1
|
Yadav R, Meena D, Singh K, Tyagi R, Yadav Y, Sagar R. Recent advances in the synthesis of new benzothiazole based anti-tubercular compounds. RSC Adv 2023; 13:21890-21925. [PMID: 37483662 PMCID: PMC10359851 DOI: 10.1039/d3ra03862a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
This review highlights the recent synthetic developments of benzothiazole based anti-tubercular compounds and their in vitro and in vivo activity. The inhibitory concentrations of the newly synthesized molecules were compared with the standard reference drugs. The better inhibition potency was found in new benzothiazole derivatives against M. tuberculosis. Synthesis of benzothiazole derivatives was achieved through various synthetic pathways including diazo-coupling, Knoevenagel condensation, Biginelli reaction, molecular hybridization techniques, microwave irradiation, one-pot multicomponent reactions etc. Other than recent synthetic developments, mechanism of resistance of anti-TB drugs is also incorporated in this review. Structure activity relationships of the new benzothiazole derivatives along with the molecular docking studies of selected compounds have been discussed against the target DprE1 in search of a potent inhibitor with enhanced anti-tubercular activity.
Collapse
Affiliation(s)
- Rakhi Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Dilkhush Meena
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Kavita Singh
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Yogesh Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| |
Collapse
|
2
|
Dookie N, Ngema SL, Perumal R, Naicker N, Padayatchi N, Naidoo K. The Changing Paradigm of Drug-Resistant Tuberculosis Treatment: Successes, Pitfalls, and Future Perspectives. Clin Microbiol Rev 2022; 35:e0018019. [PMID: 36200885 PMCID: PMC9769521 DOI: 10.1128/cmr.00180-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Drug-resistant tuberculosis (DR-TB) remains a global crisis due to the increasing incidence of drug-resistant forms of the disease, gaps in detection and prevention, models of care, and limited treatment options. The DR-TB treatment landscape has evolved over the last 10 years. Recent developments include the remarkable activity demonstrated by the newly approved anti-TB drugs bedaquiline and pretomanid against Mycobacterium tuberculosis. Hence, treatment of DR-TB has drastically evolved with the introduction of the short-course regimen for multidrug-resistant TB (MDR-TB), transitioning to injection-free regimens and the approval of the 6-month short regimens for rifampin-resistant TB and MDR-TB. Moreover, numerous clinical trials are under way with the aim to reduce pill burden and shorten the DR-TB treatment duration. While there have been apparent successes in the field, some challenges remain. These include the ongoing inclusion of high-dose isoniazid in DR-TB regimens despite a lack of evidence for its efficacy and the inclusion of ethambutol and pyrazinamide in the standard short regimen despite known high levels of background resistance to both drugs. Furthermore, antimicrobial heteroresistance, extensive cavitary disease and intracavitary gradients, the emergence of bedaquiline resistance, and the lack of biomarkers to monitor DR-TB treatment response remain serious challenges to the sustained successes. In this review, we outline the impact of the new drugs and regimens on patient treatment outcomes, explore evidence underpinning current practices on regimen selection and duration, reflect on the disappointments and pitfalls in the field, and highlight key areas that require continued efforts toward improving treatment approaches and rapid biomarkers for monitoring treatment response.
Collapse
Affiliation(s)
- Navisha Dookie
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Senamile L. Ngema
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Rubeshan Perumal
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council–CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Nikita Naicker
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council–CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council–CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council–CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| |
Collapse
|
3
|
Noriega S, Cardoso-Ortiz J, López-Luna A, Cuevas-Flores MDR, Flores De La Torre JA. The Diverse Biological Activity of Recently Synthesized Nitro Compounds. Pharmaceuticals (Basel) 2022; 15:717. [PMID: 35745635 PMCID: PMC9230682 DOI: 10.3390/ph15060717] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
The search for new and efficient pharmaceuticals is a constant struggle for medicinal chemists. New substances are needed in order to treat different pathologies affecting the health of humans and animals, and these new compounds should be safe, effective and have the fewest side effects possible. Some functional groups are known for having biological activity; in this matter, the nitro group (NO2) is an efficient scaffold when synthesizing new bioactive molecules. Nitro compounds display a wide spectrum of activities that include antineoplastic, antibiotic, antihypertensive, antiparasitic, tranquilizers and even herbicides, among many others. Most nitro molecules exhibit antimicrobial activity, and several of the compounds mentioned in this review may be further studied as lead compounds for the treatment of H. pylori, P. aeruginosa, M. tuberculosis and S. mutans infections, among others. The NO2 moiety triggers redox reactions within cells causing toxicity and the posterior death of microorganisms, not only bacteria but also multicellular organisms such as parasites. The same effect may be present in humans as well, so the nitro groups can be considered both a pharmacophore and a toxicophore at the same time. The role of the nitro group itself also has a deep effect on the polarity and electronic properties of the resulting molecules, and hence favors interactions with some amino acids in proteins. For these reasons, it is fundamental to analyze the recently synthesized nitro molecules that show any potential activity in order to develop new pharmacological treatments that enhance human health.
Collapse
Affiliation(s)
| | - Jaime Cardoso-Ortiz
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (S.N.); (A.L.-L.); (M.D.R.C.-F.); (J.A.F.D.L.T.)
| | | | | | | |
Collapse
|
4
|
Obakiro SB, Kiprop A, K'owino I, Andima M, Owor RO, Chacha R, Kigondu E. Phytochemical, Cytotoxicity, and Antimycobacterial Activity Evaluation of Extracts and Compounds from the Stem Bark of Albizia coriaria Welw ex. Oliver. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7148511. [PMID: 35103066 PMCID: PMC8800636 DOI: 10.1155/2022/7148511] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Albizia coriaria Welw ex. Oliver (Fabaceae) is one of the plants used by herbalists in the East Africa community to prepare herbal remedies for the management of symptoms of TB. Despite its widespread use, the antimycobacterial activity of this plant was uninvestigated and there was contradicting information regarding its cytotoxicity. METHODS Cytotoxicity (MTT), antimycobacterial activity (MABA), and phytochemical screening were conducted on crude extracts (hexane, chloroform, acetone, and methanol) of the stem bark of A. coriaria. Gas chromatography-mass spectrometry (GC-MS) followed by Fourier transform infrared (FTIR) spectroscopy was carried out on the acetone and methanol extracts. The binding affinities and descriptors of pharmacokinetics and toxicity of the identified compounds were predicted using computational modelling software. RESULTS The cytotoxic concentrations of all extracts were greater than 1000 μg/mL. The minimum inhibitory concentration of both the acetone and methanol extracts was 1250.0 ± 0.0 μg/mL against M. smegmatis, whereas that against M. tuberculosis was 937.0 ± 442.0 μg/mL and 2500.0 ± 0.0 μg/mL, respectively. Hexane and chloroform extracts were not active against both strains. Alkaloids, triterpenes, flavonoids, tannins, and saponins were the predominant phytochemicals present. GC-MS analysis revealed twenty-eight and nineteen compounds in acetone and methanol extracts, respectively. Among these was hydroquinone, which was previously reported to possess antimycobacterial activity. Seven compounds identified through GC-MS analysis had better binding affinities for the mycobacterial ATPase and polyketide synthase-13 than isoniazid and rifampicin. These compounds also showed variable but promising pharmacokinetic properties with minimum toxicity. CONCLUSION There are phytochemicals in A. coriaria stem bark with potential antimycobacterial activity and acceptable cytotoxicity, which can be further explored and optimized for the development of novel antitubercular drugs.
Collapse
Affiliation(s)
- Samuel Baker Obakiro
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900-30100, Eldoret, Kenya
- Africa Centre of Excellence II in Phytochemicals, Textile and Renewable Energy (ACE II PTRE), Moi University, P.O. Box 3900-30100, Eldoret, Kenya
| | - Ambrose Kiprop
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900-30100, Eldoret, Kenya
- Africa Centre of Excellence II in Phytochemicals, Textile and Renewable Energy (ACE II PTRE), Moi University, P.O. Box 3900-30100, Eldoret, Kenya
| | - Isaac K'owino
- Africa Centre of Excellence II in Phytochemicals, Textile and Renewable Energy (ACE II PTRE), Moi University, P.O. Box 3900-30100, Eldoret, Kenya
- Department of Pure and Applied Chemistry, Faculty of Science, Masinde-Muliro University of Science and Technology, P.O. Box 190-50100, Kakamega, Kenya
| | - Moses Andima
- Department of Chemistry, Faculty of Science Education, Busitema University, P.O Box 236, Tororo, Uganda
| | - Richard Oriko Owor
- Department of Chemistry, Faculty of Science Education, Busitema University, P.O Box 236, Tororo, Uganda
| | - Robi Chacha
- Centre of Respiratory Disease Research, Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| | - Elizabeth Kigondu
- Centre of Traditional Medicine and Drug Research, Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| |
Collapse
|
5
|
Pretomanid for tuberculosis treatment: an update for clinical purposes. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100128. [PMID: 36105740 PMCID: PMC9461242 DOI: 10.1016/j.crphar.2022.100128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/16/2022] [Accepted: 09/03/2022] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease (COVID-19) pandemic determined a 10 years-set back in tuberculosis (TB) control programs. Recent advances in available therapies may help recover the time lost. While Linezolid (LZD) and Bedaquiline (BDQ), previously Group D second line drugs (SLDs) for TB, have been relocated to Group A, other drugs are currently being studied in regimens for drug resistant TB (DR-TB). Among these, Pretomanid (PA), a recently introduced antimycobacterial drug derived from nitroimidazole with both solid bactericidal and bacteriostatic effect, and with an excellent effectiveness and tolerability profile, is in the spotlight. Following promising data obtained from recently published and ongoing randomized controlled trials (RCTs), the World Health Organization (WHO) determined to include PA in its guidelines for the treatment of rifampicin-resistant (RR), multi drug resistant (MDR) and pre-extensively drug resistant TB (pre-XDR-TB) with BDQ, LZD and Moxifloxacine (MFX) in a 6-month regimen. Although further studies on the subject are needed, PA may also represent a treatment option for drug-susceptible TB (DS-TB), latent TB infection (LTBI) and non tuberculous mycobacteria (NTM). This narrative review aims to examine current implementation options and future possibilities for PA in the never-ending fight against TB.
Collapse
|
6
|
Das R, Eniyan K, Bajpai U. Computational identification and characterization of antigenic properties of Rv3899c of Mycobacterium tuberculosis and its interaction with human leukocyte antigen (HLA). Immunogenetics 2021; 73:357-368. [PMID: 34228167 DOI: 10.1007/s00251-021-01220-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/26/2021] [Indexed: 10/20/2022]
Abstract
A rise in drug-resistant tuberculosis (TB) cases demands continued efforts towards the discovery and development of drugs and vaccines. Secretory proteins of Mycobacterium tuberculosis (H37Rv) are frequently studied for their antigenicity and their scope as protein subunit vaccines requires further analysis. In this study, Rv3899c of H37Rv emerges as a potential vaccine candidate on its evaluation by several bioinformatics tools. It is a non-toxic, secretory protein with an 'immunoglobulin-like' fold which does not show similarity with a human protein. Through BlastP and MEME suite analysis, we found Rv3899c homologs in several mycobacterial species and its antigenic score (0.54) to compare well with the known immunogens such as ESAT-6 (0.56) and Rv1860 (0.52). Structural examination of Rv3899c predicted ten antigenic peptides, an accessibility profile of the antigenic determinants constituting B cell epitope-rich regions and a low abundance of antigenic regions (AAR) value. Significantly, STRING analysis showed ESX-2 secretion system proteins and antigenic PE/PPE proteins of H37Rv as the interacting partners of Rv3899c. Further, molecular docking predicted Rv3899c to interact with human leukocyte antigen HLA-DRB1*04:01 through its antigenically conserved motif (RAAEQQRLQRIVDAVARQEPRISWAAGLRDDGTT). Interestingly, the binding affinity was observed to increase on citrullination of its Arg1 residue. Taken together, the computational characterization and predictive information suggest Rv3899c to be a promising TB vaccine candidate, which should be validated experimentally.
