1
|
Yuksel Kalyoncu M, Hjeij R, Yanaz M, Gulieva A, Selcuk Balcı M, Karabulut Ş, Metin Cakar N, Ergenekon AP, Erdem Eralp E, Gokdemir Y, Omran H, Karadag BT. Empowering limited-resource countries: collaborating with expert centers for diagnosis of primary ciliary dyskinesia. Front Mol Biosci 2025; 12:1547152. [PMID: 40182617 PMCID: PMC11965691 DOI: 10.3389/fmolb.2025.1547152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Primary ciliary dyskinesia (PCD) is an autosomal recessive rare disease caused by alterations in ciliary structure and function. Without a unique gold standard diagnostic test, the European Respiratory Society and the American Thoracic Society recommend using various diagnostic techniques to improve accuracy. This study aimed to demonstrate the effectiveness of immunofluorescence (IF) analysis in the diagnosis of PCD cases with uncertain genetic results and to demonstrate the importance of international collaboration in the diagnosis of PCD. Methods In collaboration with IF specialists at the University of Münster, individuals with inconclusive results in the Marmara University PCD panel consisting of the 22 most common genes and clinically suggestive of PCD were included in the study. IF imaging determined the subcellular localization of DNAH5 and GAS8 in respiratory epithelial cells. Nasal nitric oxide measurements, high-speed video microscopy (HSVM) analysis, and genetic analyses were performed. Results 19 patients were evaluated. The median age (25-75p) was 15 years (10-20 years) with 12 (63.2%) males. Three cases (15.7%) showed an absence of DNAH5, and one (5.3%) had a proximal distribution of DNAH5 in the ciliary axoneme. One case (5.3%) had cells without cilia, indicating a possible ciliogenesis defect. All individuals with abnormal IF analysis had a PICADAR score of 6 or above, and their cilia were immotile in HSVM. Discussion Consistent with the IF finding suggesting a ciliogenesis defect, further genetic analysis revealed biallelic pathogenic variants in CCNO in the affected individual. The absence of DNAH5 in the respiratory epithelial cells of an individual carrying heterozygous pathogenic splice variants in DNAH5 suggests the need for further genetic analysis. This study underscores the importance of international collaboration in diagnosing rare diseases like PCD.
Collapse
Affiliation(s)
- Mine Yuksel Kalyoncu
- Department of Pediatric Pulmonology, Istanbul Kartal Dr.Lutfi Kirdar Education and Research Hospital, Istanbul, Türkiye
| | - Rim Hjeij
- Department of Pediatrics, University Hospital Münster, Münster, North Rhine-Westphalia, Germany
| | - Muruvvet Yanaz
- Department of Pediatric Pulmonology, School of Medicine, Marmara University, Maltepe, Istanbul, Türkiye
| | - Aynur Gulieva
- Department of Pediatric Pulmonology, School of Medicine, Marmara University, Maltepe, Istanbul, Türkiye
| | - Merve Selcuk Balcı
- Department of Pediatric Pulmonology, School of Medicine, Marmara University, Maltepe, Istanbul, Türkiye
| | - Şeyda Karabulut
- Department of Pediatric Pulmonology, School of Medicine, Marmara University, Maltepe, Istanbul, Türkiye
| | - Neval Metin Cakar
- Department of Pediatric Pulmonology, School of Medicine, Marmara University, Maltepe, Istanbul, Türkiye
| | - Almala Pınar Ergenekon
- Department of Pediatric Pulmonology, School of Medicine, Marmara University, Maltepe, Istanbul, Türkiye
| | - Ela Erdem Eralp
- Department of Pediatric Pulmonology, School of Medicine, Marmara University, Maltepe, Istanbul, Türkiye
| | - Yasemin Gokdemir
- Department of Pediatric Pulmonology, School of Medicine, Marmara University, Maltepe, Istanbul, Türkiye
| | - Heymut Omran
- Department of Pediatrics, University Hospital Münster, Münster, North Rhine-Westphalia, Germany
| | - Bülent Taner Karadag
- Department of Pediatric Pulmonology, School of Medicine, Marmara University, Maltepe, Istanbul, Türkiye
| |
Collapse
|
2
|
Earwood R, Ninomiya H, Wang H, Shimada IS, Stroud M, Perez D, Uuganbayar U, Yamada C, Akiyama-Miyoshi T, Stefanovic B, Kato Y. The binding of LARP6 and DNAAF6 in biomolecular condensates influences ciliogenesis of multiciliated cells. J Biol Chem 2024; 300:107373. [PMID: 38762183 PMCID: PMC11208920 DOI: 10.1016/j.jbc.2024.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024] Open
Abstract
Motile cilia on the cell surface produce fluid flows in the body and abnormalities in motile cilia cause primary ciliary dyskinesia. Dynein axonemal assembly factor 6 (DNAAF6), a causative gene of primary ciliary dyskinesia, was isolated as an interacting protein with La ribonucleoprotein 6 (LARP6) that regulates ciliogenesis in multiciliated cells (MCCs). In MCCs of Xenopus embryos, LARP6 and DNAAF6 were colocalized in biomolecular condensates termed dynein axonemal particles and synergized to control ciliogenesis. Moreover, tubulin alpha 1c-like mRNA encoding α-tubulin protein, that is a major component of ciliary axoneme, was identified as a target mRNA regulated by binding LARP6. While DNAAF6 was necessary for high α-tubulin protein expression near the apical side of Xenopus MCCs during ciliogenesis, its mutant, which abolishes binding with LARP6, was unable to restore the expression of α-tubulin protein near the apical side of MCCs in Xenopus DNAAF6 morphant. These results indicated that the binding of LARP6 and DNAAF6 in dynein axonemal particles regulates highly expressed α-tubulin protein near the apical side of Xenopus MCCs during ciliogenesis.
