibiotic susceptibility of biofilms, and we highlight the studies that first documented the shifted antimicrobial susceptibilities of mixed-species cultures. Recent studies have identified several mechanisms underlying the recalcitrance of polymicrobial biofilm communities, including interspecies exchange of antibiotic resistance genes, β-lactamase-mediated inactivation of antibiotics, changes in gene expression induced by metabolites and quorum sensing signals, inhibition of the electron transport chain, and changes in properties of the cell membrane. In addition to elucidating multiple mechanisms that contribute to the altered drug susceptibility of polymicrobial biofilms, these studies have uncovered novel ways in which polymicrobial interactions can impact microbial physiology. The diversity of findings discussed highlights the importance of continuing to investigate the efficacy of antibiotics against biofilm communities composed of different combinations of microbial species. Together, the data presented here illustrate the importance of studying microbes as part of mixed-species communities rather than in isolation. In light of our greater understanding of how interspecies interactions alter the efficacy of antimicrobial agents, we propose that the methods for measuring the drug susceptibility of polymicrobial infections should be revisited.
Collapse
Affiliation(s)
- Giulia Orazi
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|