1
|
Upadhyay V, Ortega EF, Ramirez Hernandez LA, Alexander M, Kaur G, Trepka K, Rock RR, Shima RT, Cheshire WC, Alipanah-Lechner N, Calfee CS, Matthay MA, Lee JV, Goga A, Jain IH, Turnbaugh PJ. Gut bacterial lactate stimulates lung epithelial mitochondria and exacerbates acute lung injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645052. [PMID: 40196632 PMCID: PMC11974820 DOI: 10.1101/2025.03.24.645052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Acute respiratory distress syndrome (ARDS) is an often fatal critical illness where lung epithelial injury leads to intrapulmonary fluid accumulation. ARDS became widespread during the COVID-19 pandemic, motivating a renewed effort to understand the complex etiology of this disease. Rigorous prior work has implicated lung endothelial and epithelial injury in response to an insult such as bacterial infection; however, the impact of microorganisms found in other organs on ARDS remains unclear. Here, we use a combination of gnotobiotic mice, cell culture experiments, and re-analyses of a large metabolomics dataset from ARDS patients to reveal that gut bacteria impact lung cellular respiration by releasing metabolites that alter mitochondrial activity in lung epithelium. Colonization of germ-free mice with a complex gut microbiota stimulated lung mitochondrial gene expression. A single human gut bacterial species, Bifidobacterium adolescentis, was sufficient to replicate this effect, leading to a significant increase in mitochondrial membrane potential in lung epithelial cells. We then used genome sequencing and mass spectrometry to confirm that B. adolescentis produces L -lactate, which was sufficient to increase mitochondrial activity in lung epithelial cells. Finally, we found that serum lactate was significantly associated with disease severity in patients with ARDS from the Early Assessment of Renal and Lung Injury (EARLI) cohort. Together, these results emphasize the importance of more broadly characterizing the microbial etiology of ARDS and other lung diseases given the ability of gut bacterial metabolites to remotely control lung cellular respiration. Our discovery of a single bacteria-metabolite pair provides a proof-of-concept for systematically testing other microbial metabolites and a mechanistic biomarker that could be pursued in future clinical studies. Furthermore, our work adds to the growing literature linking the microbiome to mitochondrial function, raising intriguing questions as to the bidirectional communication between our endo- and ecto-symbionts.
Collapse
|
2
|
Hickman E, Roca C, Zorn BT, Rebuli ME, Robinette C, Wolfgang MC, Jaspers I. E-Cigarette Use, Cigarette Smoking, and Sex Are Associated With Nasal Microbiome Dysbiosis. Nicotine Tob Res 2024; 27:114-124. [PMID: 39018186 PMCID: PMC11663808 DOI: 10.1093/ntr/ntae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/18/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
INTRODUCTION Previous research suggests that e-cigarettes can alter immune function, including in the nasal mucosa, in unique ways. The respiratory microbiome plays a key role in respiratory host defense, but the effects of e-cigarettes on the respiratory or nasal microbiome, are not well understood. AIMS AND METHODS Using 16S rRNA gene sequencing on nasal samples from adult e-cigarette users, smokers, and nonsmokers, we determined that e-cigarette use and cigarette smoking are associated with differential respiratory microbiome dysbiosis and substantial sex-dependent differences in the nasal microbiome, particularly in e-cigarette users. RESULTS Staphylococcus aureus, a common respiratory pathogen, was more abundant in both e-cigarette users and smokers in comparison with nonsmokers, while Lactobacillus iners, often considered a protective species, was more abundant in smokers but less abundant in e-cigarette users in comparison with nonsmokers. In addition, we identified significant dysbiosis of the nasal microbiome between e-cigarette users and smokers with high versus low serum cotinine levels, an indicator of tobacco product use and toxicant exposure. We also analyzed nasal lavage fluid for immune mediators associated with host × microbiota interactions. CONCLUSIONS Our analysis identified disruption of immune mediators in the nose of e-cigarette users and smokers, which is indicative of disrupted respiratory mucosal immune responses. Taken together, our data identified unique, sex-dependent host immune dysfunction associated with e-cigarette use in the nasal mucosa. More broadly, our data highlight the need for continued inclusion and careful consideration of sex as an important variable in the context of toxicant exposures. IMPLICATIONS This is the first study investigating the effects of e-cigarette use and sex on the nasal microbiome, which is considered an important gatekeeper for protecting the lower respiratory tract from pathogens. We found significant sex, exposure group, and serum cotinine level-associated differences in the composition of the nasal microbiome, demonstrating the importance of considering sex in future nasal microbiome studies and warranting further investigation of the mechanisms by which e-cigarette use dysregulates nasal immune homeostasis.
Collapse
Affiliation(s)
- Elise Hickman
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cristian Roca
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bryan T Zorn
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Meghan E Rebuli
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carole Robinette
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew C Wolfgang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ilona Jaspers
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Campbell S, Gerasimidis K, Milling S, Dicker AJ, Hansen R, Langley RJ. The lower airway microbiome in paediatric health and chronic disease. Paediatr Respir Rev 2024; 52:31-43. [PMID: 38538377 DOI: 10.1016/j.prrv.2024.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/13/2024] [Indexed: 12/16/2024]
Abstract
The advent of next generation sequencing has rapidly challenged the paediatric respiratory physician's understanding of lung microbiology and the role of the lung microbiome in host health and disease. In particular, the role of "microbial key players" in paediatric respiratory disease is yet to be fully explained. Accurate profiling of the lung microbiome in children is challenging since the ability to obtain lower airway samples coupled with processing "low-biomass specimens" are both technically difficult. Many studies provide conflicting results. Early microbiota-host relationships may be predictive of the development of chronic respiratory disease but attempts to correlate lower airway microbiota in premature infants and risk of developing bronchopulmonary dysplasia (BPD) have produced mixed results. There are differences in lung microbiota in asthma and cystic fibrosis (CF). The increased abundance of oral taxa in the lungs may (or may not) promote disease processes in asthma and CF. In CF, correlation between microbiota diversity and respiratory decline is commonly observed. When one considers other pathogens beyond the bacterial kingdom, the contribution and interplay of fungi and viruses within the lung microbiome further increase complexity. Similarly, the interaction between microbial communities in different body sites, such as the gut-lung axis, and the influence of environmental factors, including diet, make the co-existence of host and microbes ever more complicated. Future, multi-omics approaches may help uncover novel microbiome-based biomarkers and therapeutic targets in respiratory disease and explain how we can live in harmony with our microbial companions.