Collapse
Affiliation(s)
- Ryan Earwood
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Hiromasa Ninomiya
- Department of Cell Biology, Nagoya City University, Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan
| | - Hao Wang
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Issei S Shimada
- Department of Cell Biology, Nagoya City University, Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan
| | - Mia Stroud
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Diana Perez
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Udval Uuganbayar
- Department of Cell Biology, Nagoya City University, Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan
| | - Chisato Yamada
- Department of Cell Biology, Nagoya City University, Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan
| | - Toru Akiyama-Miyoshi
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Branko Stefanovic
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA.
| | - Yoichi Kato
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA; Department of Cell Biology, Nagoya City University, Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan.
| |
Collapse
|
3
|
Upadhyay S, Rahman M, Rinaldi S, Koelmel J, Lin EZ, Mahesh PA, Beckers J, Johanson G, Pollitt KJG, Palmberg L, Irmler M, Ganguly K. Assessment of wood smoke induced pulmonary toxicity in normal- and chronic bronchitis-like bronchial and alveolar lung mucosa models at air-liquid interface. Respir Res 2024; 25:49. [PMID: 38245732 PMCID: PMC10799428 DOI: 10.1186/s12931-024-02686-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) has the highest increased risk due to household air pollution arising from biomass fuel burning. However, knowledge on COPD patho-mechanisms is mainly limited to tobacco smoke exposure. In this study, a repeated direct wood smoke (WS) exposure was performed using normal- (bro-ALI) and chronic bronchitis-like bronchial (bro-ALI-CB), and alveolar (alv-ALI) lung mucosa models at air-liquid interface (ALI) to assess broad toxicological end points. METHODS The bro-ALI and bro-ALI-CB models were developed using human primary bronchial epithelial cells and the alv-ALI model was developed using a representative type-II pneumocyte cell line. The lung models were exposed to WS (10 min/exposure; 5-exposures over 3-days; n = 6-7 independent experiments). Sham exposed samples served as control. WS composition was analyzed following passive sampling. Cytotoxicity, total cellular reactive oxygen species (ROS) and stress responsive NFkB were assessed by flow cytometry. WS exposure induced changes in gene expression were evaluated by RNA-seq (p ≤ 0.01) followed by pathway enrichment analysis. Secreted levels of proinflammatory cytokines were assessed in the basal media. Non-parametric statistical analysis was performed. RESULTS 147 unique compounds were annotated in WS of which 42 compounds have inhalation toxicity (9 very high). WS exposure resulted in significantly increased ROS in bro-ALI (11.2%) and bro-ALI-CB (25.7%) along with correspondingly increased NFkB levels (bro-ALI: 35.6%; bro-ALI-CB: 18.1%). A total of 1262 (817-up and 445-down), 329 (141-up and 188-down), and 102 (33-up and 69-down) genes were differentially regulated in the WS-exposed bro-ALI, bro-ALI-CB, and alv-ALI models respectively. The enriched pathways included the terms acute phase response, mitochondrial dysfunction, inflammation, oxidative stress, NFkB, ROS, xenobiotic metabolism of AHR, and chronic respiratory disorder. The enrichment of the 'cilium' related genes was predominant in the WS-exposed bro-ALI (180-up and 7-down). The pathways primary ciliary dyskinesia, ciliopathy, and ciliary movement were enriched in both WS-exposed bro-ALI and bro-ALI-CB. Interleukin-6 and tumor necrosis factor-α were reduced (p < 0.05) in WS-exposed bro-ALI and bro-ALI-CB. CONCLUSION Findings of this study indicate differential response to WS-exposure in different lung regions and in chronic bronchitis, a condition commonly associated with COPD. Further, the data suggests ciliopathy as a candidate pathway in relation to WS-exposure.