Collapse
Affiliation(s)
- Ritam Das
- Department of Life Science, Acharya Narendra Dev College (University of Delhi), Govindpuri, New Delhi, 110019, India
| | - Kandasamy Eniyan
- Department of Biomedical Science, Acharya Narendra Dev College (University of Delhi), 110019, Govindpuri, New Delhi, India.,Antibiotic Resistance and Phage Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College (University of Delhi), 110019, Govindpuri, New Delhi, India.
| |
Collapse
|
7
|
Thiyagarajan D, Huck B, Nothdurft B, Koch M, Rudolph D, Rutschmann M, Feldmann C, Hozsa C, Furch M, Besecke KFW, Gieseler RK, Loretz B, Lehr CM. Spray-dried lactose-leucine microparticles for pulmonary delivery of antimycobacterial nanopharmaceuticals. Drug Deliv Transl Res 2021; 11:1766-1778. [PMID: 34101127 PMCID: PMC8236044 DOI: 10.1007/s13346-021-01011-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 12/20/2022]
Abstract
Pulmonary delivery of nanocarriers for novel antimycobacterial compounds is challenging because the aerodynamic properties of nanomaterials are sub-optimal for such purposes. Here, we report the development of dry powder formulations for nanocarriers containing benzothiazinone 043 (BTZ) or levofloxacin (LVX), respectively. The intricacy is to generate dry powder aerosols with adequate aerodynamic properties while maintaining both nanostructural integrity and compound activity until reaching the deeper lung compartments. Microparticles (MPs) were prepared using vibrating mesh spray drying with lactose and leucine as approved excipients for oral inhalation drug products. MP morphologies and sizes were measured using various biophysical techniques including determination of geometric and aerodynamic mean sizes, X-ray diffraction, and confocal and focused ion beam scanning electron microscopy. Differences in the nanocarriers’ characteristics influenced the MPs’ sizes and shapes, their aerodynamic properties, and, hence, also the fraction available for lung deposition. Spay-dried powders of a BTZ nanosuspension, BTZ-loaded silica nanoparticles (NPs), and LVX-loaded liposomes showed promising respirable fractions, in contrast to zirconyl hydrogen phosphate nanocontainers. While the colloidal stability of silica NPs was improved after spray drying, MPs encapsulating either BTZ nanosuspensions or LVX-loaded liposomes showed the highest respirable fractions and active pharmaceutical ingredient loads. Importantly, for the BTZ nanosuspension, biocompatibility and in vitro uptake by a macrophage model cell line were improved even further after spray drying. ![]()
Collapse
Affiliation(s)
- Durairaj Thiyagarajan
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus E8.1, 66123, Saarbrucken, Germany
| | - Benedikt Huck
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus E8.1, 66123, Saarbrucken, Germany.,Department of Pharmacy, Saarland University, 66123, Saarbrucken, Germany
| | - Birgit Nothdurft
- , INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrucken, Germany
| | - Marcus Koch
- , INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrucken, Germany
| | - David Rudolph
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Mark Rutschmann
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Claus Feldmann
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Constantin Hozsa
- Rodos Biotarget GmbH, Feodor-Lynen-Str. 31, 30625, Hannover, Germany.,Siegfried AG Hameln, 31789, Hameln, Germany
| | - Marcus Furch
- Rodos Biotarget GmbH, Feodor-Lynen-Str. 31, 30625, Hannover, Germany.,Biolife Holding GmbH & Co. KG, 69126, Heidelberg, Germany
| | - Karen F W Besecke
- Rodos Biotarget GmbH, Feodor-Lynen-Str. 31, 30625, Hannover, Germany
| | - Robert K Gieseler
- Rodos Biotarget GmbH, Feodor-Lynen-Str. 31, 30625, Hannover, Germany.,Department of Medicine, University Hospital Bochum, 44892, Bochum, Germany
| | - Brigitta Loretz
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus E8.1, 66123, Saarbrucken, Germany.
| | - Claus-Michael Lehr
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus E8.1, 66123, Saarbrucken, Germany.,Department of Pharmacy, Saarland University, 66123, Saarbrucken, Germany
| |
Collapse
|
8
|
Obakiro SB, Kiprop A, Kigondu E, K'Owino I, Odero MP, Manyim S, Omara T, Namukobe J, Owor RO, Gavamukulya Y, Bunalema L. Traditional Medicinal Uses, Phytoconstituents, Bioactivities, and Toxicities of Erythrina abyssinica Lam. ex DC. (Fabaceae): A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5513484. [PMID: 33763144 PMCID: PMC7952165 DOI: 10.1155/2021/5513484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Many studies have been undertaken on the medicinal values of Erythrina abyssinica Lam. ex DC. (Fabaceae). The details, however, are highly fragmented in different journals, libraries, and other publication media. This study was therefore conducted to provide a comprehensive report on its ethnobotany, ethnomedicinal uses, phytochemicals, and the available pharmacological evidence supporting its efficacy and safety in traditional medicine. METHOD We collected data using a PROSPERO registered systematic review protocol on the ethnobotany, phytochemistry, and ethnopharmacology of Erythrina abyssinica from 132 reports that were retrieved from electronic databases. Documented local names, morphology, growth habit and habitat, ethnomedicinal and nonmedicinal uses, diseases treated, parts used, method of preparation and administration, extraction and chemical identity of isolated compounds, and efficacy and toxicity of extracts and isolated compounds were captured. Numerical data were summarized into means, percentages, and frequencies and presented as graphs and tables. RESULTS Erythrina abyssinica is harvested by traditional herbal medicine practitioners in East, Central, and South African communities to prepare herbal remedies for various human and livestock ailments. These include bacterial and fungal infections, tuberculosis, malaria, HIV/AIDS, diarrhea, cancer, meningitis, inflammatory diseases, urinary tract infections, wounds, diabetes mellitus, and skin and soft tissue injuries. Different extracts and phytochemicals from parts of E. abyssinica have been scientifically proven to possess anti-inflammatory, antibacterial, antioxidant, antiplasmodial, antiproliferative, antifungal, antimycobacterial, antidiarrheal, anti-HIV 1, antidiabetic, and antiobesity activities. This versatile pharmacological activity is due to the abundant flavonoids, alkaloids, and terpenoids present in its different parts. CONCLUSION Erythrina abyssinica is an important ethnomedicinal plant in Africa harboring useful pharmacologically active phytochemicals against various diseases with significant efficacies and minimal toxicity to mammalian cells. Therefore, this plant should be conserved and its potential to provide novel molecules against diseases be explored further. Clinical trials that evaluate the efficacy and safety of extracts and isolated compounds from E. abyssinica are recommended.
Collapse
Affiliation(s)
- Samuel Baker Obakiro
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900-30100, Eldoret, Kenya
- Africa Centre of Excellence II in Phytochemicals, Textiles and Renewable Energy (ACE II PTRE), Moi University, P.O. Box 3900-30100, Eldoret, Kenya
| | - Ambrose Kiprop
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900-30100, Eldoret, Kenya
- Africa Centre of Excellence II in Phytochemicals, Textiles and Renewable Energy (ACE II PTRE), Moi University, P.O. Box 3900-30100, Eldoret, Kenya
| | - Elizabeth Kigondu
- Centre of Traditional Medicine and Drug Research, Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| | - Isaac K'Owino
- Department of Pure and Applied Chemistry, Faculty of Science, Masinde-Muliro University, P.O. Box 190-50100, Kakamega, Kenya
- Africa Centre of Excellence II in Phytochemicals, Textiles and Renewable Energy (ACE II PTRE), Moi University, P.O. Box 3900-30100, Eldoret, Kenya
| | - Mark Peter Odero
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900-30100, Eldoret, Kenya
- Africa Centre of Excellence II in Phytochemicals, Textiles and Renewable Energy (ACE II PTRE), Moi University, P.O. Box 3900-30100, Eldoret, Kenya
| | - Scolastica Manyim
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900-30100, Eldoret, Kenya
- Africa Centre of Excellence II in Phytochemicals, Textiles and Renewable Energy (ACE II PTRE), Moi University, P.O. Box 3900-30100, Eldoret, Kenya
| | - Timothy Omara
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900-30100, Eldoret, Kenya
- Africa Centre of Excellence II in Phytochemicals, Textiles and Renewable Energy (ACE II PTRE), Moi University, P.O. Box 3900-30100, Eldoret, Kenya
- Department of Quality Control and Quality Assurance, Product Development Directory, AgroWays Uganda Limited, Plot 34-60, Kyabazinga Way, P.O. Box 1924, Jinja, Uganda
| | - Jane Namukobe
- Department of Chemistry, School of Physical Sciences, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Richard Oriko Owor
- Department of Chemistry, Faculty of Science Education, Busitema University, P.O. Box 236, Tororo, Uganda
| | - Yahaya Gavamukulya
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Lydia Bunalema
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Makerere University College of Health Sciences, P.O. Box 7062, Kampala, Uganda
| |
Collapse
|
9
|
Protective impacts of household-based tuberculosis contact tracing are robust across endemic incidence levels and community contact patterns. PLoS Comput Biol 2021; 17:e1008713. [PMID: 33556077 PMCID: PMC7895355 DOI: 10.1371/journal.pcbi.1008713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 02/19/2021] [Accepted: 01/14/2021] [Indexed: 11/19/2022] Open
Abstract
There is an emerging consensus that achieving global tuberculosis control targets will require more proactive case finding approaches than are currently used in high-incidence settings. Household contact tracing (HHCT), for which households of newly diagnosed cases are actively screened for additional infected individuals is a potentially efficient approach to finding new cases of tuberculosis, however randomized trials assessing the population-level effects of such interventions in settings with sustained community transmission have shown mixed results. One potential explanation for this is that household transmission is responsible for a variable proportion of population-level tuberculosis burden between settings. For example, transmission is more likely to occur in households in settings with a lower tuberculosis burden and where individuals mix preferentially in local areas, compared with settings with higher disease burden and more dispersed mixing. To better understand the relationship between endemic incidence levels, social mixing, and the impact of HHCT, we developed a spatially explicit model of coupled household and community transmission. We found that the impact of HHCT was robust across settings of varied incidence and community contact patterns. In contrast, we found that the effects of community contact tracing interventions were sensitive to community contact patterns. Our results suggest that the protective benefits of HHCT are robust and the benefits of this intervention are likely to be maintained across epidemiological settings.
Collapse
|
10
|
Shah S, Cristopher D, Sharma S, Soniwala M, Chavda J. Inhalable linezolid loaded PLGA nanoparticles for treatment of tuberculosis: Design, development and in vitro evaluation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Benefits of Therapeutic Drug Monitoring of First Line Antituberculosis Drugs. ACTA MEDICA MARTINIANA 2020. [DOI: 10.2478/acm-2020-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Tuberculosis is an airborne infectious disease that remains a huge global health-related issue nowadays. Despite constant approvals of newly developed drugs, the use of first-line antituberculosis medicines seems reasonable in drug-susceptible Mycobacterium tuberculosis strains. Therapeutic drug monitoring presents a useful technique for the determination of plasma drug concentration to adjust appropriate dose regimes. In tuberculosis treatment, therapeutic drug monitoring is aiding clinicians in selecting an optimal therapeutic level, which is essential for the personalisation of therapy. This review is aimed at clarifying the use of therapeutic drug monitoring of the first-line antituberculosis drugs in routine clinical practice.