Collapse
Affiliation(s)
- S Campbell
- School of Medicine, Dentistry and Nursing, University of Glasgow
| | - K Gerasimidis
- School of Medicine, Dentistry and Nursing, University of Glasgow
| | - S Milling
- School of Infection & Immunity, University of Glasgow
| | - A J Dicker
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee
| | - R Hansen
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee
| | - R J Langley
- Department of Paediatric Respiratory & Sleep Medicine, Royal Hospital for Children, Glasgow; Department of Maternal and Child Health, School of Medicine, Dentistry and Nursing, University of Glasgow.
| |
Collapse
|
4
|
Tangedal S, Nielsen R, Aanerud M, Drengenes C, Husebø GR, Lehmann S, Knudsen KS, Hiemstra PS, Eagan TM. Lower airway microbiota in COPD and healthy controls. Thorax 2024:thorax-2023-220455. [PMID: 38331579 DOI: 10.1136/thorax-2023-220455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND The lower airway microbiota in patients with chronic obstructive pulmonary disease (COPD) are likely altered compared with the microbiota in healthy individuals. Information on how the microbiota is affected by smoking, use of inhaled corticosteroids (ICS) and COPD severity is still scarce. METHODS In the MicroCOPD Study, participant characteristics were obtained through standardised questionnaires and clinical measurements at a single centre from 2012 to 2015. Protected bronchoalveolar lavage samples from 97 patients with COPD and 97 controls were paired-end sequenced with the Illumina MiSeq System. Data were analysed in QIIME 2 and R. RESULTS Alpha-diversity was lower in patients with COPD than controls (Pielou evenness: COPD=0.76, control=0.80, p=0.004; Shannon entropy: COPD=3.98, control=4.34, p=0.01). Beta-diversity differed with smoking only in the COPD cohort (weighted UniFrac: permutational analysis of variance R2=0.04, p=0.03). Nine genera were differentially abundant between COPD and controls. Genera enriched in COPD belonged to the Firmicutes phylum. Pack years were linked to differential abundance of taxa in controls only (ANCOM-BC (Analysis of Compositions of Microbiomes with Bias Correction) log-fold difference/q-values: Haemophilus -0.05/0.048; Lachnoanaerobaculum -0.04/0.03). Oribacterium was absent in smoking patients with COPD compared with non-smoking patients (ANCOM-BC log-fold difference/q-values: -1.46/0.03). We found no associations between the microbiota and COPD severity or ICS. CONCLUSION The lower airway microbiota is equal in richness in patients with COPD to controls, but less even. Genera from the Firmicutes phylum thrive particularly in COPD airways. Smoking has different effects on diversity and taxonomic abundance in patients with COPD compared with controls. COPD severity and ICS use were not linked to the lower airway microbiota.
Collapse
Affiliation(s)
- Solveig Tangedal
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Rune Nielsen
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Marianne Aanerud
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Christine Drengenes
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Gunnar R Husebø
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Sverre Lehmann
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kristel S Knudsen
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tomas Ml Eagan
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
5
|
Li R, Li J, Zhou X. Lung microbiome: new insights into the pathogenesis of respiratory diseases. Signal Transduct Target Ther 2024; 9:19. [PMID: 38228603 PMCID: PMC10791971 DOI: 10.1038/s41392-023-01722-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024] Open
Abstract
The lungs were long thought to be sterile until technical advances uncovered the presence of the lung microbial community. The microbiome of healthy lungs is mainly derived from the upper respiratory tract (URT) microbiome but also has its own characteristic flora. The selection mechanisms in the lung, including clearance by coughing, pulmonary macrophages, the oscillation of respiratory cilia, and bacterial inhibition by alveolar surfactant, keep the microbiome transient and mobile, which is different from the microbiome in other organs. The pulmonary bacteriome has been intensively studied recently, but relatively little research has focused on the mycobiome and virome. This up-to-date review retrospectively summarizes the lung microbiome's history, composition, and function. We focus on the interaction of the lung microbiome with the oropharynx and gut microbiome and emphasize the role it plays in the innate and adaptive immune responses. More importantly, we focus on multiple respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), fibrosis, bronchiectasis, and pneumonia. The impact of the lung microbiome on coronavirus disease 2019 (COVID-19) and lung cancer has also been comprehensively studied. Furthermore, by summarizing the therapeutic potential of the lung microbiome in lung diseases and examining the shortcomings of the field, we propose an outlook of the direction of lung microbiome research.
Collapse
Affiliation(s)
- Ruomeng Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Xikun Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Zhao L, Luo JL, Ali MK, Spiekerkoetter E, Nicolls MR. The Human Respiratory Microbiome: Current Understandings and Future Directions. Am J Respir Cell Mol Biol 2023; 68:245-255. [PMID: 36476129 PMCID: PMC9989478 DOI: 10.1165/rcmb.2022-0208tr] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microorganisms colonize the human body. The lungs and respiratory tract, previously believed to be sterile, harbor diverse microbial communities and the genomes of bacteria (bacteriome), viruses (virome), and fungi (mycobiome). Recent advances in amplicon and shotgun metagenomic sequencing technologies and data-analyzing methods have greatly aided the identification and characterization of microbial populations from airways. The respiratory microbiome has been shown to play roles in human health and disease and is an area of rapidly emerging interest in pulmonary medicine. In this review, we provide updated information in the field by focusing on four lung conditions, including asthma, chronic obstructive pulmonary disease, cystic fibrosis, and idiopathic pulmonary fibrosis. We evaluate gut, oral, and upper airway microbiomes and how they contribute to lower airway flora. The discussion is followed by a systematic review of the lower airway microbiome in health and disease. We conclude with promising research avenues and implications for evolving therapeutics.
Collapse
Affiliation(s)
- Lan Zhao
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, and.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, California.,VA Palo Alto Health Care System, Palo Alto, California; and
| | - Jun-Li Luo
- The Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Mohammed Khadem Ali
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, and.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, California
| | - Edda Spiekerkoetter
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, and.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, California
| | - Mark R Nicolls
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, and.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, California.,VA Palo Alto Health Care System, Palo Alto, California; and
| |
Collapse
|
7
|
Knudsen KS, Lehmann S, Nielsen R, Tangedal S, Paytuvi-Gallart A, Sanseverino W, Martinsen EMH, Hiemstra PS, Eagan TM. The lower airways microbiota and antimicrobial peptides indicate dysbiosis in sarcoidosis. MICROBIOME 2022; 10:175. [PMID: 36258251 PMCID: PMC9580159 DOI: 10.1186/s40168-022-01362-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/30/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND The role of the pulmonary microbiome in sarcoidosis is unknown. The objectives of this study were the following: (1) examine whether the pulmonary fungal and bacterial microbiota differed in patients with sarcoidosis compared with controls; (2) examine whether there was an association between the microbiota and levels of the antimicrobial peptides (AMPs) in protected bronchoalveolar lavage (PBAL). METHODS Thirty-five sarcoidosis patients and 35 healthy controls underwent bronchoscopy and were sampled with oral wash (OW), protected BAL (PBAL), and left protected sterile brushes (LPSB). The fungal ITS1 region and the V3V4 region of the bacterial 16S rRNA gene were sequenced. Bioinformatic analyses were performed with QIIME 2. The AMPs secretory leucocyte protease inhibitor (SLPI) and human beta defensins 1 and 2 (hBD-1 and hBD-2), were measured in PBAL by enzyme-linked immunosorbent assay (ELISA). RESULTS Aspergillus dominated the PBAL samples in sarcoidosis. Differences in bacterial taxonomy were minor. There was no significant difference in fungal alpha diversity between sarcoidosis and controls, but the bacterial alpha diversity in sarcoidosis was significantly lower in OW (p = 0.047) and PBAL (p = 0.03) compared with controls. The beta diversity for sarcoidosis compared with controls differed for both fungi and bacteria. AMP levels were significantly lower in sarcoidosis compared to controls (SLPI and hBD-1: p < 0.01). No significant correlations were found between alpha diversity and AMPs. CONCLUSIONS The pulmonary fungal and bacterial microbiota in sarcoidosis differed from in controls. Lower antimicrobial peptides levels were seen in sarcoidosis, indicating an interaction between the microbiota and the innate immune system. Whether this dysbiosis represents a pathogenic mechanism in sarcoidosis needs to be confirmed in experimental studies. Video Abstract.