Collapse
Affiliation(s)
- Swapna Upadhyay
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Mizanur Rahman
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Selina Rinaldi
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Jeremy Koelmel
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Padukudru Anand Mahesh
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, 570015, India
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt (GmbH), 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD E.V.), 85764, Neuherberg, Germany
- Chair of Experimental Genetics, Technical University of Munich, 85354, Freising, Germany
| | - Gunnar Johanson
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Lena Palmberg
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt (GmbH), 85764, Neuherberg, Germany
| | - Koustav Ganguly
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
4
|
Pifferi M, Boner AL, Cangiotti A, Cudazzo A, Maj D, Gracci S, Michelucci A, Bertini V, Piazza M, Valetto A, Caligo MA, Peroni D, Bush A. The genetic framework of primary ciliary dyskinesia assessed by soft computing analysis. Pediatr Pulmonol 2024. [PMID: 38169302 DOI: 10.1002/ppul.26842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/12/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND International guidelines disagree on how best to diagnose primary ciliary dyskinesia (PCD), not least because many tests rely on pattern recognition. We hypothesized that quantitative distribution of ciliary ultrastructural and motion abnormalities would detect most frequent PCD-causing groups of genes by soft computing analysis. METHODS Archived data on transmission electron microscopy and high-speed video analysis from 212 PCD patients were re-examined to quantitate distribution of ultrastructural (10 parameters) and functional ciliary features (4 beat pattern and 2 frequency parameters). The correlation between ultrastructural and motion features was evaluated by blinded clustering analysis of the first two principal components, obtained from ultrastructural variables for each patient. Soft computing was applied to ultrastructure to predict ciliary beat frequency (CBF) and motion patterns by a regression model. Another model classified the patients into the five most frequent PCD-causing gene groups, from their ultrastructure, CBF and beat patterns. RESULTS The patients were subdivided into six clusters with similar values to homologous ultrastructural phenotype, motion patterns, and CBF, except for clusters 1 and 4, attributable to normal ultrastructure. The regression model confirmed the ability to predict functional ciliary features from ultrastructural parameters. The genetic classification model identified most of the different groups of genes, starting from all quantitative parameters. CONCLUSIONS Applying soft computing methodologies to PCD diagnostic tests optimizes their value by moving from pattern recognition to quantification. The approach may also be useful to evaluate atypical PCD, and novel genetic abnormalities of unclear disease-producing potential in the future.
Collapse
Affiliation(s)
- Massimo Pifferi
- Department of Pediatrics, University Hospital of Pisa, Pisa, Italy
| | - Attilio L Boner
- Pediatric Unit, Department of Surgical Science, Dentistry, Gynecology and Pediatrics, Verona University Medical School, Verona, Italy
| | - Angela Cangiotti
- Electron Microscopy Unit, Department of Experimental and Clinical Medicine, University Hospital of Ancona, Ancona, Italy
| | | | - Debora Maj
- Department of Pediatrics, University Hospital of Pisa, Pisa, Italy
| | - Serena Gracci
- Department of Pediatrics, University Hospital of Pisa, Pisa, Italy
| | - Angela Michelucci
- Unit of Molecular Genetics, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Veronica Bertini
- Section of Cytogenetics, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Michele Piazza
- Pediatric Unit, Department of Surgical Science, Dentistry, Gynecology and Pediatrics, Verona University Medical School, Verona, Italy
| | - Angelo Valetto
- Section of Cytogenetics, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Maria Adelaide Caligo
- Unit of Molecular Genetics, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Diego Peroni
- Department of Pediatrics, University Hospital of Pisa, Pisa, Italy
| | - Andrew Bush
- Department of Paediatric Respiratory Medicine, Imperial College and Royal Brompton Hospital, London, UK
| |
Collapse
|
5
|
Keicho N, Hijikata M, Miyabayashi A, Wakabayashi K, Yamada H, Ito M, Morimoto K. Impact of primary ciliary dyskinesia: Beyond sinobronchial syndrome in Japan. Respir Investig 2024; 62:179-186. [PMID: 38154292 DOI: 10.1016/j.resinv.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023]
Abstract
Primary ciliary dyskinesia (PCD) is a rare genetic disorder characterized by impaired motile cilia function, particularly in the upper and lower airways. To date, more than 50 causative genes related to the movement, development, and maintenance of cilia have been identified. PCD mostly follows an autosomal recessive inheritance pattern, in which PCD symptoms manifest only in the presence of pathogenic variants in both alleles. Several genes causing PCD have been recently identified that neither lead to situs inversus nor cause definitive abnormalities in ciliary ultrastructure. Importantly, the distribution of disease-causing genes and pathogenic variants varies depending on ethnicity. In Japan, homozygosity for a ∼27.7-kb deletion of DRC1 is estimated to be the most common cause of PCD, presumably as a founder mutation. The clinical picture of PCD is similar to that of sinobronchial syndrome, thus making its differentiation from diffuse panbronchiolitis and other related disorders difficult. Given the diagnostic challenges, many cases remain undiagnosed or misdiagnosed, particularly in adults. While no fundamental cure is currently available, lifelong medical subsidies are provided in Japan, and proper respiratory management, along with continued prevention and treatment of infections, is believed to mitigate the decline in respiratory function. Timely action will be necessary when specific treatments for PCD become available in the future. This narrative review focuses on variations in the disease status of PCD in a non-Western country.