Collapse
|
12
|
Obakiro SB, Kiprop A, Kowino I, Kigondu E, Odero MP, Omara T, Bunalema L. Ethnobotany, ethnopharmacology, and phytochemistry of traditional medicinal plants used in the management of symptoms of tuberculosis in East Africa: a systematic review. Trop Med Health 2020; 48:68. [PMID: 32818019 PMCID: PMC7427981 DOI: 10.1186/s41182-020-00256-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Many studies on the treatment of tuberculosis (TB) using herbal medicines have been undertaken in recent decades in East Africa. The details, however, are highly fragmented. The purpose of this study was to provide a comprehensive overview of the reported medicinal plants used to manage TB symptoms, and to analyze scientific reports on their effectiveness and safety. METHOD A comprehensive literature search was performed in the major electronic databases regarding medicinal plants used in the management of TB in East Africa. A total of 44 reports were retrieved, and data were collected on various aspects of the medicinal plants such as botanical name, family, local names, part(s) used, method of preparation, efficacy, toxicity, and phytochemistry. The data were summarized into percentages and frequencies which were presented as tables and graphs. RESULTS A total of 195 species of plants belonging to 68 families and 144 genera were identified. Most encountered species were from Fabaceae (42.6%), Lamiaceae (19.1%), Asteraceae (16.2%), and Euphorbiaceae (14.7%) families. Only 36 medicinal plants (18.5%) have been screened for antimycobacterial activity. Out of these, 31 (86.1%) were reported to be bioactive with minimum inhibitory concentrations ranging from 47 to 12,500 μg/ml. Most tested plant extracts were found to have acceptable acute toxicity profiles with cytotoxic concentrations on normal mammalian cells greater than 200 μg/ml. The most commonly reported phytochemicals were flavonoids, terpenoids, alkaloids, saponins, cardiac glycosides, and phenols. Only Tetradenia riparia, Warburgia ugandensis, and Zanthoxylum leprieurii have further undergone isolation and characterization of the pure bioactive compounds. CONCLUSION East Africa has a rich diversity of medicinal plants that have been reported to be effective in the management of symptoms of TB. More validation studies are required to promote the discovery of antimycobacterial drugs and to provide evidence for standardization of herbal medicine use.
Collapse
Affiliation(s)
- Samuel Baker Obakiro
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, P.O. Box 1460, Mbale, Uganda
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900-30100, Eldoret, Kenya
- Africa Centre of Excellence II in Phytochemicals, Textiles and Renewable Energy (ACE II PTRE), Moi University, P.O. Box 3900-30100, Eldoret, Kenya
| | - Ambrose Kiprop
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900-30100, Eldoret, Kenya
- Africa Centre of Excellence II in Phytochemicals, Textiles and Renewable Energy (ACE II PTRE), Moi University, P.O. Box 3900-30100, Eldoret, Kenya
| | - Isaac Kowino
- Africa Centre of Excellence II in Phytochemicals, Textiles and Renewable Energy (ACE II PTRE), Moi University, P.O. Box 3900-30100, Eldoret, Kenya
- Department of Pure and Applied Chemistry, Faculty of Science, Masinde-Muliro University of Science and Technology, P.O. Box 190-50100, Kakamega, Kenya
| | - Elizabeth Kigondu
- Centre of Traditional Medicine and Drug Research, Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| | - Mark Peter Odero
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900-30100, Eldoret, Kenya
- Africa Centre of Excellence II in Phytochemicals, Textiles and Renewable Energy (ACE II PTRE), Moi University, P.O. Box 3900-30100, Eldoret, Kenya
| | - Timothy Omara
- Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, P.O. Box 3900-30100, Eldoret, Kenya
- Africa Centre of Excellence II in Phytochemicals, Textiles and Renewable Energy (ACE II PTRE), Moi University, P.O. Box 3900-30100, Eldoret, Kenya
- Department of Quality Control and Quality Assurance, Product Development Directory, AgroWays Uganda Limited, Plot 34-60, Kyabazinga Way, P.O. Box 1924, Jinja, Uganda
| | - Lydia Bunalema
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Makerere University College of Health Sciences, P.O. Box 7062, Kampala, Uganda
| |
Collapse
|
13
|
Jelińska A, Zając M, Dadej A, Tomczak S, Geszke-Moritz M, Muszalska-Kolos I. Tuberculosis - Present Medication and Therapeutic Prospects. Curr Med Chem 2020; 27:630-656. [PMID: 30457045 DOI: 10.2174/0929867325666181120100025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 10/18/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Tuberculosis (TB) has been present in the history of human civilization since time immemorial and has caused more deaths than any other infectious disease. It is still considered one of the ten most common epidemiologic causes of death in the world. As a transmissible disease, it is initiated by rod-shaped (bacillus) mycobacteria. The management of tuberculosis became possible owing to several discoveries beginning in 1882 with the isolation of the TB bacillus by Robert Koch. The diagnosis of TB was enabled by finding a staining method for TB bacteria identification (1883). It was soon realized that a large-scale policy for the treatment and prevention of tuberculosis was necessary, which resulted in the foundation of International Union against Tuberculosis and Lung Diseases (1902). An antituberculosis vaccine was developed in 1921 and has been in therapeutic use since then. TB treatment regimens have changed over the decades and the latest recommendations are known as Directly Observed Treatment Short-course (DOTS, WHO 1993). METHODS A search of bibliographic databases was performed for peer-reviewed research literature. A focused review question and inclusion criteria were applied. Standard tools were used to assess the quality of retrieved papers. RESULTS A total of 112 papers were included comprising original publications and reviews. The paper overviews anti-TB drugs according to their mechanism of action. The chemical structure, metabolism and unwanted effects of such drugs have been discussed. The most recent treatment regimens and new drugs, including those in clinical trials, are also presented. CONCLUSION Despite a 22% decrease in the tuberculosis fatality rate observed between 2000 and 2015, the disease remains one of the ten prime causes of death worldwide. Increasing bacterial resistance and expensive, prolonged therapies are the main reasons for efforts to find effective drugs or antituberculosis regimens, especially to cure multidrug-resistant tuberculosis.
Collapse
Affiliation(s)
- Anna Jelińska
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medicinal Sciences, Grunwaldzka Str. 6, 60-780, Poznan, Poland
| | - Marianna Zając
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medicinal Sciences, Grunwaldzka Str. 6, 60-780, Poznan, Poland
| | - Adrianna Dadej
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medicinal Sciences, Grunwaldzka Str. 6, 60-780, Poznan, Poland
| | - Szymon Tomczak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medicinal Sciences, Grunwaldzka Str. 6, 60-780, Poznan, Poland
| | - Małgorzata Geszke-Moritz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medicinal Sciences, Grunwaldzka Str. 6, 60-780, Poznan, Poland
| | - Izabela Muszalska-Kolos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medicinal Sciences, Grunwaldzka Str. 6, 60-780, Poznan, Poland
| |
Collapse
|
14
|
Buziashvili M, Mirtskhulava V, Kipiani M, Blumberg HM, Baliashvili D, Magee MJ, Furin JJ, Tukvadze N, Kempker RR. Rates and risk factors for nephrotoxicity and ototoxicity among tuberculosis patients in Tbilisi, Georgia. Int J Tuberc Lung Dis 2020; 23:1005-1011. [PMID: 31615608 DOI: 10.5588/ijtld.18.0626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
SETTING: Treatment of multidrug-resistant tuberculosis (MDR-TB) is lengthy and utilizes second-line anti-TB drugs associated with frequent adverse drug reactions (ADRs).OBJECTIVE: To evaluate the prevalence of and risk factors for ADRs among patients with MDR- and extensively drug-resistant TB (XDR-TB).DESIGN: A retrospective chart review of patients initiating treatment for M/XDR-TB in 2010-2012 in Tbilisi, Georgia.RESULTS: Eighty (54%) and 38 (26%) of 147 patients developed nephrotoxicity per RIFLE (Risk, Injury, Failure, Loss of kidney function, and End-stage kidney disease) classification and ototoxicity, respectively. Twenty-five (17%) patients required permanent interruption of injectables due to an ADR. Median hospital stay, total treatment duration and number of regimen changes were higher among those with nephrotoxicity and/or ototoxicity, compared to those without (P < 0.01). Multinomial logistic regression analysis identified increasing age (per year) as a risk factor for nephrotoxicity (aOR 1.08, 95%CI 1.03-1.12) and for both, nephro- and ototoxicity (aOR 1.11, 95%CI 1.05-1.17). Low baseline creatinine clearance (CrCl) was a significant risk factor for developing nephrotoxicity (aOR 1.05, 95%CI 1.02-1.07).CONCLUSION: Second-line injectable drug-related ADRs are common among M/XDR-TB patients. Patients with increasing age and low baseline CrCl should be monitored closely for injectable-related ADRs. Notably, our findings support WHO's latest recommendations on introduction of injectable free anti-TB treatment regimens.
Collapse
Affiliation(s)
- M Buziashvili
- Department of Scientific Research, National Center for Tuberculosis and Lung Diseases, Tbilisi
| | | | - M Kipiani
- Department of Scientific Research, National Center for Tuberculosis and Lung Diseases, Tbilisi
| | - H M Blumberg
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, Department of Epidemiology and Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA
| | - D Baliashvili
- Department of Epidemiology and Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, Department of Infectious Diseases, National Center for Disease Control and Public Health, Tbilisi, Georgia
| | - M J Magee
- Division of Epidemiology and Biostatistics, School of Public Health, Georgia State University, Atlanta, GA
| | - J J Furin
- Division of Infectious Diseases & HIV Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - N Tukvadze
- Department of Scientific Research, National Center for Tuberculosis and Lung Diseases, Tbilisi
| | - R R Kempker
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA
| |
Collapse
|
15
|
Novel pyrazine based anti-tubercular agents: Design, synthesis, biological evaluation and in silico studies. Bioorg Chem 2020; 96:103610. [DOI: 10.1016/j.bioorg.2020.103610] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/02/2019] [Accepted: 01/20/2020] [Indexed: 12/31/2022]
|
16
|
Plakinamine P, A Steroidal Alkaloid with Bactericidal Activity against Mycobacterium tuberculosis. Mar Drugs 2019; 17:md17120707. [PMID: 31888140 PMCID: PMC6950683 DOI: 10.3390/md17120707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/04/2022] Open
Abstract
Tuberculosis is the leading cause of death due to infectious disease worldwide. There is an urgent need for more effective compounds against this pathogen to control the disease. Investigation of the anti-mycobacterial activity of a deep-water sponge of the genus Plakina revealed the presence of a new steroidal alkaloid of the plakinamine class, which we have given the common name plakinamine P. Its structure is most similar to plakinamine L, which also has an acyclic side chain. Careful dissection of the nuclear magnetic resonance data, collected in multiple solvents, suggests that the dimethyl amino group at the 3 position is in an equatorial rather than axial position unlike previously reported plakinamines. Plakinamine P was bactericidal against M. tuberculosis, and exhibited moderate activity against other mycobacterial pathogens, such as M. abscessus and M. avium. Furthermore, it had low toxicity against J774 macrophages, yielding a selectivity index (SI, or IC50/MIC) of 8.4. In conclusion, this work provides a promising scaffold to the tuberculosis drug discovery pipeline. Future work to determine the molecular target of this compound may reveal a pathway essential for M. tuberculosis survival during infection.