Collapse
Affiliation(s)
| | - Sverre Lehmann
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Rune Nielsen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Solveig Tangedal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | | | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | - Tomas M. Eagan
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
8
|
Lee HW, Baek MG, Choi S, Ahn YH, Bang JY, Sohn KH, Kang MG, Jung JW, Choi JH, Cho SH, Yi H, Kang HR. Peripheral blood transcriptomic clusters uncovered immune phenotypes of asthma. Respir Res 2022; 23:237. [PMID: 36076228 PMCID: PMC9461267 DOI: 10.1186/s12931-022-02156-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcriptomic analysis has been used to elucidate the complex pathogenesis of heterogeneous disease and may also contribute to identify potential therapeutic targets by delineating the hub genes. This study aimed to investigate whether blood transcriptomic clustering can distinguish clinical and immune phenotypes of asthmatics, and microbiome in asthmatics. METHODS Transcriptomic expression of peripheral blood mononuclear cells (PBMCs) from 47 asthmatics and 21 non-asthmatics was measured using RNA sequencing. A hierarchical clustering algorithm was used to classify asthmatics. Differentially expressed genes, clinical phenotypes, immune phenotypes, and microbiome of each transcriptomic cluster were assessed. RESULTS In asthmatics, three distinct transcriptomic clusters with numerously different transcriptomic expressions were identified. The proportion of severe asthmatics was highest in cluster 3 as 73.3%, followed by cluster 2 (45.5%) and cluster 1 (28.6%). While cluster 1 represented clinically non-severe T2 asthma, cluster 3 tended to include severe non-T2 asthma. Cluster 2 had features of both T2 and non-T2 asthmatics characterized by the highest serum IgE level and neutrophil-dominant sputum cell population. Compared to non-asthmatics, cluster 1 showed higher CCL23 and IL1RL1 expression while the expression of TREML4 was suppressed in cluster 3. CTSD and ALDH2 showed a significant positive linear relationship across three clusters in the order of cluster 1 to 3. No significant differences in the diversities of lung and gut microbiomes were observed among transcriptomic clusters of asthmatics and non-asthmatics. However, our study has limitations in that small sample size data were analyzed with unmeasured confounding factors and causal relationships or function pathways were not verified. CONCLUSIONS Genetic clustering based on the blood transcriptome may provide novel immunological insight, which can be biomarkers of asthma immune phenotypes. Trial registration Retrospectively registered.
Collapse
Affiliation(s)
- Hyun Woo Lee
- Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Min-Gyung Baek
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Korea
| | - Sungmi Choi
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Korea
| | - Yoon Hae Ahn
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-Gu, Seoul, 110-744, Korea
| | - Ji-Young Bang
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kyoung-Hee Sohn
- Department of Internal Medicine, Kyung Hee University Hospital, Seoul, Korea
| | - Min-Gyu Kang
- Department of Internal Medicine, Chungbuk National University College of Medicine, Chungbuk National University Hospital, Cheongju, Korea
| | - Jae-Woo Jung
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jeong-Hee Choi
- Department of Pulmonology and Allergy, Allergy and Clinical Immunology Research Center, Hallym University College of Medicine, Chuncheon, Korea
| | - Sang-Heon Cho
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-Gu, Seoul, 110-744, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Hana Yi
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Korea. .,School of Biosystems and Biomedical Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea.
| | - Hye-Ryun Kang
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-Gu, Seoul, 110-744, Korea. .,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea. .,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
9
|
Rathbun KP, Bourgault AM, Sole ML. Oral Microbes in Hospital-Acquired Pneumonia: Practice and Research Implications. Crit Care Nurse 2022; 42:47-54. [PMID: 35640896 PMCID: PMC9923822 DOI: 10.4037/ccn2022672] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Hospital-acquired pneumonia accounts for 25% of all health care-associated infections and is classified as either ventilator-associated or non-ventilator-associated pneumonia. Hospital-acquired pneumonia most frequently results from aspiration of oropharyngeal secretions into the lungs. Although preventive measures for ventilator-associated pneumonia are well established, few preventive measures exist for the nonventilator type. OBJECTIVE To (1) explore oral microbes associated with ventilator-associated and non-ventilator-associated pneumonia in acutely ill, adult hospitalized patients, and (2) provide evidence-based recommendations for measures to prevent pneumonia in hospitalized patients. METHODS A literature search was conducted using CINAHL, Academic Search Premier, Medline, and the Cochrane Library. RESULTS Ten studies were found that identified common oral microbes in ventilator-associated and non-ventilator-associated pneumonia, including Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, S aureus, and Streptococcus pneumoniae. Collectively, oral colonization with E coli, P aeruginosa, methicillin-resistant S aureus, and S aureus increased the risk of nonventilator pneumonia. Findings also suggested microaspiration of colonized oral microbes into the lungs. Non-ventilator-associated pneumonia had similar colonization rates of gram-positive and gram-negative bacteria, whereas ventilator-associated pneumonia had greater colonization with gram-negative bacteria. The literature did not indicate a standard of oral care effective in all patient populations. DISCUSSION Oral care is an effective intervention to prevent hospital-acquired pneumonia by reducing pathogenic oral microbial colonization. The impact of different methods and timing of oral care on oral microbes should be further explored, particularly in patients not receiving mechanical ventilation. CONCLUSIONS Findings reaffirm the importance of consistent oral care in hospitalized patients. In addition, practices should be different in patients receiving mechanical ventilation versus patients not receiving ventilation. Results may also provide knowledge to inform future preventive measures for pneumonia, particularly for nonventilator pneumonia.
Collapse
Affiliation(s)
- Kimberly Paige Rathbun
- Kimberly Paige Rathbun is a PhD student, predoctoral fellow, and graduate student research assistant at the University of Central Florida College of Nursing, Orlando
| | - Annette M Bourgault
- Annette M. Bourgault is an associate professor at the University of Central Florida College of Nursing
| | - Mary Lou Sole
- Mary Lou Sole is dean, professor, and Orlando Health Endowed Chair in Nursing at the University of Central Florida College of Nursing
| |
Collapse
|
10
|
A longitudinal study of the pulmonary mycobiome in subjects with and without chronic obstructive pulmonary disease. PLoS One 2022; 17:e0267195. [PMID: 35551278 PMCID: PMC9098062 DOI: 10.1371/journal.pone.0267195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
Background Few studies have examined the stability of the pulmonary mycobiome. We report longitudinal changes in the oral and pulmonary mycobiome of participants with and without COPD in a large-scale bronchoscopy study (MicroCOPD). Methods Repeated sampling was performed in 30 participants with and 21 without COPD. We collected an oral wash (OW) and a bronchoalveolar lavage (BAL) sample from each participant at two time points. The internal transcribed spacer 1 region of the ribosomal RNA gene cluster was PCR amplified and sequenced on an Illumina HiSeq sequencer. Differences in taxonomy, alpha diversity, and beta diversity between the two time points were compared, and we examined the effect of intercurrent antibiotic use. Results Sample pairs were dominated by Candida. We observed less stability in the pulmonary taxonomy compared to the oral taxonomy, additionally emphasised by a higher Yue-Clayton measure in BAL compared to OW (0.69 vs 0.22). No apparent effect was visually seen on taxonomy from intercurrent antibiotic use or participant category. We found no systematic variation in alpha diversity by time either in BAL (p-value 0.16) or in OW (p-value 0.97), and no obvious clusters on bronchoscopy number in PCoA plots. Pairwise distance analyses showed that OW samples from repeated sampling appeared more stable compared to BAL samples using the Bray-Curtis distance metric (p-value 0.0012), but not for Jaccard. Conclusion Results from the current study propose that the pulmonary mycobiome is less stable than the oral mycobiome, and neither COPD diagnosis nor intercurrent antibiotic use seemed to influence the stability.