Collapse
Affiliation(s)
- Naoto Keicho
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan.
| | - Minako Hijikata
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Akiko Miyabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Keiko Wakabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Hiroyuki Yamada
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Masashi Ito
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Kozo Morimoto
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| |
Collapse
|
6
|
Celiksoy MH, Turan I, Gezdirici A, Kayalar O, Aydoğmuş Ç, Naiboglu S. A novel homozygous frameshift CCNO variant presenting with primary ciliary dyskinesia and selective IgM deficiency. Pediatr Pulmonol 2023; 58:3333-3336. [PMID: 37503872 DOI: 10.1002/ppul.26607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 04/30/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Affiliation(s)
- Mehmet Halil Celiksoy
- Department of Pediatric Allergy and Immunology, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Işılay Turan
- Department of Pediatric Allergy and Immunology, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Alper Gezdirici
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Ozgecan Kayalar
- Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul, Turkey
| | - Çiğdem Aydoğmuş
- Department of Pediatric Allergy and Immunology, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Sezin Naiboglu
- Department of Pediatric Allergy and Immunology, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| |
Collapse
|
7
|
Kitada Y, Ohnishi H, Yamamoto N, Kuwata F, Kitano M, Mizuno K, Omori K. Transplantation of Induced Pluripotent Stem Cell-Derived Airway Epithelia with a Collagen Scaffold into the Nasal Cavity. Tissue Eng Part C Methods 2023; 29:526-534. [PMID: 37756360 DOI: 10.1089/ten.tec.2023.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
The nasal cavity is covered with respiratory epithelia, including ciliated cells that eliminate foreign substances trapped in the mucus. In hereditary diseases such as primary ciliary dyskinesia and cystic fibrosis, respiratory epithelial functions are irreversibly impaired; however, no radical treatment has been established yet. Thus, we considered that the transplantation of normal airway epithelia (AE) into the nasal epithelia is one of the strategies that could lead to radical treatment in the future. In our previous study, human induced pluripotent stem cell-derived AE (hiPSC-AE) on the vitrigel membrane were transplanted into the scraped area of the nasal septal mucosa of nude rats. Although human-derived ciliated cells, club cells, and basal cells were observed, they were located in the cysts within the submucosal granulation tissue but not in the nasal mucosal epithelia and the transplanted cells may not contribute to the function of the nasal mucosa with this condition. Therefore, to achieve more functional transplantation, we prepared the graft differently in this study by wrapping the collagen sponge in hiPSC-AE on the vitrigel membrane. As a result, we found the transplanted cells surviving in the nasal mucosal epithelia. These results suggest that hiPSC-AE transplanted into the nasal cavity could be viable in the nasal mucosa. In addition, our method leads to the establishment of nasal mucosa-humanized rats that are used for the development of the drugs and therapeutic methods for hereditary diseases of nasal respiratory epithelia.
Collapse
Affiliation(s)
- Yuji Kitada
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto, Japan
| | - Hiroe Ohnishi
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto, Japan
| | - Norio Yamamoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto, Japan
- Department of Otolaryngology, Kobe City Medical Center General Hospital, Kobe City, Japan
| | - Fumihiko Kuwata
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Kitano
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto, Japan
| | - Keisuke Mizuno
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto, Japan
| | - Koichi Omori
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Birkhead M, Otido S, Mabaso T, Mopeli K, Tlhapi D, Verwey C, Dangor Z. Ultrastructure for the diagnosis of primary ciliary dyskinesia in South Africa, a resource-limited setting. Front Pediatr 2023; 11:1247638. [PMID: 37645034 PMCID: PMC10461090 DOI: 10.3389/fped.2023.1247638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023] Open
Abstract
Introduction International guidelines recommend a multi-faceted approach for successful diagnoses of primary ciliary dyskinesia (PCD). In the absence of a gold standard test, a combination of genetic testing/microscopic analysis of structure and function/nasal nitric oxide measurement is used. In resource-limited settings, often none of the above tests are available, and in South Africa, only transmission electron microscopy (TEM) is available in central anatomical pathology departments. The aim of this study was to describe the clinical and ultrastructural findings of suspected PCD cases managed by pediatric pulmonologists at a tertiary-level state funded hospital in Johannesburg. Methods Nasal brushings were taken from 14 children with chronic respiratory symptoms in keeping with a PCD phenotype. Ultrastructural analysis in accordance with the international consensus guidelines for TEM-PCD diagnostic reporting was undertaken. Results TEM observations confirmed 43% (6) of the clinically-suspected cases (hallmark ultrastructural defects in the dynein arms of the outer doublets), whilst 57% (8) required another PCD testing modality to support ultrastructural observations. Of these, 25% (2) had neither ultrastructural defects nor did they present with bronchiectasis. Of the remaining cases, 83% (5) had very few ciliated cells (all of which were sparsely ciliated), together with goblet cell hyperplasia. There was the apparent absence of ciliary rootlets in 17% (1) case. Discussion In resource-limited settings in which TEM is the only available testing modality, confirmatory and probable diagnoses of PCD can be made to facilitate early initiation of treatment of children with chronic respiratory symptoms.