Collapse
|
17
|
Grace AG, Mittal A, Jain S, Tripathy JP, Satyanarayana S, Tharyan P, Kirubakaran R. Shortened treatment regimens versus the standard regimen for drug-sensitive pulmonary tuberculosis. Cochrane Database Syst Rev 2019; 12:CD012918. [PMID: 31828771 PMCID: PMC6953336 DOI: 10.1002/14651858.cd012918.pub2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Tuberculosis causes more deaths than any other infectious disease worldwide, with pulmonary tuberculosis being the most common form. Standard first-line treatment for drug-sensitive pulmonary tuberculosis for six months comprises isoniazid, rifampicin, pyrazinamide, and ethambutol (HRZE) for two months, followed by HRE (in areas of high TB drug resistance) or HR, given over a four-month continuation phase. Many people do not complete this full course. Shortened treatment regimens that are equally effective and safe could improve treatment success. OBJECTIVES To evaluate the efficacy and safety of shortened treatment regimens versus the standard six-month treatment regimen for individuals with drug-sensitive pulmonary tuberculosis. SEARCH METHODS We searched the following databases up to 10 July 2019: the Cochrane Infectious Diseases Group Specialized Register; the Central Register of Controlled Trials (CENTRAL), in the Cochrane Library; MEDLINE (PubMed); Embase; the Latin American Caribbean Health Sciences Literature (LILACS); Science Citation Index-Expanded; Indian Medlars Center; and the South Asian Database of Controlled Clinical Trials. We also searched the World Health Organization (WHO) International Clinical Trials Registry Platform, ClinicalTrials.gov, the Clinical Trials Unit of the International Union Against Tuberculosis and Lung Disease, the UK Medical Research Council Clinical Trials Unit, and the Clinical Trials Registry India for ongoing trials. We checked the reference lists of identified articles to find additional relevant studies. SELECTION CRITERIA We searched for randomized controlled trials (RCTs) or quasi-RCTs that compared shorter-duration regimens (less than six months) versus the standard six-month regimen for people of all ages, irrespective of HIV status, who were newly diagnosed with pulmonary tuberculosis by positive sputum culture or GeneXpert, and with presumed or proven drug-sensitive tuberculosis. The primary outcome of interest was relapse within two years of completion of anti-tuberculosis treatment (ATT). DATA COLLECTION AND ANALYSIS Two review authors independently selected trials, extracted data, and assessed risk of bias for the included trials. For dichotomous outcomes, we used risk ratios (RRs) with 95% confidence intervals (CIs). When appropriate, we pooled data from the included trials in meta-analyses. We assessed the certainty of evidence using the GRADE approach. MAIN RESULTS We included five randomized trials that compared fluoroquinolone-containing four-month ATT regimens versus standard six-month ATT regimens and recruited 5825 adults with newly diagnosed drug-sensitive pulmonary tuberculosis from 14 countries with high tuberculosis transmission in Asia, Africa, and Latin Ameria. Three were multi-country trials that included a total of 572 HIV-positive people. These trials excluded children, pregnant or lactating women, people with serious comorbid conditions, and those with diabetes mellitus. Four trials had multiple treatment arms. Moxifloxacin replaced ethambutol in standard four-month, daily or thrice-weekly ATT regimens in two trials; moxifloxacin replaced isoniazid in four-month ATT regimens in two trials, was given daily in one trial, and was given with rifapentine instead of rifampicin daily for two months and twice weekly for two months in one trial. Moxifloxacin was added to standard ATT drugs for three to four months in one ongoing trial that reported interim results. Gatifloxacin replaced ethambutol in standard ATT regimens given daily or thrice weekly for four months in two trials. Follow-up ranged from 12 months to 24 months after treatment completion for the majority of participants. Moxifloxacin-containing four-month ATT regimens Moxifloxacin-containing four-month ATT regimens that replaced ethambutol or isoniazid probably increased the proportions who experienced relapse after successful treatment compared to standard ATT regimens (RR 3.56, 95% CI 2.37 to 5.37; 2265 participants, 3 trials; moderate-certainty evidence). For death from any cause, there was probably little or no difference between the two regimens (2760 participants, 3 trials; moderate-certainty evidence). Treatment failure was rare, and there was probably little or no difference in proportions with treatment failure between ATT regimens (2282 participants, 3 trials; moderate-certainty evidence). None of the participants given moxifloxacin-containing regimens developed resistance to rifampicin, and these regimens may not increase the risk of acquired resistance (2282 participants, 3 trials; low-certainty evidence). Severe adverse events were probably little or no different with moxifloxacin-containing four-month regimens that replaced ethambutol or isoniazid, and with three- to four-month regimens that augmented standard ATT with moxifloxacin, when compared to standard six-month ATT regimens (3548 participants, 4 trials; moderate-certainty evidence). Gatifloxacin-containing four-month ATT regimens Gatifloxacin-containing four-month ATT regimens that replaced ethambutol probably increased relapse compared to standard six-month ATT regimens in adults with drug-sensitive pulmonary tuberculosis (RR 2.11, 95% CI 1.56 to 2.84; 1633 participants, 2 trials; moderate-certainty evidence). The four-month regimen probably made little or no difference in death compared to the six-month regimen (1886 participants, 2 trials; moderate-certainty evidence). Treatment failure was uncommon and was probably little or no different between the four-month and six-month regimens (1657 participants, 2 trials; moderate-certainty evidence). Acquired resistance to isoniazid or rifampicin was not detected in those given the gatifloxacin-containing shortened ATT regimen, but we are uncertain whether acquired drug resistance is any different in the four- and six-month regimens (429 participants, 1 trial; very low-certainty evidence). Serious adverse events were probably no different with either regimen (1993 participants, 2 trials; moderate-certainty evidence). AUTHORS' CONCLUSIONS Evidence to date does not support the use of shortened ATT regimens in adults with newly diagnosed drug-sensitive pulmonary tuberculosis. Four-month ATT regimens that replace ethambutol with moxifloxacin or gatifloxacin, or isoniazid with moxifloxacin, increase relapse substantially compared to standard six-month ATT regimens, although treatment success and serious adverse events are little or no different. The results of six large ongoing trials will help inform decisions on whether shortened ATT regimens can replace standard six-month ATT regimens. 9 December 2019 Up to date All studies incorporated from most recent search All eligible published studies found in the last search (10 Jul, 2019) were included.
Collapse
Affiliation(s)
- Angeline G Grace
- Sree Balaji Medical College & HospitalDepartment of Community MedicineWorks roadChrompetChennaiIndia600044
| | - Abhenil Mittal
- All India Institute of Medical SciencesDepartment of Internal MedicineNew DelhiIndia
| | - Siddharth Jain
- Postgraduate Institute of Medical Education and Research (PGIMER)Clinical Immunology and Rheumatology Unit, Department of Internal MedicineChandigarhIndia160012
| | - Jaya P Tripathy
- International Union Against Tuberculosis and Lung Disease (The Union), South‐East Asia Regional OfficeCentre for Operational ResearchNew DelhiIndia
| | - Srinath Satyanarayana
- International Union Against Tuberculosis and Lung Disease (The Union), South‐East Asia Regional OfficeNew DelhiIndia
| | - Prathap Tharyan
- Christian Medical CollegeClinical Epidemiology Unit, Prof. BV Moses Centre for Evidence‐Informed Healthcare and Health PolicyCarman Block II FloorCMC Campus, BagayamVelloreTamil NaduIndia632002
| | - Richard Kirubakaran
- Christian Medical CollegeCochrane South Asia, Prof. BV Moses Centre for Evidence‐Informed Healthcare and Health PolicyCarman Block II FloorCMC Campus, BagayamVelloreIndia632002
| | | |
Collapse
|
18
|
Narang R, Kumar R, Kalra S, Nayak SK, Khatik GL, Kumar GN, Sudhakar K, Singh SK. Recent advancements in mechanistic studies and structure activity relationship of FoF1 ATP synthase inhibitor as antimicrobial agent. Eur J Med Chem 2019; 182:111644. [DOI: 10.1016/j.ejmech.2019.111644] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022]
|
19
|
Browne SH, Umlauf A, Tucker AJ, Low J, Moser K, Gonzalez Garcia J, Peloquin CA, Blaschke T, Vaida F, Benson CA. Wirelessly observed therapy compared to directly observed therapy to confirm and support tuberculosis treatment adherence: A randomized controlled trial. PLoS Med 2019; 16:e1002891. [PMID: 31584944 PMCID: PMC6777756 DOI: 10.1371/journal.pmed.1002891] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 08/27/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Excellent adherence to tuberculosis (TB) treatment is critical to cure TB and avoid the emergence of resistance. Wirelessly observed therapy (WOT) is a novel patient self-management system consisting of an edible ingestion sensor (IS), external wearable patch, and paired mobile device that can detect and digitally record medication ingestions. Our study determined the accuracy of ingestion detection in clinical and home settings using WOT and subsequently compared, in a randomized control trial (RCT), confirmed daily adherence to medication in persons using WOT or directly observed therapy (DOT) during TB treatment. METHODS AND FINDINGS We evaluated WOT in persons with active Mycobacterium tuberculosis complex disease using IS-enabled combination isoniazid 150 mg/rifampin 300 mg (IS-Rifamate). Seventy-seven participants with drug-susceptible TB in the continuation phase of treatment, prescribed daily isoniazid 300 mg and rifampin 600 mg, used IS-Rifamate. The primary endpoints of the trial were determination of the positive detection accuracy (PDA) of WOT, defined as the percentage of ingestions detected by WOT administered under direct observation, and subsequently the proportion of prescribed doses confirmed by WOT compared to DOT. Initially participants received DOT and WOT simultaneously for 2-3 weeks to allow calculation of WOT PDA, and the 95% confidence interval (CI) was estimated using the bootstrap method with 10,000 samples. Sixty-one participants subsequently participated in an RCT to compare the proportion of prescribed doses confirmed by WOT and DOT. Participants were randomized 2:1 to receive WOT or maximal in-person DOT. In the WOT arm, if ingestions were not remotely confirmed, the participant was contacted within 24 hours by text or cell phone to provide support. The number of doses confirmed was collected, and nonparametric methods were used for group and individual comparisons to estimate the proportions of confirmed doses in each randomized arm with 95% CIs. Sensitivity analyses, not prespecified in the trial registration, were also performed, removing all nonworking (weekend and public holiday) and held-dose days. Participants, recruited from San Diego (SD) and Orange County (OC) Divisions of TB Control and Refugee Health, were 43.1 (range 18-80) years old, 57% male, 42% Asian, and 39% white with 49% Hispanic ethnicity. The PDA of WOT was 99.3% (CI 98.1; 100). Intent-to-treat (ITT) analysis within the RCT showed WOT confirmed 93% versus 63% DOT (p < 0.001) of daily doses prescribed. Secondary analysis removing all nonworking days (weekends and public holidays) and held doses from each arm showed WOT confirmed 95.6% versus 92.7% (p = 0.31); WOT was non-inferior to DOT (difference 2.8% CI [-1.8%, 9.1%]). One hundred percent of participants preferred using WOT. WOT associated adverse events were <10%, consisting of minor skin rash and pruritus associated with the patch. WOT provided longitudinal digital reporting in near real time, supporting patient self-management and allowing rapid remote identification of those who needed more support to maintain adherence. This study was conducted during the continuation phase of TB treatment, limiting its generalizability to the entire TB treatment course. CONCLUSIONS In terms of accuracy, WOT was equivalent to DOT. WOT was superior to DOT in supporting confirmed daily adherence to TB medications during the continuation phase of TB treatment and was overwhelmingly preferred by participants. WOT should be tested in high-burden TB settings, where it may substantially support low- and middle-income country (LMIC) TB programs. TRIAL REGISTRATION ClinicalTrials.gov NCT01960257.