Collapse
|
11
|
Knudsen KS, Lehmann S, Nielsen R, Tangedal S, Haaland I, Hiemstra PS, Eagan TM. The lower airways microbiome and antimicrobial peptides in idiopathic pulmonary fibrosis differ from chronic obstructive pulmonary disease. PLoS One 2022; 17:e0262082. [PMID: 34990493 PMCID: PMC8735599 DOI: 10.1371/journal.pone.0262082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 12/19/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The lower airways microbiome and host immune response in chronic pulmonary diseases are incompletely understood. We aimed to investigate possible microbiome characteristics and key antimicrobial peptides and proteins in idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). METHODS 12 IPF patients, 12 COPD patients and 12 healthy controls were sampled with oral wash (OW), protected bronchoalveolar lavage (PBAL) and right lung protected sterile brushings (rPSB). The antimicrobial peptides and proteins (AMPs), secretory leucocyte protease inhibitor (SLPI) and human beta defensins 1 and 2 (hBD-1 & hBD-2), were measured in PBAL by enzyme linked immunosorbent assay (ELISA). The V3V4 region of the bacterial 16S rDNA gene was sequenced. Bioinformatic analyses were performed with QIIME 2. RESULTS hBD-1 levels in PBAL for IPF were lower compared with COPD. The predominant phyla in IPF were Firmicutes, Bacteroides and Actinobacteria; Proteobacteria were among top three in COPD. Differential abundance analysis at genus level showed significant differences between study groups for less abundant, mostly oropharyngeal, microbes. Alpha diversity was lower in IPF in PBAL compared to COPD (p = 0.03) and controls (p = 0.01), as well as in rPSB compared to COPD (p = 0.02) and controls (p = 0.04). Phylogenetic beta diversity showed significantly more similarity for IPF compared with COPD and controls. There were no significant correlations between alpha diversity and AMPs. CONCLUSIONS IPF differed in microbial diversity from COPD and controls, accompanied by differences in antimicrobial peptides. Beta diversity similarity between OW and PBAL in IPF may indicate that microaspiration contributes to changes in its microbiome.
Collapse
Affiliation(s)
- Kristel S. Knudsen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Sverre Lehmann
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Rune Nielsen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Solveig Tangedal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ingvild Haaland
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | - Tomas M. Eagan
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
12
|
Nielsen R, Xue Y, Jonassen I, Haaland I, Kommedal Ø, Wiker HG, Drengenes C, Bakke PS, Eagan TML. Repeated bronchoscopy in health and obstructive lung disease: is the airway microbiome stable? BMC Pulm Med 2021; 21:342. [PMID: 34727907 PMCID: PMC8561866 DOI: 10.1186/s12890-021-01687-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/29/2021] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Little is known concerning the stability of the lower airway microbiome. We have compared the microbiota identified by repeated bronchoscopy in healthy subjects and patients with ostructive lung diseaseases (OLD). METHODS 21 healthy controls and 41 patients with OLD completed two bronchoscopies. In addition to negative controls (NCS) and oral wash (OW) samples, we gathered protected bronchoalveolar lavage in two fractions (PBAL1 and PBAL2) and protected specimen brushes (PSB). After DNA extraction, we amplified the V3V4 region of the 16S rRNA gene, and performed paired-end sequencing (Illumina MiSeq). Initial bioinformatic processing was carried out in the QIIME-2 pipeline, identifying amplicon sequence variants (ASVs) with the DADA2 algorithm. Potentially contaminating ASVs were identified and removed using the decontam package in R and the sequenced NCS. RESULTS A final table of 551 ASVs consisted of 19 × 106 sequences. Alpha diversity was lower in the second exam for OW samples, and borderline lower for PBAL1, with larger differences in subjects not having received intercurrent antibiotics. Permutational tests of beta diversity indicated that within-individual changes were significantly lower than between-individual changes. A non-parametric trend test showed that differences in composition between the two exams (beta diversity) were largest in the PSBs, and that these differences followed a pattern of PSB > PBAL2 > PBAL1 > OW. Time between procedures was not associated with increased diversity. CONCLUSION The airways microbiota varied between examinations. However, there is compositional microbiota stability within a person, beyond that of chance, supporting the notion of a transient airways microbiota with a possibly more stable individual core microbiome.
Collapse
Affiliation(s)
- Rune Nielsen
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Postboks 7804, 5020, Bergen, Norway.
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Yaxin Xue
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Inge Jonassen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Ingvild Haaland
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Postboks 7804, 5020, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Øyvind Kommedal
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Harald G Wiker
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Postboks 7804, 5020, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Christine Drengenes
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Postboks 7804, 5020, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Per S Bakke
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Postboks 7804, 5020, Bergen, Norway
| | - Tomas M L Eagan
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Postboks 7804, 5020, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
13
|
Grønseth S, Rogne T, Hannula R, Åsvold BO, Afset JE, Damås JK. Semiquantitative Real-Time PCR to Distinguish Pneumocystis Pneumonia from Colonization in a Heterogeneous Population of HIV-Negative Immunocompromised Patients. Microbiol Spectr 2021; 9:e0002621. [PMID: 34346746 PMCID: PMC8552647 DOI: 10.1128/spectrum.00026-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022] Open
Abstract
Pneumocystis jirovecii is a threat to iatrogenically immunosuppressed individuals, a heterogeneous population at rapid growth. We assessed the ability of an in-house semiquantitative real-time PCR assay to discriminate Pneumocystis pneumonia (PCP) from colonization and identified risk factors for infection in these patients. Retrospectively, 242 PCR-positive patients were compared according to PCP status, including strata by immunosuppressive conditions, human immunodeficiency virus (HIV) infection excluded. Associations between host characteristics and cycle threshold (CT) values, semiquantitative real-time PCR correlates of fungal loads in lower respiratory tract specimens, were investigated. CT values differed significantly according to PCP status. Overall, a CT value of 36 allowed differentiation between PCP and colonization with sensitivity and specificity of 71.3% and 77.1%, respectively. A CT value of less than 31 confirmed PCP, whereas no CT value permitted exclusion. A considerable diversity was uncovered; solid organ transplant (SOT) recipients had significantly higher fungal loads than patients with hematological malignancies. In SOT recipients, a CT cutoff value of 36 resulted in sensitivity and specificity of 95.0% and 83.3%, respectively. In patients with hematological malignancies, a higher CT cutoff value of 37 improved sensitivity to 88.5% but reduced specificity to 66.7%. For other conditions, assay validity appeared inferior. Corticosteroid usage was an independent predictor of PCP in a multivariable analysis and was associated with higher fungal loads at PCP expression. Semiquantitative real-time PCR improves differentiation between PCP and colonization in immunocompromised HIV-negative individuals with acute respiratory syndromes. However, heterogeneity in disease evolution requires separate cutoff values across intrinsic and iatrogenic predisposition for predicting non-HIV PCP. IMPORTANCE Pneumocystis jirovecii is potentially life threatening to an increasing number of individuals with compromised immune systems. This microorganism can cause severe pneumonia in susceptible hosts, including patients with cancer and autoimmune diseases and people undergoing solid organ transplantation. Together, these patients constitute an ever-diverse population. In this paper, we demonstrate that the heterogeneity herein has important implications for how we diagnose and assess the risk of Pneumocystis pneumonia (PCP). Specifically, low loads of microorganisms are sufficient to cause infection in patients with blood cancer compared to those in solid organ recipients. With this new insight into host versus P. jirovecii biology, clinicians can manage patients at risk of PCP more accurately. As a result, we take a significant step toward offering precision medicine to a vulnerable patient population. One the one hand, these patients have propensity for adverse effects from antimicrobial treatment. On the other hand, this population is susceptible to life-threatening infections, including PCP.