Collapse
Affiliation(s)
- Monica Birkhead
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases – a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Samuel Otido
- Department of Paediatrics and Child Health, Aga Khan University Hospital, Nairobi, Kenya
| | - Theodore Mabaso
- Department of Paediatrics and Child Health, Faculty of Health Sciences, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Johannesburg, South Africa
| | - Keketso Mopeli
- Department of Paediatrics and Child Health, Faculty of Health Sciences, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Johannesburg, South Africa
| | - Dorcas Tlhapi
- Department of Paediatrics and Child Health, Faculty of Health Sciences, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Johannesburg, South Africa
| | - Charl Verwey
- Department of Paediatrics and Child Health, Faculty of Health Sciences, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Johannesburg, South Africa
- Medical Research Council: Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Ziyaad Dangor
- Department of Paediatrics and Child Health, Faculty of Health Sciences, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Johannesburg, South Africa
- Medical Research Council: Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
9
|
Fadl SM, Kafaji M, Abdalla H, Dabbour MA, Al-Shamrani A. Primary Ciliary Dyskinesia and Type 1 Diabetes: True Association or Circumstantial? Cureus 2023; 15:e39344. [PMID: 37351244 PMCID: PMC10284442 DOI: 10.7759/cureus.39344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2023] [Indexed: 06/24/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare autosomal recessive inherited heterogeneous respiratory disorder. The diagnosis of PCD is challenging and necessitates a multi-test diagnostic approach because there are no gold standard diagnostic tests available to confirm PCD. However, rapid advancement in understanding the molecular genetic basis of PCD has greatly improved PCD diagnosis. Studies have reported that PCD may increase the risk of rheumatoid arthritis, congenital heart disease, severe esophageal diseases, and others. Therefore, the present study aimed to assess the risk of type 1 diabetes mellitus (T1DM) in a genetically confirmed PCD patient. In this case study, an 11-year-old girl with autosinopulmonary infections and her younger brother were diagnosed with PCD. The patient's DNA was extracted for next-generation exome sequencing. Our analysis of the exome sequencing data revealed the PCD-causing genetic variant p.Glu286del in the RSPH9 gene on chromosome 6p21.1. In addition, the biochemical findings at the time of patient's admission showed elevated glutamic acid decarboxylase antibodies, HbA1c, and ketone levels, with impaired glucose tolerance, which indicated the presence of T1DM. In conclusion, the clinical features, biochemical reports, and genetic testing confirmed PCD in this patient and the possible association between PCD and T1DM.
Collapse
Affiliation(s)
- Sarrah M Fadl
- Pediatric Pulmonology, Prince Sultan Military Medical City, Riyadh, SAU
| | - Mustafa Kafaji
- General Surgery, College of Medicine, Alfaisal University, Riyadh, SAU
| | - Hesham Abdalla
- General Surgery, College of Medicine, Alfaisal University, Riyadh, SAU
| | - Maryam A Dabbour
- Pediatric Pulmonology, Prince Sultan Military Medical City, Riyadh, SAU
| | - Abdullah Al-Shamrani
- Pediatric Pulmonology, Prince Sultan Military Medical City, Riyadh, SAU
- Medicine, Alfaisal University, Riyadh, SAU
| |
Collapse
|
10
|
Rabiasz A, Ziętkiewicz E. Schmidtea mediterranea as a Model Organism to Study the Molecular Background of Human Motile Ciliopathies. Int J Mol Sci 2023; 24:ijms24054472. [PMID: 36901899 PMCID: PMC10002865 DOI: 10.3390/ijms24054472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Cilia and flagella are evolutionarily conserved organelles that form protrusions on the surface of many growth-arrested or differentiated eukaryotic cells. Due to the structural and functional differences, cilia can be roughly classified as motile and non-motile (primary). Genetically determined dysfunction of motile cilia is the basis of primary ciliary dyskinesia (PCD), a heterogeneous ciliopathy affecting respiratory airways, fertility, and laterality. In the face of the still incomplete knowledge of PCD genetics and phenotype-genotype relations in PCD and the spectrum of PCD-like diseases, a continuous search for new causative genes is required. The use of model organisms has been a great part of the advances in understanding molecular mechanisms and the genetic basis of human diseases; the PCD spectrum is not different in this respect. The planarian model (Schmidtea mediterranea) has been intensely used to study regeneration processes, and-in the context of cilia-their evolution, assembly, and role in cell signaling. However, relatively little attention has been paid to the use of this simple and accessible model for studying the genetics of PCD and related diseases. The recent rapid development of the available planarian databases with detailed genomic and functional annotations prompted us to review the potential of the S. mediterranea model for studying human motile ciliopathies.