Collapse
Affiliation(s)
- Sara H. Browne
- University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| | - Anya Umlauf
- University of California San Diego, La Jolla, California, United States of America
| | - Amanda J. Tucker
- University of California San Diego, La Jolla, California, United States of America
| | - Julie Low
- Orange County Health Care Agency, Santa Ana, California, United States of America
| | - Kathleen Moser
- Health and Human Services Agency, San Diego, California, United States of America
| | | | | | | | - Florin Vaida
- University of California San Diego, La Jolla, California, United States of America
| | - Constance A. Benson
- University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
20
|
Watching DNA Replication Inhibitors in Action: Exploiting Time-Lapse Microfluidic Microscopy as a Tool for Target-Drug Interaction Studies in Mycobacterium. Antimicrob Agents Chemother 2019; 63:AAC.00739-19. [PMID: 31383667 PMCID: PMC6761567 DOI: 10.1128/aac.00739-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023] Open
Abstract
Spreading resistance to antibiotics and the emergence of multidrug-resistant strains have become frequent in many bacterial species, including mycobacteria, which are the causative agents of severe diseases and which have profound impacts on global health. Here, we used a system of microfluidics, fluorescence microscopy, and target-tagged fluorescent reporter strains of Mycobacterium smegmatis to perform real-time monitoring of replisome and chromosome dynamics following the addition of replication-altering drugs (novobiocin, nalidixic acid, and griselimycin) at the single-cell level. We found that novobiocin stalled replication forks and caused relaxation of the nucleoid and that nalidixic acid triggered rapid replisome collapse and compaction of the nucleoid, while griselimycin caused replisome instability, with the subsequent overinitiation of chromosome replication and overrelaxation of the nucleoid. In addition to study target-drug interactions, our system also enabled us to observe how the tested antibiotics affected the physiology of mycobacterial cells (i.e., growth, chromosome segregation, etc.).
Collapse
|
21
|
Rani J, Silla Y, Borah K, Ramachandran S, Bajpai U. Repurposing of FDA-approved drugs to target MurB and MurE enzymes in Mycobacterium tuberculosis. J Biomol Struct Dyn 2019; 38:2521-2532. [PMID: 31244382 DOI: 10.1080/07391102.2019.1637280] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) is one amongst the top 10 causes of death worldwide. The growing rise in antibiotic resistance compounded with slow and expensive drug discovery has further aggravated the situation. 'Drug repurposing' is a promising approach where known drugs are examined for a new indication. In the present study, we have attempted to identify drugs that could target MurB and MurE enzymes involved in the muramic acid synthesis pathway (Mur Pathway) in Mtb. FDA-approved drugs from two repositories i.e. Drug Bank (1932 drugs) and e-LEA3D (1852 drugs) were screened against these proteins. Several criteria were applied to study the protein-drug interactions and the consensus drugs were further studied by molecular dynamics (MD) simulation. Our study found Sulfadoxine (-7.3 kcal/mol) and Pyrimethamine (-7.8 kcal/mol) to show stable interaction with MurB while Lifitegrast (-10.5 kcal/mol) and Sildenafil (-9.1 kcal/mol) showed most reliable interaction with MurE. Furthermore, binding free energy (ΔGbind), RMSD and RMSF data and the number of hydrogen bonds corroborated the stability of interactions and hence these drugs for repurposing should be explored further.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jyoti Rani
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, New Delhi, India.,G. N. Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research - Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Yumnam Silla
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, India
| | - Kasmika Borah
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, India
| | - Srinivasan Ramachandran
- G. N. Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research - Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| |
Collapse
|
22
|
Shalini, Johansen MD, Kremer L, Kumar V. Design, synthesis, anti‐mycobacterial and cytotoxic evaluation of C‐4 functionalized 1,8‐naphthalimide‐heterocyclic hydrazide conjugates. Chem Biol Drug Des 2019; 94:1300-1305. [DOI: 10.1111/cbdd.13503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/19/2018] [Accepted: 02/09/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Shalini
- Department of ChemistryGuru Nanak Dev University Amritsar Punjab India
| | - Matt D. Johansen
- Institut de Recherche en Infectiologie de Montpellier (IRIM)CNRSUMR 9004Université de Montpellier Montpellier France
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM)CNRSUMR 9004Université de Montpellier Montpellier France
- INSERM, IRIM Montpellier France
| | - Vipan Kumar
- Department of ChemistryGuru Nanak Dev University Amritsar Punjab India
| |
Collapse
|
23
|
Waman VP, Vedithi SC, Thomas SE, Bannerman BP, Munir A, Skwark MJ, Malhotra S, Blundell TL. Mycobacterial genomics and structural bioinformatics: opportunities and challenges in drug discovery. Emerg Microbes Infect 2019; 8:109-118. [PMID: 30866765 PMCID: PMC6334779 DOI: 10.1080/22221751.2018.1561158] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/03/2018] [Accepted: 12/09/2018] [Indexed: 01/08/2023]
Abstract
Of the more than 190 distinct species of Mycobacterium genus, many are economically and clinically important pathogens of humans or animals. Among those mycobacteria that infect humans, three species namely Mycobacterium tuberculosis (causative agent of tuberculosis), Mycobacterium leprae (causative agent of leprosy) and Mycobacterium abscessus (causative agent of chronic pulmonary infections) pose concern to global public health. Although antibiotics have been successfully developed to combat each of these, the emergence of drug-resistant strains is an increasing challenge for treatment and drug discovery. Here we describe the impact of the rapid expansion of genome sequencing and genome/pathway annotations that have greatly improved the progress of structure-guided drug discovery. We focus on the applications of comparative genomics, metabolomics, evolutionary bioinformatics and structural proteomics to identify potential drug targets. The opportunities and challenges for the design of drugs for M. tuberculosis, M. leprae and M. abscessus to combat resistance are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Asma Munir
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Marcin J. Skwark
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Sony Malhotra
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, UK
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
24
|
Antimycobacterial activity of an anthracycline produced by an endophyte isolated from Amphipterygium adstringens. Mol Biol Rep 2018; 45:2563-2570. [PMID: 30311126 DOI: 10.1007/s11033-018-4424-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/05/2018] [Indexed: 10/28/2022]
Abstract
The search for new compounds effective against Mycobacterium tuberculosis is still a priority in medicine. The evaluation of microorganisms isolated from non-conventional locations offers an alternative to look for new compounds with antimicrobial activity. Endophytes have been successfully explored as source of bioactive compounds. In the present work we studied the nature and antimycobacterial activity of a compound produced by Streptomyces scabrisporus, an endophyte isolated from the medicinal plant Amphipterygium adstringens. The active compound was detected as the main secondary metabolite present in organic extracts of the streptomycete and identified by NMR spectroscopic data as steffimycin B (StefB). This anthracycline displayed a good activity against M. tuberculosis H37Rv ATCC 27294 strain, with MIC100 and SI values of 7.8 µg/mL and 6.42, respectively. When tested against the rifampin mono resistant M. tuberculosis Mtb-209 pathogen strain, a better activity was observed (MIC100 of 3.9 µg/mL), suggesting a different action mechanism of StefB from that of rifampin. Our results supported the endophyte Streptomyces scabrisporus as a good source of StefB for tuberculosis treatment, as this anthracycline displayed a strong bactericidal effect against M. tuberculosis, one of the oldest and more dangerous human pathogens causing human mortality.
Collapse
|
25
|
Smith PW, Zuccotto F, Bates RH, Martinez-Martinez MS, Read KD, Peet C, Epemolu O. Pharmacokinetics of β-Lactam Antibiotics: Clues from the Past To Help Discover Long-Acting Oral Drugs in the Future. ACS Infect Dis 2018; 4:1439-1447. [PMID: 30141902 PMCID: PMC6189874 DOI: 10.1021/acsinfecdis.8b00160] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Indexed: 01/03/2023]
Abstract
β-Lactams represent perhaps the most important class of antibiotics yet discovered. However, despite many years of active research, none of the currently approved drugs in this class combine oral activity with long duration of action. Recent developments suggest that new β-lactam antibiotics with such a profile would have utility in the treatment of tuberculosis. Consequently, the historical β-lactam pharmacokinetic data have been compiled and analyzed to identify possible directions and drug discovery strategies aimed toward new β-lactam antibiotics with this profile.
Collapse
Affiliation(s)
| | - Fabio Zuccotto
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, School
of Life Sciences, University of Dundee, Dow Street, Dundee. DDI 5EH, U.K.
| | - Robert H. Bates
- Global
Health R&D, GlaxoSmithKline, Calle Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | | | - Kevin D. Read
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, School
of Life Sciences, University of Dundee, Dow Street, Dundee. DDI 5EH, U.K.
| | - Caroline Peet
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, School
of Life Sciences, University of Dundee, Dow Street, Dundee. DDI 5EH, U.K.
| | - Ola Epemolu
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, School
of Life Sciences, University of Dundee, Dow Street, Dundee. DDI 5EH, U.K.
| |
Collapse
|
26
|
Jee B, Kumar S, Yadav R, Singh Y, Kumar A, Sharma N. Ursolic acid and carvacrol may be potential inhibitors of dormancy protein small heat shock protein16.3 of Mycobacterium tuberculosis. J Biomol Struct Dyn 2018; 36:3434-3443. [PMID: 28984500 DOI: 10.1080/07391102.2017.1389305] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 09/17/2017] [Indexed: 12/16/2022]
Abstract
Small heat shock protein16.3 (sHSP16.3) is a crucial protein for survival of Mycobacterium tuberculosis (MTB) in its host. Besides, this protein acts as a molecular chaperone during stress and is indispensable for MTB's growth, virulence and cell-wall thickening. sHSP16.3 is also a promising candidate for vaccine, serodiagnosis and drug design as well. In the present study, we have targeted sHSP16.3 with two phytochemicals, namely ursolic acid and carvacrol using in silico approach. Molecular docking analysis showed that both phytochemicals (ursolic acid and carvacrol) have docked with sHSP16.3 and shown tendency to inhibit the function of this vital protein of MTB. In addition, both compounds have exhibited strong compatibility with sHSP16.3 during whole 60 ns duration of molecular dynamics simulation. Further, the molecular mechanic/generalized Born/Poisson-Boltzmann surface area (MM/G/P/BSA) free energies were calculated which showed that both phytocompounds have stable and favourable binding energies causing strong binding with binding site of sHSP16.3. Taking together, the data of present study suggest that both phytocompounds may be potential inhibitor of sHSP16.3 of MTB and a best alternative to standard anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Babban Jee
- a Department of Health Research, Ministry of Health and Family Welfare , Government of India , New Delhi 110001 , India
| | - Sanjay Kumar
- b Molecular and Structural Biology Division , Central Drug Research Institute , Lucknow 226031 , India
| | - Renu Yadav
- c Department of Biotechnology , Acharya Nagarjuna University , Guntur 522510 , India
| | - Yogesh Singh
- d Institute of Physiology I , Eberhard-Karls-Tübingen University , Gmelinstraße5, Tübingen D-72076 , Germany
| | - Anuj Kumar
- e Advance Center for Computational and Applied Biotechnology, Uttarakhand Council for Biotechnology (UCB) , Dehradun 248007 , India
| | - Naveen Sharma
- a Department of Health Research, Ministry of Health and Family Welfare , Government of India , New Delhi 110001 , India
| |
Collapse
|
27
|
Olayanju O, Limberis J, Esmail A, Oelofse S, Gina P, Pietersen E, Fadul M, Warren R, Dheda K. Long-term bedaquiline-related treatment outcomes in patients with extensively drug-resistant tuberculosis from South Africa. Eur Respir J 2018; 51:13993003.00544-2018. [PMID: 29700106 DOI: 10.1183/13993003.00544-2018] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/04/2018] [Indexed: 01/08/2023]
Abstract
Optimal treatment regimens for patients with extensively drug-resistant tuberculosis (XDR-TB) remain unclear. Long-term prospective outcome data comparing XDR-TB regimens with and without bedaquiline from an endemic setting are lacking.We prospectively followed-up 272 South African patients (49.3% HIV-infected; median CD4 count 169 cells·µL-1) with newly diagnosed XDR-TB between 2008 and 2017. Outcomes were compared between those who had not received bedaquiline (pre-2013; n=204) and those who had (post-2013; n=68; 80.9% received linezolid in addition).The 24-month favourable outcome rate was substantially better in the bedaquiline versus the non-bedaquiline group (66.2% (45 out of 68) versus 13.2% (27 out of 204); p<0.001). In addition, the bedaquiline group exhibited reduced 24-month rates of treatment failure (5.9% versus 26.0%; p<0.001) and default (1.5% versus 15.2%; p<0.001). However, linezolid was withdrawn in 32.7% (18 out of 55) of patients in the bedaquiline group because of adverse events. Admission weight >50 kg, an increasing number of anti-TB drugs and bedaquiline were independent predictors of survival (the bedaquiline survival effect remained significant in HIV-infected persons, irrespective of CD4 count).XDR-TB patients receiving a backbone of bedaquiline and linezolid had substantially better favourable outcomes compared to those not using these drugs. These data inform the selection of XDR-TB treatment regimens and roll-out of newer drugs in TB-endemic countries.