Collapse
Affiliation(s)
- Stine Grønseth
- Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway
| | - Tormod Rogne
- Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway
- Department of Chronic Disease Epidemiology, Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, Connecticut, USA
| | - Raisa Hannula
- Department of Infectious Diseases, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - Bjørn Olav Åsvold
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Trondheim, Norway
- HUNT Research Center, Department of Public Health and Nursing, NTNU, Levanger, Norway
- Department of Endocrinology, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jan Egil Afset
- Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway
- Department of Medical Microbiology, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jan Kristian Damås
- Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway
- Department of Infectious Diseases, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
- Centre of Molecular Inflammation Research, NTNU, Trondheim, Norway
| |
Collapse
|
14
|
Hartmann JE, Albrich WC, Dmitrijeva M, Kahlert CR. The Effects of Corticosteroids on the Respiratory Microbiome: A Systematic Review. Front Med (Lausanne) 2021; 8:588584. [PMID: 33777968 PMCID: PMC7988087 DOI: 10.3389/fmed.2021.588584] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Since its discovery, the respiratory microbiome has been implicated in the pathogenesis of multiple pulmonary diseases. Even though corticosteroid treatments are widely prescribed for pulmonary diseases, their effects on the respiratory microbiome are still poorly understood. This systematic review summarizes the current understanding of the effects of corticosteroids on the microbiome of the airways. Research Question: How does treatment with corticosteroids impact the respiratory microbiome? Study Design and Methods: According to the PRISMA guidelines, Embase, Medline, and the Cochrane Central Register of Controlled Trials (CENTRAL) databases were systematically searched for all observational or randomized-controlled studies comparing the microbiome parameters of patients receiving corticosteroids to those of controls. The primary outcomes of interest were changes in the diversity, composition and total burden of the respiratory microbiome as assessed by culture-independent molecular methods. Results: Out of 1,943 identified reports, five studies could be included: two on patients with asthma, two on patients with chronic obstructive pulmonary disease and one on patients with chronic rhinosinusitis. The studies were highly heterogeneous with regards to the methods used and the populations investigated. Microbiome diversity increased with corticosteroids at least transiently in three studies and decreased in one study. The effects of corticosteroids on the composition of the respiratory microbiome were significant but without a clear shared direction. A significant increase in microbial burden after corticosteroids was seen in one study. Interpretation: Data on the effect of corticosteroids on the respiratory microbiome are still limited, with considerable heterogeneity between studies. However, available data suggest that corticosteroid treatment may have significant effects on the composition and possibly the diversity of the respiratory microbiome. Further research is needed to better understand the influence of corticosteroids on the respiratory microbiome and thus better target its widespread therapeutic use.
Collapse
Affiliation(s)
- Julia E. Hartmann
- Division of Infectious Diseases/Hospital Epidemiology, Kantonsspital St. Gallen, St.Gallen, Switzerland
| | - Werner C. Albrich
- Division of Infectious Diseases/Hospital Epidemiology, Kantonsspital St. Gallen, St.Gallen, Switzerland
| | - Marija Dmitrijeva
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Christian R. Kahlert
- Division of Infectious Diseases/Hospital Epidemiology, Kantonsspital St. Gallen, St.Gallen, Switzerland
- Division of Infectious Diseases/Hospital Epidemiology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| |
Collapse
|
15
|
Abstract
While asthma has a strong genetic component, our current ability to systematically understand and predict asthma risk remains low, despite over a hundred genetic associations. The reasons for this unfilled gap range from technical limitations of current approaches to fundamental deficiencies in the way we understand asthma. These are discussed in the context of genomic advances.
Collapse
Affiliation(s)
- Mayank Bansal
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mayank Garg
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anurag Agrawal
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
16
|
Drengenes C, Eagan TML, Haaland I, Wiker HG, Nielsen R. Exploring protocol bias in airway microbiome studies: one versus two PCR steps and 16S rRNA gene region V3 V4 versus V4. BMC Genomics 2021; 22:3. [PMID: 33397283 PMCID: PMC7784388 DOI: 10.1186/s12864-020-07252-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022] Open
Abstract
Background Studies on the airway microbiome have been performed using a wide range of laboratory protocols for high-throughput sequencing of the bacterial 16S ribosomal RNA (16S rRNA) gene. We sought to determine the impact of number of polymerase chain reaction (PCR) steps (1- or 2- steps) and choice of target marker gene region (V3 V4 and V4) on the presentation of the upper and lower airway microbiome. Our analyses included lllumina MiSeq sequencing following three setups: Setup 1 (2-step PCR; V3 V4 region), Setup 2 (2-step PCR; V4 region), Setup 3 (1-step PCR; V4 region). Samples included oral wash, protected specimen brushes and protected bronchoalveolar lavage (healthy and obstructive lung disease), and negative controls. Results The number of sequences and amplicon sequence variants (ASV) decreased in order setup1 > setup2 > setup3. This trend appeared to be associated with an increased taxonomic resolution when sequencing the V3 V4 region (setup 1) and an increased number of small ASVs in setups 1 and 2. The latter was considered a result of contamination in the two-step PCR protocols as well as sequencing across multiple runs (setup 1). Although genera Streptococcus, Prevotella, Veillonella and Rothia dominated, differences in relative abundance were observed across all setups. Analyses of beta-diversity revealed that while oral wash samples (high biomass) clustered together regardless of number of PCR steps, samples from the lungs (low biomass) separated. The removal of contaminants identified using the Decontam package in R, did not resolve differences in results between sequencing setups. Conclusions Differences in number of PCR steps will have an impact of final bacterial community descriptions, and more so for samples of low bacterial load. Our findings could not be explained by differences in contamination levels alone, and more research is needed to understand how variations in PCR-setups and reagents may be contributing to the observed protocol bias. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07252-z.