Collapse
|
11
|
De Jesús-Rojas W, Meléndez-Montañez J, Muñiz-Hernández J, Marra-Nazario A, Alvarado-Huerta F, Santos-López A, Ramos-Benitez MJ, Mosquera RA. The RSPH4A Gene in Primary Ciliary Dyskinesia. Int J Mol Sci 2023; 24:1936. [PMID: 36768259 PMCID: PMC9915723 DOI: 10.3390/ijms24031936] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/29/2022] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
The radial spoke head protein 4 homolog A (RSPH4A) gene is one of more than 50 genes that cause Primary ciliary dyskinesia (PCD), a rare genetic ciliopathy. Genetic mutations in the RSPH4A gene alter an important protein structure involved in ciliary pathogenesis. Radial spoke proteins, such as RSPH4A, have been conserved across multiple species. In humans, ciliary function deficiency caused by RSPH4A pathogenic variants results in a clinical phenotype characterized by recurrent oto-sino-pulmonary infections. More than 30 pathogenic RSPH4A genetic variants have been associated with PCD. In Puerto Rican Hispanics, a founder mutation (RSPH4A (c.921+3_921+6delAAGT (intronic)) has been described. The spectrum of the RSPH4A PCD phenotype does not include laterality defects, which results in a challenging diagnosis. PCD diagnostic tools can combine transmission electron microscopy (TEM), nasal nitric oxide (nNO), High-Speed Video microscopy Analysis (HSVA), and immunofluorescence. The purpose of this review article is to provide a comprehensive overview of current knowledge about the RSPH4A gene in PCD, ranging from basic science to human clinical phenotype.
Collapse
Affiliation(s)
- Wilfredo De Jesús-Rojas
- Department of Pediatrics and Basic Science, Ponce Health Sciences University, Ponce, PR 00716, USA
- School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00921, USA
| | - Jesús Meléndez-Montañez
- Department of Pediatrics and Basic Science, Ponce Health Sciences University, Ponce, PR 00716, USA
| | - José Muñiz-Hernández
- Department of Pediatrics and Basic Science, Ponce Health Sciences University, Ponce, PR 00716, USA
| | - André Marra-Nazario
- School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00921, USA
| | | | - Arnaldo Santos-López
- Department of Pediatrics and Basic Science, Ponce Health Sciences University, Ponce, PR 00716, USA
| | - Marcos J. Ramos-Benitez
- Department of Pediatrics and Basic Science, Ponce Health Sciences University, Ponce, PR 00716, USA
| | - Ricardo A. Mosquera
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
12
|
Jiang G, Zou L, Long L, He Y, Lv X, Han Y, Yao T, Zhang Y, Jiang M, Peng Z, Tao L, Xie W, Meng J. Homozygous mutation in DNAAF4 causes primary ciliary dyskinesia in a Chinese family. Front Genet 2022; 13:1087818. [PMID: 36583018 PMCID: PMC9792849 DOI: 10.3389/fgene.2022.1087818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder that affects the structure and function of motile cilia, leading to classic clinical phenotypes, such as situs inversus, chronic sinusitis, bronchiectasis, repeated pneumonia and infertility. In this study, we diagnosed a female patient with PCD who was born in a consanguineous family through classic clinical manifestations, transmission electron microscopy and immunofluorescence staining. A novel DNAAF4 variant NM_130810: c.1118G>A (p. G373E) was filtered through Whole-exome sequencing. Subsequently, we explored the effect of the mutation on DNAAF4 protein from three aspects: protein expression, stability and interaction with downstream DNAAF2 protein through a series of experiments, such as transfection of plasmids and Co-immunoprecipitation. Finally, we confirmed that the mutation of DNAAF4 lead to PCD by reducing the stability of DNAAF4 protein, but the expression and function of DNAAF4 protein were not affected.
Collapse
Affiliation(s)
- Guoliang Jiang
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Lijun Zou
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Lingzhi Long
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Yijun He
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Xin Lv
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China,Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanyuan Han
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China,Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Yao
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Yan Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Mao Jiang
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Zhangzhe Peng
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China,Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Lijian Tao
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China,Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xie
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China,Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Wei Xie, ; Jie Meng,
| | - Jie Meng
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China,*Correspondence: Wei Xie, ; Jie Meng,
| |
Collapse
|
13
|
Chrystal PW, Lambacher NJ, Doucette LP, Bellingham J, Schiff ER, Noel NCL, Li C, Tsiropoulou S, Casey GA, Zhai Y, Nadolski NJ, Majumder MH, Tagoe J, D'Esposito F, Cordeiro MF, Downes S, Clayton-Smith J, Ellingford J, Mahroo OA, Hocking JC, Cheetham ME, Webster AR, Jansen G, Blacque OE, Allison WT, Au PYB, MacDonald IM, Arno G, Leroux MR. The inner junction protein CFAP20 functions in motile and non-motile cilia and is critical for vision. Nat Commun 2022; 13:6595. [PMID: 36329026 PMCID: PMC9633640 DOI: 10.1038/s41467-022-33820-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Motile and non-motile cilia are associated with mutually-exclusive genetic disorders. Motile cilia propel sperm or extracellular fluids, and their dysfunction causes primary ciliary dyskinesia. Non-motile cilia serve as sensory/signalling antennae on most cell types, and their disruption causes single-organ ciliopathies such as retinopathies or multi-system syndromes. CFAP20 is a ciliopathy candidate known to modulate motile cilia in unicellular eukaryotes. We demonstrate that in zebrafish, cfap20 is required for motile cilia function, and in C. elegans, CFAP-20 maintains the structural integrity of non-motile cilia inner junctions, influencing sensory-dependent signalling and development. Human patients and zebrafish with CFAP20 mutations both exhibit retinal dystrophy. Hence, CFAP20 functions within a structural/functional hub centered on the inner junction that is shared between motile and non-motile cilia, and is distinct from other ciliopathy-associated domains or macromolecular complexes. Our findings suggest an uncharacterised pathomechanism for retinal dystrophy, and potentially for motile and non-motile ciliopathies in general.