Collapse
Affiliation(s)
- Olatunde Olayanju
- Lung Infection and Immunity Unit, Division of Pulmonology, Dept of Medicine, University of Cape Town, Cape Town, South Africa
| | - Jason Limberis
- Lung Infection and Immunity Unit, Division of Pulmonology, Dept of Medicine, University of Cape Town, Cape Town, South Africa
| | - Aliasgar Esmail
- Lung Infection and Immunity Unit, Division of Pulmonology, Dept of Medicine, University of Cape Town, Cape Town, South Africa
| | - Suzette Oelofse
- Lung Infection and Immunity Unit, Division of Pulmonology, Dept of Medicine, University of Cape Town, Cape Town, South Africa
| | - Phindile Gina
- Lung Infection and Immunity Unit, Division of Pulmonology, Dept of Medicine, University of Cape Town, Cape Town, South Africa
| | - Elize Pietersen
- Lung Infection and Immunity Unit, Division of Pulmonology, Dept of Medicine, University of Cape Town, Cape Town, South Africa
| | - Mohammed Fadul
- Lung Infection and Immunity Unit, Division of Pulmonology, Dept of Medicine, University of Cape Town, Cape Town, South Africa
| | - Rob Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, US/SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Depts of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Keertan Dheda
- Lung Infection and Immunity Unit, Division of Pulmonology, Dept of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
28
|
Kerry RG, Gouda S, Sil B, Das G, Shin HS, Ghodake G, Patra JK. Cure of tuberculosis using nanotechnology: An overview. J Microbiol 2018; 56:287-299. [PMID: 29721825 DOI: 10.1007/s12275-018-7414-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 02/03/2023]
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis (TB), a major health issue of the present era. The bacterium inhabits the host macrophage and other immune cells where it modulates the lysosome trafficking protein, hinders the formation of phagolysosome, and blocks the TNF receptor-dependent apoptosis of host macrophage/monocytes. Other limitations such as resistance to and low bioavailability and bio-distribution of conventional drugs aid to their high virulence and human mortality. This review highlights the use of nanotechnology-based approaches for drug formulation and delivery which could open new avenues to limit the pathogenicity of tuberculosis. Moreover phytochemicals, such as alkaloids, phenols, saponins, steroids, tannins, and terpenoids, extracted from terrestrial plants and mangroves seem promising against M. tuberculosis through different molecular mechanisms. Further understanding of the genomics and proteomics of this pathogenic microbe could also help overcome various research gaps in the path of developing a suitable therapy against tuberculosis.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, AMIT College, Khurda, 752057, Odisha, India
| | - Sushanto Gouda
- Amity Institute of Wildlife Science, Amity University, Noida, 201313, Uttar Pradesh, India
| | - Bikram Sil
- Department of Biotechnology, AMIT College, Khurda, 752057, Odisha, India
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| | - Gajanan Ghodake
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| |
Collapse
|
29
|
Evidence for Inhibition of Topoisomerase 1A by Gold(III) Macrocycles and Chelates Targeting Mycobacterium tuberculosis and Mycobacterium abscessus. Antimicrob Agents Chemother 2018; 62:AAC.01696-17. [PMID: 29483110 DOI: 10.1128/aac.01696-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/08/2018] [Indexed: 01/15/2023] Open
Abstract
Mycobacterium tuberculosis and the fast-growing species Mycobacterium abscessus are two important human pathogens causing persistent pulmonary infections that are difficult to cure and require long treatment times. The emergence of drug-resistant M. tuberculosis strains and the high level of intrinsic resistance of M. abscessus call for novel drug scaffolds that effectively target both pathogens. In this study, we evaluated the activity of bis(pyrrolide-imine) gold(III) macrocycles and chelates, originally designed as DNA intercalators capable of targeting human topoisomerase types I and II (Topo1 and Topo2), against M. abscessus and M. tuberculosis We identified a total of 5 noncytotoxic compounds active against both mycobacterial pathogens under replicating in vitro conditions. We chose one of these hits, compound 14, for detailed analysis due to its potent bactericidal mode of inhibition and scalable synthesis. The clinical relevance of this compound was demonstrated by its ability to inhibit a panel of diverse M. tuberculosis and M. abscessus clinical isolates. Prompted by previous data suggesting that compound 14 may target topoisomerase/gyrase enzymes, we demonstrated that it lacked cross-resistance with fluoroquinolones, which target the M. tuberculosis gyrase. In vitro enzyme assays confirmed the potent activity of compound 14 against bacterial topoisomerase 1A (Topo1) enzymes but not gyrase. Novel scaffolds like compound 14 with potent, selective bactericidal activity against M. tuberculosis and M. abscessus that act on validated but underexploited targets like Topo1 represent a promising starting point for the development of novel therapeutics for infections by pathogenic mycobacteria.
Collapse
|
30
|
Keri RS, Pandule SS, Budagumpi S, Nagaraja BM. Quinoxaline and quinoxaline-1,4-di-N
-oxides: An emerging class of antimycobacterials. Arch Pharm (Weinheim) 2018; 351:e1700325. [DOI: 10.1002/ardp.201700325] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/27/2018] [Accepted: 03/06/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Rangappa S. Keri
- Centre for Nano and Material Sciences, Jain University; Jain Global Campus; Bangalore India
| | | | - Srinivasa Budagumpi
- Centre for Nano and Material Sciences, Jain University; Jain Global Campus; Bangalore India
| | - Bhari M. Nagaraja
- Centre for Nano and Material Sciences, Jain University; Jain Global Campus; Bangalore India
| |
Collapse
|
31
|
Whole-Cell Screen of Fragment Library Identifies Gut Microbiota Metabolite Indole Propionic Acid as Antitubercular. Antimicrob Agents Chemother 2018; 62:AAC.01571-17. [PMID: 29229639 PMCID: PMC5826148 DOI: 10.1128/aac.01571-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/29/2017] [Indexed: 12/22/2022] Open
Abstract
Several key antituberculosis drugs, including pyrazinamide, with a molecular mass of 123.1 g/mol, are smaller than the usual drug-like molecules. Current drug discovery efforts focus on the screening of larger compounds with molecular masses centered around 400 to 500 g/mol. Fragment (molecular mass < 300 g/mol) libraries have not been systematically explored for antitubercular activity. Here we screened a collection of 1,000 fragments, present in the Maybridge Ro3 library, for whole-cell activity against Mycobacterium tuberculosis. Twenty-nine primary hits showed dose-dependent growth inhibition equal to or better than that of pyrazinamide. The most potent hit, indole propionic acid [IPA; 3-(1H-indol-3-yl)propanoic acid], a metabolite produced by the gut microbiota, was profiled in vivo. The molecule was well tolerated in mice and showed adequate pharmacokinetic properties. In a mouse model of acute M. tuberculosis infection, IPA reduced the bacterial load in the spleen 7-fold. Our results suggest that IPA should be evaluated as an add-on to current regimens and that fragment libraries should be further explored to identify antimycobacterial lead candidates.
Collapse
|
32
|
Riccardi N, Giannini B, Borghesi ML, Taramasso L, Cattaneo E, Cenderello G, Toscanini F, Giacomini M, Pontali E, Cassola G, Viscoli C, Di Biagio A. Time to change the single-centre approach to management of patients with tuberculosis: a novel network platform with automatic data import and data sharing. ERJ Open Res 2018; 4:00108-2017. [PMID: 29410957 PMCID: PMC5795190 DOI: 10.1183/23120541.00108-2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/07/2017] [Indexed: 12/22/2022] Open
Abstract
Time to change the single-centre approach to TB http://ow.ly/lCeM30hBcbB.
Collapse
Affiliation(s)
- Niccolò Riccardi
- University of Genoa, Genoa, Italy.,Dept of Infectious Diseases, Ospedale Policlinico San Martino, Genoa, Italy
| | - Barbara Giannini
- Dept of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genoa, Genoa, Italy
| | - Maria Lucia Borghesi
- University of Genoa, Genoa, Italy.,Dept of Infectious Diseases, Ospedale Policlinico San Martino, Genoa, Italy
| | - Lucia Taramasso
- University of Genoa, Genoa, Italy.,Dept of Infectious Diseases, Ospedale Policlinico San Martino, Genoa, Italy
| | - Elena Cattaneo
- University of Genoa, Genoa, Italy.,Dept of Infectious Diseases, Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Federica Toscanini
- Clinic of Infectious Diseases, Ospedale Policlinico San Martino, Genoa, Italy
| | - Mauro Giacomini
- Dept of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genoa, Genoa, Italy.,Infectious Diseases, Ospedali Galliera, Genoa, Italy.,Clinic of Infectious Diseases, Ospedale Policlinico San Martino, Genoa, Italy.,Healthropy, Savona, Italy
| | | | | | - Claudio Viscoli
- University of Genoa, Genoa, Italy.,Dept of Infectious Diseases, Ospedale Policlinico San Martino, Genoa, Italy.,Clinic of Infectious Diseases, Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonio Di Biagio
- Clinic of Infectious Diseases, Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
33
|
Grace AG, Mittal A, Jain S, Tripathy JP, Satyanarayana S, Tharyan P, Kirubakaran R. Shortened treatment regimens versus the standard regimen for drug-sensitive pulmonary tuberculosis. Hippokratia 2018. [DOI: 10.1002/14651858.cd012918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Angeline G Grace
- National Institute for Research in Tuberculosis; Department of Clinical Research; No 1 Mayor Sathyamoorthy Road Chetpet Chennai India 600031
| | - Abhenil Mittal
- All India Institute of Medical Sciences; Department of Internal Medicine; New Delhi India
| | - Siddharth Jain
- All India Institute of Medical Sciences; Department of Internal Medicine; New Delhi India
| | - Jaya P Tripathy
- International Union Against Tuberculosis and Lung Disease (The Union), South-East Asia Regional Office; New Delhi India
| | - Srinath Satyanarayana
- International Union Against Tuberculosis and Lung Disease (The Union), South-East Asia Regional Office; New Delhi India
| | - Prathap Tharyan
- Christian Medical College; Cochrane South Asia, Prof. BV Moses Center for Evidence-Informed Health Care and Health Policy; Carman Block II Floor CMC Campus, Bagayam Vellore Tamil Nadu India 632002
| | - Richard Kirubakaran
- Christian Medical College; Cochrane South Asia, Prof. BV Moses Center for Evidence-Informed Health Care and Health Policy; Carman Block II Floor CMC Campus, Bagayam Vellore Tamil Nadu India 632002
| |
Collapse
|
34
|
Neoteric advancement in TB drugs and an overview on the anti-tubercular role of peptides through computational approaches. Microb Pathog 2017; 114:80-89. [PMID: 29174699 DOI: 10.1016/j.micpath.2017.11.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 11/21/2022]
Abstract
Tuberculosis (TB) is a devastating threat to human health whose treatment without the emergence of drug resistant Mycobacterium tuberculosis (M. tuberculosis) is the million-dollar question at present. The pathogenesis of M. tuberculosis has been extensively studied which represents unique defence strategies by infecting macrophages. Several anti-tubercular drugs with varied mode of action and administration from diversified sources have been used for the treatment of TB that later contributed to the emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB). However, few of potent anti-tubercular drugs are scheduled for clinical trials status in 2017-2018. Peptides of varied origins such as human immune cells and non-immune cells, bacteria, fungi, and venoms have been widely investigated as anti-tubercular agents for the replacement of existing anti-tubercular drugs in future. In the present review, we spotlighted not only on the mechanisms of action and mode of administration of currently available anti-tubercular drugs but also the recent comprehensive report of World Health Organization (WHO) on TB epidemic, diagnosis, prevention, and treatment. The major excerpt of the study also inspects the direct contribution of different computational tools during drug designing strategies against M. tuberculosis in order to grasp the interplay between anti-tubercular peptides and targeted bacterial protein. The potentiality of some of these anti-tubercular peptides as therapeutic agents unlocks a new portal for achieving the goal of end TB strategy.