Collapse
Affiliation(s)
- Christine Drengenes
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway. .,Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Tomas M L Eagan
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Ingvild Haaland
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Harald G Wiker
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Rune Nielsen
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
17
|
Rick EM, Woolnough KF, Seear PJ, Fairs A, Satchwell J, Richardson M, Monteiro WR, Craner M, Bourne M, Wardlaw AJ, Pashley CH. The airway fungal microbiome in asthma. Clin Exp Allergy 2020; 50:1325-1341. [PMID: 32808353 DOI: 10.1111/cea.13722] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Fungal involvement in asthma is associated with severe disease. The full spectrum of fungal species in asthma is not well described and is derived largely from insensitive culture techniques. OBJECTIVES To use high-throughput sequencing to describe the airway mycobiota in asthmatics with and without fungal sensitization and healthy controls; to compare samples representing different airway compartments; to determine whether the mycobiota was influenced by the fungal composition of outdoor air; and to compare findings with clinically relevant outcomes. METHODS We amplified the internal transcribed spacer region 2 of the nuclear ribosomal operon to identify the fungal species present. Ninety-seven subjects were recruited and provided sputum (83 asthmatics; 14 healthy subjects), with 29 also undergoing a bronchoscopy. A subset of airway samples were compared with matched outdoor air and mouthwash samples. RESULTS Two hundred and six taxa at the species level were identified in sputum, most at low relative abundance. Aspergillus fumigatus, Candida albicans and Mycosphaerella tassiana had the highest relative abundances and were the most prevalent species across all subjects. The airway mycobiota consisted of a complex community with high diversity between individuals. Notable shifts in the balance of fungi detected in the lung were associated with asthma status, asthma duration and biomarkers of inflammation. Aspergillus tubingensis, a member of the Aspergillus niger species complex, was most prevalent from bronchoscopic protected brush samples and significantly associated with a low sputum neutrophilia. Cryptococcus pseudolongus, from the Cryptococcus humicola species complex, was more abundant from bronchoscopy samples than sputum, and differentially more abundant in asthma than health. CONCLUSIONS AND CLINICAL RELEVANCE The airway mycobiota was dominated by a relatively small number of species, but was distinct from the oropharyngeal mycobiota and air samples. Members of the A. niger and C. humicola species complexes may play unexpected roles in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Eva-Maria Rick
- Department of Respiratory Sciences, Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, University of Leicester, Leicester, UK
| | - Kerry F Woolnough
- Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, Glenfield Hospital, University Hospitals of Leicester, Leicester, UK
| | - Paul J Seear
- Department of Respiratory Sciences, Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, University of Leicester, Leicester, UK
| | - Abbie Fairs
- Department of Respiratory Sciences, Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, University of Leicester, Leicester, UK
| | - Jack Satchwell
- Department of Respiratory Sciences, Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, University of Leicester, Leicester, UK
| | - Matthew Richardson
- Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, Glenfield Hospital, University Hospitals of Leicester, Leicester, UK
| | - William R Monteiro
- Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, Glenfield Hospital, University Hospitals of Leicester, Leicester, UK
| | - Michelle Craner
- Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, Glenfield Hospital, University Hospitals of Leicester, Leicester, UK
| | - Michelle Bourne
- Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, Glenfield Hospital, University Hospitals of Leicester, Leicester, UK
| | - Andrew J Wardlaw
- Department of Respiratory Sciences, Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, University of Leicester, Leicester, UK.,Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, Glenfield Hospital, University Hospitals of Leicester, Leicester, UK
| | - Catherine H Pashley
- Department of Respiratory Sciences, Institute for Lung Health, Leicester Biomedical Research Centre - Respiratory, University of Leicester, Leicester, UK
| |
Collapse
|
18
|
Leiten EO, Nielsen R, Wiker HG, Bakke PS, Martinsen EMH, Drengenes C, Tangedal S, Husebø GR, Eagan TML. The airway microbiota and exacerbations of COPD. ERJ Open Res 2020; 6:00168-2020. [PMID: 32904583 PMCID: PMC7456643 DOI: 10.1183/23120541.00168-2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Aim The aim of this study was to investigate whether the compositionality of the lower airway microbiota predicts later exacerbation risk in persons with COPD in a cohort study. Materials and methods We collected lower airways microbiota samples by bronchoalveolar lavage and protected specimen brushes, and oral wash samples from 122 participants with COPD. Bacterial DNA was extracted from all samples, before we sequenced the V3-V4 region of the 16S RNA gene. The frequency of moderate and severe COPD exacerbations was surveyed in telephone interviews and in a follow-up visit. Compositional taxonomy and α and β diversity were compared between participants with and without later exacerbations. Results The four most abundant phyla were Firmicutes, Bacteroidetes, Proteobacteria and Fusobacteria in both groups, and the four most abundant genera were Streptococcus, Veillonella, Prevotella and Gemella. The relative abundances of different taxa showed a large variation between samples and individuals, and no statistically significant difference of either compositional taxonomy, or α or β diversity could be found between participants with and without COPD exacerbations within follow-up. Conclusion The findings from the current study indicate that individual differences in the lower airway microbiota in persons with COPD far outweigh group differences between frequent and nonfrequent COPD exacerbators, and that the compositionality of the microbiota is so complex as to present large challenges for use as a biomarker of later exacerbations. Contrary to previous reports, in this study there were no significant associations between the lung microbiota in stable COPD and COPD exacerbation frequencyhttps://bit.ly/2ZVcNdG
Collapse
Affiliation(s)
| | - Rune Nielsen
- Dept of Clinical Science, University of Bergen, Bergen, Norway.,Dept of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Harald Gotten Wiker
- Dept of Clinical Science, University of Bergen, Bergen, Norway.,Dept of Microbiology, Haukeland University Hospital, Bergen, Norway
| | | | | | - Christine Drengenes
- Dept of Clinical Science, University of Bergen, Bergen, Norway.,Dept of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Solveig Tangedal
- Dept of Clinical Science, University of Bergen, Bergen, Norway.,Dept of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Gunnar Reksten Husebø
- Dept of Clinical Science, University of Bergen, Bergen, Norway.,Dept of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Tomas Mikal Lind Eagan
- Dept of Clinical Science, University of Bergen, Bergen, Norway.,Dept of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
19
|
Optimizing 16S rRNA gene profile analysis from low biomass nasopharyngeal and induced sputum specimens. BMC Microbiol 2020; 20:113. [PMID: 32397992 PMCID: PMC7218582 DOI: 10.1186/s12866-020-01795-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/20/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Careful consideration of experimental artefacts is required in order to successfully apply high-throughput 16S ribosomal ribonucleic acid (rRNA) gene sequencing technology. Here we introduce experimental design, quality control and "denoising" approaches for sequencing low biomass specimens. RESULTS We found that bacterial biomass is a key driver of 16S rRNA gene sequencing profiles generated from bacterial mock communities and that the use of different deoxyribonucleic acid (DNA) extraction methods [DSP Virus/Pathogen Mini Kit® (Kit-QS) and ZymoBIOMICS DNA Miniprep Kit (Kit-ZB)] and storage buffers [PrimeStore® Molecular Transport medium (Primestore) and Skim-milk, Tryptone, Glucose and Glycerol (STGG)] further influence these profiles. Kit-QS better represented hard-to-lyse bacteria from bacterial mock communities compared to Kit-ZB. Primestore storage buffer yielded lower levels of background operational taxonomic units (OTUs) from low biomass bacterial mock community controls compared to STGG. In addition to bacterial mock community controls, we used technical repeats (nasopharyngeal and induced sputum processed in duplicate, triplicate or quadruplicate) to further evaluate the effect of specimen biomass and participant age at specimen collection on resultant sequencing profiles. We observed a positive correlation (r = 0.16) between specimen biomass and participant age at specimen collection: low biomass technical repeats (represented by < 500 16S rRNA gene copies/μl) were primarily collected at < 14 days of age. We found that low biomass technical repeats also produced higher alpha diversities (r = - 0.28); 16S rRNA gene profiles similar to no template controls (Primestore); and reduced sequencing reproducibility. Finally, we show that the use of statistical tools for in silico contaminant identification, as implemented through the decontam package in R, provides better representations of indigenous bacteria following decontamination. CONCLUSIONS We provide insight into experimental design, quality control steps and "denoising" approaches for 16S rRNA gene high-throughput sequencing of low biomass specimens. We highlight the need for careful assessment of DNA extraction methods and storage buffers; sequence quality and reproducibility; and in silico identification of contaminant profiles in order to avoid spurious results.