Collapse
Affiliation(s)
- Paul W Chrystal
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
| | - Nils J Lambacher
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Lance P Doucette
- Department of Ophthalmology & Visual Science, University of Alberta, Edmonton, AB, Canada
| | | | - Elena R Schiff
- Moorfields Eye Hospital, London, UK
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nicole C L Noel
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Sofia Tsiropoulou
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Geoffrey A Casey
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Yi Zhai
- Department of Ophthalmology & Visual Science, University of Alberta, Edmonton, AB, Canada
| | - Nathan J Nadolski
- Division of Anatomy, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Mohammed H Majumder
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Julia Tagoe
- Lethbridge Outreach Genetics Service, Alberta Health Services, Lethbridge, AB, Canada
| | - Fabiana D'Esposito
- Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK
- ICORG, Imperial College London, London, UK
| | | | - Susan Downes
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Jamie Ellingford
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
- Genomics England, London, UK
| | - Omar A Mahroo
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | - Jennifer C Hocking
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Division of Anatomy, Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Andrew R Webster
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | - Gert Jansen
- Department of Cell Biology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - W Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
| | - Ping Yee Billie Au
- Department of Medical Genetics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Ian M MacDonald
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
- Department of Ophthalmology & Visual Science, University of Alberta, Edmonton, AB, Canada.
| | - Gavin Arno
- UCL Institute of Ophthalmology, London, UK.
- Moorfields Eye Hospital, London, UK.
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
14
|
Liu Y, Lei C, Wang R, Yang D, Yang B, Xu Y, Lu C, Wang L, Ding S, Guo T, Liu S, Luo H. Case Report: Whole-Exome Sequencing-Based Copy Number Variation Analysis Identified a Novel DRC1 Homozygous Exon Deletion in a Patient With Primary Ciliary Dyskinesia. Front Genet 2022; 13:940292. [PMID: 35873463 PMCID: PMC9298917 DOI: 10.3389/fgene.2022.940292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022] Open
Abstract
Objective: Whole-exome sequencing (WES) based copy number variation (CNV) analysis has been reported to improve the diagnostic rate in rare genetic diseases. In this study, we aim to find the disease-associated variants in a highly suspected primary ciliary dyskinesia (PCD) patient without a genetic diagnosis by routine WES analysis. Methods: We identified the CNVs using the “Exomedepth” package in an undiagnosed PCD patient with a negative result through routine WES analysis. RNA isolation, PCR amplification, and Sanger sequencing were used to confirm the variant. High-speed video microscopy analysis (HSVA) and immunofluorescence analysis were applied to detect the functional and structural deficiency of nasal cilia and sperm flagella. Papanicolaou staining was employed to characterize the morphology of sperm flagella. Results: NC_000002.11(NM_145038.5): g.26635488_26641606del, c.156-1724_244-2550del, r.156_243del, p. (Glu53Asnfs*13), a novel DRC1 homozygous CNV, was identified by WES-based CNV analysis rather than routine variants calling, in a patient from a non-consanguineous family. HSVA results showed no significant change in ciliary beating frequency but with reduced beating amplitude compared with normal control, and his spermatozoa were almost immotile. The diagnosis of multiple morphological abnormalities of the sperm flagella (MMAF) was established through sperm motility and morphology analysis. PCR amplification and Sanger sequencing confirmed the novel variant of DRC1. Immunofluorescence showed that both cilia and sperm flagella were deficient in protein expression related to the dynein regulatory complex. Conclusion: This report identifies a novel DRC1 disease-associated variant by WES-based CNV analysis from a highly suspected PCD patient with MMAF. Our findings not only expand the genetic spectrum of PCD with MMAF but suggest that in combination with CNV analysis might improve the efficiency of genetic tests.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, China
| | - Cheng Lei
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, China
| | - Rongchun Wang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, China
| | - Danhui Yang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, China
| | - Binyi Yang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, China
| | - Yingjie Xu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, China
| | - Chenyang Lu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, China
| | - Lin Wang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, China
| | - Shuizi Ding
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, China
| | - Ting Guo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, China
| | - Shaokun Liu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, China
| | - Hong Luo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, China
| |
Collapse
|
15
|
Dnah9 mutant mice and organoid models recapitulate the clinical features of patients with PCD and provide an excellent platform for drug screening. Cell Death Dis 2022; 13:559. [PMID: 35729109 PMCID: PMC9210797 DOI: 10.1038/s41419-022-05010-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 01/21/2023]
Abstract
Primary cilia dyskinesia (PCD) is a rare genetic disease caused by ciliary structural or functional defects. It causes severe outcomes in patients, including recurrent upper and lower airway infections, progressive lung failure, and randomization of heterotaxy. To date, although 50 genes have been shown to be responsible for PCD, the etiology remains elusive. Meanwhile, owing to the lack of a model mimicking the pathogenesis that can be used as a drug screening platform, thereby slowing the development of related therapies. In the current study, we identified compound mutation of DNAH9 in a patient with PCD with the following clinical features: recurrent respiratory tract infections, low lung function, and ultrastructural defects of the outer dynein arms (ODAs). Bioinformatic analysis, structure simulation assay, and western blot analysis showed that the mutations affected the structure and expression of DNAH9 protein. Dnah9 knock-down (KD) mice recapitulated the patient phenotypes, including low lung function, mucin accumulation, and increased immune cell infiltration. Immunostaining, western blot, and co-immunoprecipitation analyses were performed to clarify that DNAH9 interacted with CCDC114/GAS8 and diminished their protein levels. Furthermore, we constructed an airway organoid of Dnah9 KD mice and discovered that it could mimic the key features of the PCD phenotypes. We then used organoid as a drug screening model to identify mitochondrial-targeting drugs that can partially elevate cilia beating in Dnah9 KD organoid. Collectively, our results demonstrated that Dnah9 KD mice and an organoid model can recapture the clinical features of patients with PCD and provide an excellent drug screening platform for human ciliopathies.