Collapse
|
35
|
Furin J, Lessem E, Cox V. Recommending prolonged bedaquiline use for the treatment of highly resistant strains of tuberculosis. Eur Respir J 2017; 50:50/5/1701552. [PMID: 29122918 DOI: 10.1183/13993003.01552-2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 08/11/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Jennifer Furin
- Dept of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Erica Lessem
- HIV/TB Project, Treatment Action Group, New York, NY, USA
| | - Vivian Cox
- Center for Infectious Disease Epidemiology and Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
36
|
Zheng C, Hu X, Zhao L, Hu M, Gao F. Clinical and pharmacological hallmarks of rifapentine's use in diabetes patients with active and latent tuberculosis: do we know enough? DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2957-2968. [PMID: 29066867 PMCID: PMC5644564 DOI: 10.2147/dddt.s146506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Rifapentine is a rifamycin derivate approved by the US Food and Drug Administration in 1998 for the treatment of active, drug-susceptible tuberculosis (TB). In 2014, rifapentine was approved for the treatment of latent TB infection in patients at high risk of progression to active disease and is currently under evaluation by the European Medicines Agency. Expanding indications of rifapentine largely affect diabetes patients, since about one-third of them harbor latent TB. Clinical consequences of rifapentine use in this population and potentially harmful interactions with hypoglycemic agents are widely underexplored and generally considered similar to the ones of rifampicin. Indeed, rifapentine too may decrease blood levels of many oral antidiabetics and compete with them for protein-binding sites and/or transporters. However, the two drugs differ in protein-binding degree, the magnitude of cytochrome P450 induction and auto-induction, the degree of renal elimination, and so on. Rifapentine seems to be more suitable for use in diabetes patients with renal impairment, owing to the fact that it does not cause renal toxicity, and it is eliminated via kidneys in smaller proportions than rifampicin. On the other hand, there are no data related to rifapentine use in patients >65 years, and hypoalbuminemia associated with diabetic kidney disease may affect a free fraction of rifapentine to a greater extent than that of rifampicin. Until more pharmacokinetic information and information on the safety of rifapentine use in diabetic patients and drug–drug interactions are available, diabetes in TB patients treated with rifapentine should be managed with insulin analogs, and glucose and rifapentine plasma levels should be closely monitored.
Collapse
Affiliation(s)
- Chunlan Zheng
- Department of Internal Medicine - Section 5, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Control Institute)
| | - Xiufen Hu
- Department of Paediatrics, Tongji Hospital
| | - Li Zhao
- Department of Internal Medicine - Section 5, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Control Institute)
| | - Minhui Hu
- Department of Internal Medicine - Section 5, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Control Institute)
| | - Feng Gao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
37
|
Papadopoulou MV, Bloomer WD, Rosenzweig HS, Kaiser M. The antitrypanosomal and antitubercular activity of some nitro(triazole/imidazole)-based aromatic amines. Eur J Med Chem 2017; 138:1106-1113. [DOI: 10.1016/j.ejmech.2017.07.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/23/2017] [Accepted: 07/24/2017] [Indexed: 01/22/2023]
|
38
|
Buchieri MV, Cimino M, Rebollo-Ramirez S, Beauvineau C, Cascioferro A, Favre-Rochex S, Helynck O, Naud-Martin D, Larrouy-Maumus G, Munier-Lehmann H, Gicquel B. Nitazoxanide Analogs Require Nitroreduction for Antimicrobial Activity in Mycobacterium smegmatis. J Med Chem 2017; 60:7425-7433. [PMID: 28846409 DOI: 10.1021/acs.jmedchem.7b00726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we aimed to decipher the natural resistance mechanisms of mycobacteria against novel compounds isolated by whole-cell-based high-throughput screening (HTS). We identified active compounds using Mycobacterium aurum. Further analyses were performed to determine the resistance mechanism of M. smegmatis against one hit, 3-bromo-N-(5-nitrothiazol-2-yl)-4-propoxybenzamide (3), which turned out to be an analog of the drug nitazoxanide (1). We found that the repression of the gene nfnB coding for the nitroreductase NfnB was responsible for the natural resistance of M. smegmatis against 3. The overexpression of nfnB resulted in sensitivity of M. smegmatis to 3. This compound must be metabolized into hydroxylamine intermediate for exhibiting antibacterial activity. Thus, we describe, for the first time, the activity of a mycobacterial nitroreductase against 1 analogs, highlighting the differences in the metabolism of nitro compounds among mycobacterial species and emphasizing the potential of nitro drugs as antibacterials in various bacterial species.
Collapse
Affiliation(s)
- Maria V Buchieri
- Unité de Génétique Mycobactérienne, Institut Pasteur , 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Mena Cimino
- Unité de Génétique Mycobactérienne, Institut Pasteur , 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Sonia Rebollo-Ramirez
- MRC Centre for Molecular Bacteriology & Infection, Imperial College London , London SW7 2AZ, United Kingdom
| | - Claire Beauvineau
- PSL Research University,CNRS, INSERM, Chemical Library, Institut Curie UMR9187/U1196, UMR3666/U1143 , 91405 Orsay Cedex, France
| | - Alessandro Cascioferro
- Unité de Pathogénomique Mycobactérienne Intégrée, Institut Pasteur , 75724 Paris Cedex 15, France
| | - Sandrine Favre-Rochex
- Unité de Génétique Mycobactérienne, Institut Pasteur , 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Olivier Helynck
- Unité de Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, Institut Pasteur , 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Delphine Naud-Martin
- PSL Research University,CNRS, INSERM, Chemical Library, Institut Curie UMR9187/U1196, UMR3666/U1143 , 91405 Orsay Cedex, France
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology & Infection, Imperial College London , London SW7 2AZ, United Kingdom
| | - Hélène Munier-Lehmann
- Unité de Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, Institut Pasteur , 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Brigitte Gicquel
- Unité de Génétique Mycobactérienne, Institut Pasteur , 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
39
|
Muniyandi M, Ramachandran R. Current and developing therapies for the treatment of multi drug resistant tuberculosis (MDR-TB) in India. Expert Opin Pharmacother 2017; 18:1301-1309. [PMID: 28786691 DOI: 10.1080/14656566.2017.1365837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION India accounts for 25% of the global burden of MDR-TB. In 2016, the India's Revised National TB Control Programme reported a success rate of 46% among 19,298 MDR-TB patients treated under the programme. This suboptimal treatment outcome warrants an urgent need for newer drugs and newer regimens in the treatment of MDR-TB. India requires new shorter, cheap, safe and effective anti-TB regimen to treat MDR-TB. Areas covered: We used different search strategies to obtain relevant literature from PubMed, on Indian experiences of developing therapies for the treatment of MDR-TB. Further information from the Central TB Division Government of India on programmatic management of resistant TB was collected. Expert opinion: In 2016 WHO recommended a shorter MDR-TB regimen of 9-12 months (4-6 Km-Mfx-Pto-Cfz-Z-Hhigh-dose-E /5 Mfx-Cfz-Z-E) may be used instead of longer regimens. Currently, conducting trials involving newer drugs such as bedaquiline, have been proposed. The regimen will be of a shorter duration containing isoniazid, prothionamide, bedaquiline, levofloxacin, ciprofloxacin, ethambutol and pyrazinamide (STREAM regimen). To successfully treat MDR-TB one requires new classes of antibiotic and newer diagnostic tests. This represents an enormous financial and technical challenge to the programme managers and policy makers.
Collapse
|
40
|
Selective Killing of Dormant Mycobacterium tuberculosis by Marine Natural Products. Antimicrob Agents Chemother 2017; 61:AAC.00743-17. [PMID: 28607021 DOI: 10.1128/aac.00743-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/02/2017] [Indexed: 12/17/2022] Open
Abstract
The dormant phenotype acquired by Mycobacterium tuberculosis during infection poses a major challenge in disease treatment, since these bacilli show tolerance to front-line drugs. Therefore, it is imperative to find novel compounds that effectively kill dormant bacteria. By screening 4,400 marine natural product samples against dual-fluorescent M. tuberculosis under both replicating and nonreplicating conditions, we have identified compounds that are selectively active against dormant M. tuberculosis This validates our strategy of screening all compounds in both assays as opposed to using the dormancy model as a secondary screen. Bioassay-guided deconvolution enabled the identification of unique pharmacophores active in each screening model. To confirm the activity of samples against dormant M. tuberculosis, we used a luciferase reporter assay and enumerated CFU. The structures of five purified active compounds were defined by nuclear magnetic resonance (NMR) and mass spectrometry. We identified two lipid compounds with potent activity toward dormant and actively growing M. tuberculosis strains. One of these was commercially obtained and showed similar activity against M. tuberculosis in both screening models. Furthermore, puupehenone-like molecules were purified with potent and selective activity against dormant M. tuberculosis In conclusion, we have identified and characterized antimycobacterial compounds from marine organisms with novel activity profiles which appear to target M. tuberculosis pathways that are conditionally essential for dormancy survival.
Collapse
|
41
|
Zhan L, Tang J, Sun M, Qin C. Animal Models for Tuberculosis in Translational and Precision Medicine. Front Microbiol 2017; 8:717. [PMID: 28522990 PMCID: PMC5415616 DOI: 10.3389/fmicb.2017.00717] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/06/2017] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is a health threat to the global population. Anti-TB drugs and vaccines are key approaches for TB prevention and control. TB animal models are basic tools for developing biomarkers of diagnosis, drugs for therapy, vaccines for prevention and researching pathogenic mechanisms for identification of targets; thus, they serve as the cornerstone of comparative medicine, translational medicine, and precision medicine. In this review, we discuss the current use of TB animal models and their problems, as well as offering perspectives on the future of these models.
Collapse
Affiliation(s)
- Lingjun Zhan
- Key Laboratory of Human Disease Comparative Medicine, Ministry of HealthBeijing, China.,Institution of Laboratory Animal Sciences, Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectiousBeijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijing, China.,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese MedicineBeijing, China
| | - Jun Tang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of HealthBeijing, China.,Institution of Laboratory Animal Sciences, Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectiousBeijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijing, China.,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese MedicineBeijing, China
| | - Mengmeng Sun
- Key Laboratory of Human Disease Comparative Medicine, Ministry of HealthBeijing, China.,Institution of Laboratory Animal Sciences, Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectiousBeijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijing, China.,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese MedicineBeijing, China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Ministry of HealthBeijing, China.,Institution of Laboratory Animal Sciences, Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectiousBeijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijing, China.,Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese MedicineBeijing, China
| |
Collapse
|
42
|
Lamb GS, Starke JR. Tuberculosis in Infants and Children. Microbiol Spectr 2017; 5:10.1128/microbiolspec.tnmi7-0037-2016. [PMID: 28387193 PMCID: PMC11687478 DOI: 10.1128/microbiolspec.tnmi7-0037-2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Indexed: 12/17/2022] Open
Abstract
One million children develop tuberculosis disease each year, and 210,000 die from complications of tuberculosis. Childhood tuberculosis is very different from adult tuberculosis in epidemiology, clinical and radiographic presentation, and treatment. This review highlights the many unique features of childhood tuberculosis, with special emphasis on very young children and adolescents, who are most likely to develop disease after infection has occurred.