Collapse
|
20
|
Tangedal S, Nielsen R, Aanerud M, Persson LJ, Wiker HG, Bakke PS, Hiemstra PS, Eagan TM. Sputum microbiota and inflammation at stable state and during exacerbations in a cohort of chronic obstructive pulmonary disease (COPD) patients. PLoS One 2019; 14:e0222449. [PMID: 31527888 PMCID: PMC6748569 DOI: 10.1371/journal.pone.0222449] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/30/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Exacerbations of chronic obstructive pulmonary disease (COPD) are debilitating events and spur disease progression. Infectious causes are frequent; however, it is unknown to what extent exacerbations are caused by larger shifts in the airways' microbiota. The aim of the current study was to analyse the changes in microbial composition between stable state and during exacerbations, and the corresponding immune response. METHODS The study sample included 36 COPD patients examined at stable state and exacerbation from the Bergen COPD Cohort and Exacerbations studies, and one patient who delivered sputum on 13 different occasions during the three-year study period. A physician examined the patients at all time points, and sputum induction was performed by stringent protocol. Only induced sputum samples were used in the current study, not spontaneously expectorated sputum. Sputum inflammatory markers (IL-6, IL-8, IL-18, IP-10, MIG, TNF-α) and antimicrobial peptides (AMPs, i.e. LL-37/hCAP-18, SLPI) were measured in supernatants, whereas target gene sequencing (16S rRNA) was performed on corresponding cell pellets. The microbiome bioinformatics platform QIIME2TM and the statistics environment R were applied for bioinformatics analyses. RESULTS Levels of IP-10, MIG, TNF-α and AMPs were significantly different between the two disease states. Of 36 sample pairs, 24 had significant differences in the 12 most abundant genera between disease states. The diversity was significantly different in several individuals, but not when data was analysed on a group level. The one patient case study showed longitudinal dynamics in microbiota unrelated to disease state. CONCLUSION Changes in the sputum microbiota with changing COPD disease states are common, and are accompanied by changes in inflammatory markers. However, the changes are highly individual and heterogeneous events.
Collapse
Affiliation(s)
- Solveig Tangedal
- Dept. of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Dept. of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Rune Nielsen
- Dept. of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Dept. of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Marianne Aanerud
- Dept. of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Louise J. Persson
- Dept. of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Harald G. Wiker
- Dept. of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Dept. of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Per S. Bakke
- Dept. of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Pieter S. Hiemstra
- Dept of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tomas M. Eagan
- Dept. of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Dept. of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
21
|
Wypych TP, Wickramasinghe LC, Marsland BJ. The influence of the microbiome on respiratory health. Nat Immunol 2019; 20:1279-1290. [PMID: 31501577 DOI: 10.1038/s41590-019-0451-9] [Citation(s) in RCA: 351] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023]
Abstract
The revolution in microbiota research over the past decade has provided invaluable knowledge about the function of the microbial species that inhabit the human body. It has become widely accepted that these microorganisms, collectively called 'the microbiota', engage in networks of interactions with each other and with the host that aim to benefit both the microbial members and the mammalian members of this unique ecosystem. The lungs, previously thought to be sterile, are now known to harbor a unique microbiota and, additionally, to be influenced by microbial signals from distal body sites, such as the intestine. Here we review the role of the lung and gut microbiotas in respiratory health and disease and highlight the main pathways of communication that underlie the gut-lung axis.
Collapse
Affiliation(s)
- Tomasz P Wypych
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Lakshanie C Wickramasinghe
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
22
|
Martinez FJ, Han MK, Allinson JP, Barr RG, Boucher RC, Calverley PMA, Celli BR, Christenson SA, Crystal RG, Fagerås M, Freeman CM, Groenke L, Hoffman EA, Kesimer M, Kostikas K, Paine R, Rafii S, Rennard SI, Segal LN, Shaykhiev R, Stevenson C, Tal-Singer R, Vestbo J, Woodruff PG, Curtis JL, Wedzicha JA. At the Root: Defining and Halting Progression of Early Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2019; 197:1540-1551. [PMID: 29406779 DOI: 10.1164/rccm.201710-2028pp] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Fernando J Martinez
- 1 Weill Cornell Medical College, New York, New York.,2 University of Michigan School of Medicine, Ann Arbor, Michigan
| | - MeiLan K Han
- 2 University of Michigan School of Medicine, Ann Arbor, Michigan
| | | | | | | | | | | | | | | | | | - Christine M Freeman
- 2 University of Michigan School of Medicine, Ann Arbor, Michigan.,10 Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| | | | - Eric A Hoffman
- 12 University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Mehmet Kesimer
- 5 University of North Carolina, Chapel Hill, North Carolina
| | | | - Robert Paine
- 14 University of Utah, Salt Lake City, Utah.,15 Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
| | - Shahin Rafii
- 1 Weill Cornell Medical College, New York, New York
| | | | | | | | | | | | | | | | - Jeffrey L Curtis
- 2 University of Michigan School of Medicine, Ann Arbor, Michigan.,10 Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| | | |
Collapse
|
23
|
Drengenes C, Wiker HG, Kalananthan T, Nordeide E, Eagan TML, Nielsen R. Laboratory contamination in airway microbiome studies. BMC Microbiol 2019; 19:187. [PMID: 31412780 PMCID: PMC6694601 DOI: 10.1186/s12866-019-1560-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/31/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The low bacterial load in samples acquired from the lungs, have made studies on the airway microbiome vulnerable to contamination from bacterial DNA introduced during sampling and laboratory processing. We have examined the impact of laboratory contamination on samples collected from the lower airways by protected (through a sterile catheter) bronchoscopy and explored various in silico approaches to dealing with the contamination post-sequencing. Our analyses included quantitative PCR and targeted amplicon sequencing of the bacterial 16S rRNA gene. RESULTS The mean bacterial load varied by sample type for the 23 study subjects (oral wash>1st fraction of protected bronchoalveolar lavage>protected specimen brush>2nd fraction of protected bronchoalveolar lavage; p < 0.001). By comparison to a dilution series of know bacterial composition and load, an estimated 10-50% of the bacterial community profiles for lower airway samples could be traced back to contaminating bacterial DNA introduced from the laboratory. We determined the main source of laboratory contaminants to be the DNA extraction kit (FastDNA Spin Kit). The removal of contaminants identified using tools within the Decontam R package appeared to provide a balance between keeping and removing taxa found in both negative controls and study samples. CONCLUSIONS The influence of laboratory contamination will vary across airway microbiome studies. By reporting estimates of contaminant levels and taking use of contaminant identification tools (e.g. the Decontam R package) based on statistical models that limit the subjectivity of the researcher, the accuracy of inter-study comparisons can be improved.