Collapse
|
16
|
Perspectives for Primary Ciliary Dyskinesia. Int J Mol Sci 2022; 23:ijms23084122. [PMID: 35456939 PMCID: PMC9031447 DOI: 10.3390/ijms23084122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022] Open
|
17
|
Valentine M, Van Houten J. Using Paramecium as a Model for Ciliopathies. Genes (Basel) 2021; 12:genes12101493. [PMID: 34680887 PMCID: PMC8535419 DOI: 10.3390/genes12101493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 01/26/2023] Open
Abstract
Paramecium has served as a model organism for the studies of many aspects of genetics and cell biology: non-Mendelian inheritance, genome duplication, genome rearrangements, and exocytosis, to name a few. However, the large number and patterning of cilia that cover its surface have inspired extraordinary ultrastructural work. Its swimming patterns inspired exquisite electrophysiological studies that led to a description of the bioelectric control of ciliary motion. A genetic dissection of swimming behavior moved the field toward the genes and gene products underlying ciliary function. With the advent of molecular technologies, it became clear that there was not only great conservation of ciliary structure but also of the genes coding for ciliary structure and function. It is this conservation and the legacy of past research that allow us to use Paramecium as a model for cilia and ciliary diseases called ciliopathies. However, there would be no compelling reason to study Paramecium as this model if there were no new insights into cilia and ciliopathies to be gained. In this review, we present studies that we believe will do this. For example, while the literature continues to state that immotile cilia are sensory and motile cilia are not, we will provide evidence that Paramecium cilia are clearly sensory. Other examples show that while a Paramecium protein is highly conserved it takes a different interacting partner or conducts a different ion than expected. Perhaps these exceptions will provoke new ideas about mammalian systems.
Collapse
Affiliation(s)
- Megan Valentine
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, NY 12901, USA;
| | - Judith Van Houten
- Department of Biology, University of Vermont, 120 Marsh Life Science, 109 Carrigan Drive, Burlington, VT 05405, USA
- Correspondence:
| |
Collapse
|
18
|
Goutaki M, Pedersen ESL. Phenotype-genotype associations in primary ciliary dyskinesia: where do we stand? Eur Respir J 2021; 58:58/2/2100392. [PMID: 34353866 DOI: 10.1183/13993003.00392-2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Myrofora Goutaki
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.,Paediatric Respiratory Medicine, Children's University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Eva S L Pedersen
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
Sergi CM. Vitamin D and Primary Ciliary Dyskinesia: A Topic to Be Further Explored. APPLIED SCIENCES 2021; 11:3818. [DOI: 10.3390/app11093818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Primary ciliary dyskinesia (PCD) is a genetic disease characterized by abnormalities in ciliary structure/function. The diagnosis of PCD relies on a combination of clinical evaluation and ultrastructural (electron microscopic) analysis of the ciliary architecture. This diagnosis may be challenging due to clinical and genetic heterogeneity and artifacts during the ciliary ultrastructure preparation and assessment. Recently, vitamin D supplementation has been proposed for several groups probably suffering from D-hypovitaminosis. Some patients with inflammatory bowel disease may have significant malabsorption, and vitamin D supplementation in these patients is recommended. Two recent reports suggest that a low plasmatic level of this vitamin is present in the PCD population. The utility of vitamin D supplementation may be essential in this group of individuals, and further investigations are warranted. Still, in examining the literature papers, it seems relevant that the authors concentrate solely on lung function in both studies. Future studies should probably target the intestinal function in patients with PCD independently from the vitamin D supplementation to fully evaluate its role.
Collapse
Affiliation(s)
- Consolato M. Sergi
- Pathology Laboratories, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Wuhan University of Science and Technology, Wuhan 430074, China
| |
Collapse
|