Collapse
|
43
|
da Silva PB, Campos DL, Ribeiro CM, da Silva IC, Pavan FR. New antimycobacterial agents in the pre-clinical phase or beyond: recent advances in patent literature (2001-2016). Expert Opin Ther Pat 2016; 27:269-282. [PMID: 27796146 DOI: 10.1080/13543776.2017.1253681] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Tuberculosis, an infectious disease, has caused more deaths worldwide than any other single infectious disease, killing more than 1.5 million people each year; equating to 4,100 deaths a day. In the past 60 years, no new drugs have been added to the first line regimen, in spite of the fact that thousands of papers have been published on drugs against tuberculosis and hundreds of drugs have received patents as new potential products. Thus, there is undoubtedly an urgent need for the deployment of new effective drugs against tuberculosis. Areas covered: This review brings to the reader the opportunity to understand the chemical and biological characteristics of all patented anti-tuberculosis drugs in North America, Europe, Japan, and Russia. The 116 patents discussed here concern new molecules in the early or advanced phase of development in the last 16 years. Expert opinion: Of all 116 patents, only one developed drug, bedaquiline, is used, and then, only in specific cases. Another three drugs are in clinical studies. However, many other compounds, for which there are in vitro and in vivo studies, seem to fulfil the requisite criteria to be a new anti-tuberculosis agent. However, why are they not in use? Why were so many studies interrupted? Why is there no more news for many of these drugs?
Collapse
Affiliation(s)
- Patricia Bento da Silva
- a Faculdade de Ciências Farmacêuticas , UNESP - Univ. Estadual Paulista, Campus Araraquara , Araraquara , São Paulo , Brazil
| | - Débora Leite Campos
- a Faculdade de Ciências Farmacêuticas , UNESP - Univ. Estadual Paulista, Campus Araraquara , Araraquara , São Paulo , Brazil
| | - Camila Maríngolo Ribeiro
- a Faculdade de Ciências Farmacêuticas , UNESP - Univ. Estadual Paulista, Campus Araraquara , Araraquara , São Paulo , Brazil
| | - Isabel Cristiane da Silva
- a Faculdade de Ciências Farmacêuticas , UNESP - Univ. Estadual Paulista, Campus Araraquara , Araraquara , São Paulo , Brazil
| | - Fernando Rogério Pavan
- a Faculdade de Ciências Farmacêuticas , UNESP - Univ. Estadual Paulista, Campus Araraquara , Araraquara , São Paulo , Brazil
| |
Collapse
|
44
|
Devaleenal Daniel B, Ramachandran G, Swaminathan S. The challenges of pharmacokinetic variability of first-line anti-TB drugs. Expert Rev Clin Pharmacol 2016; 10:47-58. [PMID: 27724114 DOI: 10.1080/17512433.2017.1246179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Inter-individual variations in the pharmacokinetics (PK) of anti-TB drugs are known to occur, which could have important therapeutic implications in patient management. Areas covered: We compiled factors responsible for PK variability of anti-TB drugs reported from different settings that would give a better understanding about the challenges of PK variability of anti-TB medications. We searched PubMed data base and Google scholar from 1976 to the present using the key words 'Pharmacokinetics', 'pharmacokinetic variability', 'first-line anti-TB therapy', 'Rifampicin', 'Isoniazid', 'Ethambutol', 'Pyrazinamide', 'food', 'nutritional status', 'HIV', 'diabetes', 'genetic polymorphisms' and 'pharmacokinetic interactions'. We also included abstracts from scientific meetings and review articles. Expert commentary: A variety of host and genetic factors can cause inter-individual variations in the PK of anti-TB drugs. PK studies conducted in various settings have adopted different designs, PK sampling time points, drug estimation methodologies. Hence comparison and interpretation of these results should be done with caution More phamacogenomic studies in different patient populations are needed for further understanding.
Collapse
Affiliation(s)
- Bella Devaleenal Daniel
- a Department of Clinical Research , National Institute for Research in Tuberculosis , Chennai , Tamil Nadu , India
| | - Geetha Ramachandran
- a Department of Clinical Research , National Institute for Research in Tuberculosis , Chennai , Tamil Nadu , India
| | - Soumya Swaminathan
- b Secretary Department of Health Research & Director General , Indian Council of Medical Research , New Delhi , India
| |
Collapse
|
45
|
Daletos G, Ancheeva E, Chaidir C, Kalscheuer R, Proksch P. Antimycobacterial Metabolites from Marine Invertebrates. Arch Pharm (Weinheim) 2016; 349:763-773. [DOI: 10.1002/ardp.201600128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 01/20/2023]
Affiliation(s)
- Georgios Daletos
- Institute of Pharmaceutical Biology and Biotechnology; Heinrich-Heine-University; Duesseldorf Germany
| | - Elena Ancheeva
- Institute of Pharmaceutical Biology and Biotechnology; Heinrich-Heine-University; Duesseldorf Germany
| | - Chaidir Chaidir
- Center for Pharmaceutical and Medical Technology; Agency for the Assessment and Application Technology; Jakarta Indonesia
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology; Heinrich-Heine-University; Duesseldorf Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology; Heinrich-Heine-University; Duesseldorf Germany
| |
Collapse
|
46
|
Skrahin A. 7 th Union Europe Conference on Lung Health, 22-24 June 2016, Bratislava (Slovakia): a delegate report. Quant Imaging Med Surg 2016; 6:338-341. [PMID: 27709069 DOI: 10.21037/qims.2016.08.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Aliaksandr Skrahin
- Department of Critical Care Medicine, Belarusian State Medical University, Minsk, Belarus;; Clinical Department, Republican Research and Practical Centre for Pulmonology and Tuberculosis, Minsk, Belarus
| |
Collapse
|
47
|
Moraski GC, Seeger N, Miller PA, Oliver AG, Boshoff HI, Cho S, Mulugeta S, Anderson JR, Franzblau SG, Miller MJ. Arrival of Imidazo[2,1-b]thiazole-5-carboxamides: Potent Anti-tuberculosis Agents That Target QcrB. ACS Infect Dis 2016; 2:393-8. [PMID: 27627627 DOI: 10.1021/acsinfecdis.5b00154] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Increasing interest in the potent anti-tuberculosis activity and the novel target (QcrB) of imidazo[1,2-a]pyridine-3-carboxamides encouraged extended structure-activity relationship studies of additional scaffolds. This study reports on the in vitro profiling of the imidazo[2,1-b]thiazole-5-carboxamides as a new promising class of anti-tuberculosis compounds endowed with nanomolar potency against replicating and drug-resistant Mycobacterium tuberculosis (Mtb) as well as low toxicity to VERO cells. Compounds 6, 16, and 17 had MIC values <10 nM and toxicity >100 μM. On-target selectivity of this series was confirmed by cross-resistance of specific QcrB mutants as well as the hypersusceptibility of a mutant with a functional gene deletion of the alternative cytochrome bd oxidase. Additionally, to demonstrate selectivity, three analogues (6, 15, 17) were broadly screened against a diverse set of eight strains of bacteria, including both Gram-positive and Gram-negative as well as six disease-causing non-tuberculosis mycobacteria. Finally, compounds 16 and 17 were found to be active in macrophages infected with Mtb.
Collapse
Affiliation(s)
- Garrett C. Moraski
- Department of Chemistry and Biochemistry, Montana State University, 103 Chemistry and Biochemistry Building, Bozeman, Montana 59717, United States
| | - Natalie Seeger
- Department of Chemistry and Biochemistry, Montana State University, 103 Chemistry and Biochemistry Building, Bozeman, Montana 59717, United States
| | - Patricia A. Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Allen G. Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Helena I. Boshoff
- Tuberculosis Research Section, Laboratory of Clinical
Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sanghyun Cho
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Surafel Mulugeta
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Jeffery R. Anderson
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Scott G. Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Marvin J. Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
48
|
Hofman S, Segers MM, Ghimire S, Bolhuis MS, Sturkenboom MGG, Van Soolingen D, Alffenaar JWC. Emerging drugs and alternative possibilities in the treatment of tuberculosis. Expert Opin Emerg Drugs 2016; 21:103-16. [PMID: 26848966 DOI: 10.1517/14728214.2016.1151000] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Tuberculosis (TB) remains a global health problem. Drug resistance, treatment duration, complexity, and adverse drug reactions associated with anti-TB regimens are associated with treatment failure, prolonged infectiousness and relapse. With the current set of anti-TB drugs the goal to end TB has not been met. New drugs and new treatment regimens are needed to eradicate TB. AREAS COVERED Literature was explored to select publications on drugs currently in phase II and phase III trials. These include new chemical entities, immunotherapy, established drugs in new treatment regimens and vaccines for the prophylaxis of TB. EXPERT OPINION Well designed trials, with detailed pharmacokinetic/pharmacodynamic analysis, in which information on drug exposure and drug susceptibility of the entire anti-TB regimen is included, in combination with long-term follow-up will provide relevant data to optimize TB treatment. The new multi arm multistage trial design could be used to test new combinations of compounds, immunotherapy and therapeutic vaccines. This new approach will both reduce the number of patients exposed to inferior treatment and the financial burden. Moreover, it will speed up drug evaluation. Considering the investments involved in development of new drugs it is worthwhile to thoroughly investigate existing, non-TB drugs in new regimens.
Collapse
Affiliation(s)
- S Hofman
- a University of Groningen , University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology , Groningen , the Netherlands
| | - M M Segers
- a University of Groningen , University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology , Groningen , the Netherlands
| | - S Ghimire
- a University of Groningen , University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology , Groningen , the Netherlands
| | - M S Bolhuis
- a University of Groningen , University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology , Groningen , the Netherlands
| | - M G G Sturkenboom
- a University of Groningen , University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology , Groningen , the Netherlands
| | - D Van Soolingen
- b Departments of Pulmonary Diseases and Medical Microbiology , Nijmegen Medical Center, Radboud University , Nijmegen , The Netherlands.,c National Tuberculosis Reference Laboratory , National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | - J W C Alffenaar
- a University of Groningen , University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology , Groningen , the Netherlands
| |
Collapse
|
49
|
Rakesh, Bruhn DF, Scherman MS, Singh AP, Yang L, Liu J, Lenaerts AJ, Lee RE. Synthesis and evaluation of pretomanid (PA-824) oxazolidinone hybrids. Bioorg Med Chem Lett 2015; 26:388-391. [PMID: 26711150 DOI: 10.1016/j.bmcl.2015.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/29/2015] [Accepted: 12/01/2015] [Indexed: 01/19/2023]
Abstract
Pretomanid (PA-824) is an important nitroimidazole antitubercular agent in late stage clinical trials. However, pretomanid is limited by poor solubility and high protein binding, which presents opportunities for improvement in its physiochemical properties. Conversely, the oxazolidinone linezolid has excellent physicochemical properties and has recently shown impressive activity for the treatment of drug resistant tuberculosis. In this study we explore if incorporation of the outer ring elements found in first and second generation oxazolidinones into the nitroimidazole core of pretomanid can be used to improve its physicochemical and antitubercular properties. The synthesis of pretomanid outer oxazolidinone ring hybrids was successfully performed producing hybrids that maintained antitubercular activity and had improved in vitro physicochemical properties. Three lead compounds were identified and evaluated in a chronic model of tuberculosis infection in mice. However, the compounds lacked efficacy suggesting that portions of PA-824 tail not found in the hybrid molecules are required for in vivo efficacy.
Collapse
Affiliation(s)
- Rakesh
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David F Bruhn
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael S Scherman
- Mycobacterial Research Laboratories, Department of Microbiology, Colorado State University, Fort Collins, CO, USA
| | - Aman P Singh
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jiuyu Liu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anne J Lenaerts
- Mycobacterial Research Laboratories, Department of Microbiology, Colorado State University, Fort Collins, CO, USA
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
50
|
Affiliation(s)
- Anita K Simonds
- Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Elin L Reeves
- Publications Office, European Respiratory Society, Sheffield, UK
| |
Collapse
|