Collapse
Affiliation(s)
- Christine Drengenes
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway. .,Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Harald G Wiker
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | | | - Eli Nordeide
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Tomas M L Eagan
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Rune Nielsen
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
24
|
Aziz A, Sarovich DS, Nosworthy E, Beissbarth J, Chang AB, Smith-Vaughan H, Price EP, Harris TM. Molecular Signatures of Non-typeable Haemophilus influenzae Lung Adaptation in Pediatric Chronic Lung Disease. Front Microbiol 2019; 10:1622. [PMID: 31379777 PMCID: PMC6646836 DOI: 10.3389/fmicb.2019.01622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/01/2019] [Indexed: 12/03/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi), an opportunistic pathogen of the upper airways of healthy children, can infect the lower airways, driving chronic lung disease. However, the molecular basis underpinning NTHi transition from a commensal to a pathogen is not clearly understood. Here, we performed comparative genomic and transcriptomic analyses of 12 paired, isogenic NTHi strains, isolated from the nasopharynx (NP) and bronchoalveolar lavage (BAL) of 11 children with chronic lung disease, to identify convergent molecular signatures associated with lung adaptation. Comparative genomic analyses of the 12 NP-BAL pairs demonstrated that five were genetically identical, with the remaining seven differing by only 1 to 3 mutations. Within-patient transcriptomic analyses identified between 2 and 58 differentially expressed genes in 8 of the 12 NP-BAL pairs, including pairs with no observable genomic changes. Whilst no convergence was observed at the gene level, functional enrichment analysis revealed significant under-representation of differentially expressed genes belonging to Coenzyme metabolism, Function unknown, Translation, ribosomal structure, and biogenesis Cluster of Orthologous Groups categories. In contrast, Carbohydrate transport and metabolism, Cell motility and secretion, Intracellular trafficking and secretion, and Energy production categories were over-represented. This observed trend amongst genetically unrelated NTHi strains provides evidence of convergent transcriptional adaptation of NTHi to pediatric airways that deserves further exploration. Understanding the pathoadaptative mechanisms that NTHi employs to infect and persist in the lower pediatric airways is essential for devising targeted diagnostics and treatments aimed at minimizing disease severity, and ultimately, preventing NTHi lung infections and subsequent chronic lung disease in children.
Collapse
Affiliation(s)
- Ammar Aziz
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Derek S. Sarovich
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Elizabeth Nosworthy
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Jemima Beissbarth
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Anne B. Chang
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Department of Respiratory and Sleep Medicine, Children’s Health Queensland, Queensland University of Technology, Brisbane, QLD, Australia
| | - Heidi Smith-Vaughan
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Erin P. Price
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Tegan M. Harris
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| |
Collapse
|
25
|
Mika M, Nita I, Morf L, Qi W, Beyeler S, Bernasconi E, Marsland BJ, Ott SR, von Garnier C, Hilty M. Microbial and host immune factors as drivers of COPD. ERJ Open Res 2018; 4:00015-2018. [PMID: 29992131 PMCID: PMC6028745 DOI: 10.1183/23120541.00015-2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/28/2018] [Indexed: 12/29/2022] Open
Abstract
Compartmentalisation of the respiratory tract microbiota in patients with different chronic obstructive pulmonary disease (COPD) severity degrees needs to be systematically investigated. In addition, it is unknown if the inflammatory and emphysematous milieux in patients with COPD are associated with changes in the respiratory tract microbiota and host macrophage gene expression. We performed a cross-sectional study to compare non-COPD controls (n=10) to COPD patients (n=32) with different disease severity degrees. Samples (n=187) were obtained from different sites of the upper and lower respiratory tract. Microbiota analyses were performed by 16S ribosomal RNA gene sequencing and host gene expression analyses by quantitative real-time PCR of distinct markers of bronchoalveolar lavage cells. Overall, the microbial communities of severe COPD (Global Initiative for Chronic Obstructive Lung Disease (GOLD) grade 3/4) patients clustered significantly differently to controls and less severe COPD (GOLD 1/2) patients (permutational multivariate ANOVA (MANOVA), p=0.001). However, we could not detect significant associations between the different sampling sites in the lower airways. In addition, the chosen set of host gene expression markers significantly separated COPD GOLD 3/4 patients, and we found correlations between the composition of the microbiota and the host data. In conclusion, this study demonstrates associations between host gene expression and microbiota profiles that may influence the course of COPD. Associations of the host immune response and a disordered microbiota in patients with different COPD severity degreeshttp://ow.ly/h2mW30k9Nua
Collapse
Affiliation(s)
- Moana Mika
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern Switzerland
| | - Izabela Nita
- Pulmonary Medicine Laboratory, Dept of Biomedical Research, University of Bern, Bern, Switzerland
| | - Laura Morf
- Pulmonary Medicine Laboratory, Dept of Biomedical Research, University of Bern, Bern, Switzerland
| | - Weihong Qi
- Functional Genomics Center, Swiss Federal Institute of Technology Zurich/University of Zurich, Zurich, Switzerland
| | - Seraina Beyeler
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern Switzerland.,Pulmonary Medicine Laboratory, Dept of Biomedical Research, University of Bern, Bern, Switzerland
| | - Eric Bernasconi
- Service de Pneumologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Benjamin J Marsland
- Service de Pneumologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Sebastian R Ott
- Dept of Pulmonary Medicine, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Christophe von Garnier
- Pulmonary Medicine Laboratory, Dept of Biomedical Research, University of Bern, Bern, Switzerland.,Dept of Pulmonary Medicine, Bern University Hospital, Inselspital, Bern, Switzerland.,These authors contributed equally
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Department of Infectious Diseases, Bern University Hospital, Bern, Switzerland.,These authors contributed equally
| |
Collapse
|
26
|
The Lung Microbiome in Idiopathic Pulmonary Fibrosis: A Promising Approach for Targeted Therapies. Int J Mol Sci 2017; 18:ijms18122735. [PMID: 29258183 PMCID: PMC5751336 DOI: 10.3390/ijms18122735] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 01/31/2023] Open
Abstract
This review focuses on the role of the lung microbiome in idiopathic pulmonary fibrosis. Although historically considered sterile, bacterial communities have now been well documented in lungs both in healthy and pathological conditions. Studies in idiopathic pulmonary fibrosis (IPF) suggest that increased bacterial burden and/or abundance of potentially pathogenic bacteria may drive disease progression, acute exacerbations, and mortality. More recent work has highlighted the interaction between the lung microbiome and the innate immune system in IPF, strengthening the argument for the role of both host and environment interaction in disease pathogenesis. Existing published data suggesting that the lung microbiome may represent a therapeutic target, via antibiotic administration, immunization against pathogenic organisms, or treatment directed at gastroesophageal reflux. Taken altogether, published literature suggests that the lung microbiome might serve in the future as a prognostic biomarker, a therapeutic target, and/or provide an explanation for disease pathogenesis in IPF.
Collapse
|