1
|
Versi A, Azim A, Ivan FX, Abdel-Aziz MI, Bates S, Riley J, Maitland-Van Der Zee AH, Dahlen SE, Djukanovic R, Chotirmall SH, Howarth P, Kermani NZ, Chung KF, Adcock IM. Host-microbial interactions differ with age of asthma onset. Eur Respir J 2024; 64:2400428. [PMID: 39190793 PMCID: PMC11375513 DOI: 10.1183/13993003.00428-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/02/2024] [Indexed: 08/29/2024]
Affiliation(s)
- Ali Versi
- National Heart and Lung Institute and Data Science Institute, Imperial College London, London, UK
| | - Adnan Azim
- Faculty of Medicine, Southampton University, Southampton, UK
| | | | - Mahmoud I Abdel-Aziz
- Amsterdam University Medical Centers, Department of Pulmonary Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - Stewart Bates
- Respiratory Therapeutic Unit, GSK, Stockley Park, UK
| | - John Riley
- Respiratory Therapeutic Unit, GSK, Stockley Park, UK
| | - Anke H Maitland-Van Der Zee
- Amsterdam University Medical Centers, Department of Pulmonary Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - Sven-Erik Dahlen
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Peter Howarth
- Faculty of Medicine, Southampton University, Southampton, UK
| | - Nazanin Zounemat Kermani
- National Heart and Lung Institute and Data Science Institute, Imperial College London, London, UK
| | - Kian Fan Chung
- National Heart and Lung Institute and Data Science Institute, Imperial College London, London, UK
| | - Ian M Adcock
- National Heart and Lung Institute and Data Science Institute, Imperial College London, London, UK
| |
Collapse
|
2
|
Kim YC, Sohn KH, Kang HR. Gut microbiota dysbiosis and its impact on asthma and other lung diseases: potential therapeutic approaches. Korean J Intern Med 2024; 39:746-758. [PMID: 39252487 PMCID: PMC11384250 DOI: 10.3904/kjim.2023.451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/08/2024] [Accepted: 04/07/2024] [Indexed: 09/11/2024] Open
Abstract
The emerging field of gut-lung axis research has revealed a complex interplay between the gut microbiota and respiratory health, particularly in asthma. This review comprehensively explored the intricate relationship between these two systems, focusing on their influence on immune responses, inflammation, and the pathogenesis of respiratory diseases. Recent studies have demonstrated that gut microbiota dysbiosis can contribute to asthma onset and exacerbation, prompting investigations into therapeutic strategies to correct this imbalance. Probiotics and prebiotics, known for their ability to modulate gut microbial compositions, were discussed as potential interventions to restore immune homeostasis. The impact of antibiotics and metabolites, including short-chain fatty acids produced by the gut microbiota, on immune regulation was examined. Fecal microbiota transplantation has shown promise in various diseases, but its role in respiratory disorders is not established. Innovative approaches, including mucus transplants, inhaled probiotics, and microencapsulation strategies, have been proposed as novel therapeutic avenues. Despite challenges, including the sophisticated adaptability of microbial communities and the need for mechanistic clarity, the potential for microbiota-based interventions is considerable. Collaboration between researchers, clinicians, and other experts is essential to unravel the complexities of the gut-lung axis, paving a way for innovative strategies that could transform the management of respiratory diseases.
Collapse
Affiliation(s)
- Young-Chan Kim
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Kyoung-Hee Sohn
- Division of Respiratory, Allergy and Critical Care Medicine, Department of Internal Medicine, Kyung Hee University Hospital, Seoul, Korea
| | - Hye-Ryun Kang
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Ekpruke CD, Alford R, Rousselle D, Babayev M, Sharma S, Parker E, Davis K, Hemmerich C, Rusch DB, Silveyra P. Sex-specific alterations in the gut and lung microbiome of allergen-induced mice. FRONTIERS IN ALLERGY 2024; 5:1451846. [PMID: 39210977 PMCID: PMC11358121 DOI: 10.3389/falgy.2024.1451846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Recent evidence has demonstrated that the microbiome is a driver of the underlying pathophysiological mechanisms of respiratory disease. Studies have indicated that bacterial metabolites produced in the gut and lung can impact lung inflammation and immune cell activity, affecting disease pathology. Despite asthma being a disease with marked sex differences, experimental work linking microbiomes and asthma has not considered the sex variable. Methods To test the hypothesis that the lung and gut microbial composition impacts allergic lung inflammation in a sex-specific manner, we evaluated lung and gut microbiome alterations in a mouse model of allergic inflammation and assessed their association with lung function and inflammation phenotypes. For this, we exposed male and female adult C57BL/6J mice intranasally to 25 µg of a house dust mite extract mix (HDM) daily, or phosphate-buffered saline (PBS) as control, for 5 weeks (n = 4-6/group). DNA from fecal pellets collected before and after the 5-week treatment, and from lung tissue collected at endpoint, was extracted using the ZymoBIOMICS®-96 MagBead DNA Kit and analyzed to determine the 16S microbiome via Targeted Metagenomic Sequencing. Results The HDM treatment induced a sex-specific allergic inflammation phenotype with significantly higher neutrophilia, lymphocytosis, inflammatory gene expression, and histopathological changes in females than males following exposure to HDM, but higher airway hyperresponsiveness (AHR) in males than females. In addition, sex-specific lung gene expression and associated pathways were identified HDM mix after challenge. These changes corresponded to sex-specific alterations in the gut microbiome, where the Firmicutes to Bacteroidetes ratio (F:B) was significantly reduced in fecal samples from only male mice after HDM challenge, and alpha diversity was increased in males, but decreased in females, after 5-weeks of HDM treatment. Discussion Overall, our findings indicate that intranasal allergen challenge triggers sex-specific changes in both gut and lung microbiomes, and induces sex-specific lung inflammation, AHR, and lung inflammatory gene expression pathways, suggesting a contribution of the lung-gut axis in allergic airway disease.
Collapse
Affiliation(s)
- Carolyn Damilola Ekpruke
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Rachel Alford
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Dustin Rousselle
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Maksat Babayev
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Shikha Sharma
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Erik Parker
- Department of Epidemiology and Biostatistics, Biostatistics Consulting Center, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Kyle Davis
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Christopher Hemmerich
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, United States
| | - Douglas B. Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, United States
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
4
|
Quoc QL, Cao TBT, Moon JY, Jang JH, Shin YS, Choi Y, Ryu MS, Park HS. Contribution of monocyte and macrophage extracellular traps to neutrophilic airway inflammation in severe asthma. Allergol Int 2024; 73:81-93. [PMID: 37365039 DOI: 10.1016/j.alit.2023.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Increased blood/sputum neutrophil counts are related to poor clinical outcomes of severe asthma (SA), where we hypothesized that classical monocytes (CMs)/CM-derived macrophages (Mφ) are involved. We aimed to elucidate the mechanisms of how CMs/Mφ induce the activation of neutrophils/innate lymphoid cells (ILCs) in SA. METHODS Serum levels of monocyte chemoattractant protein-1 (MCP-1) and soluble suppression of tumorigenicity 2 (sST2) were measured from 39 patients with SA and 98 those with nonsevere asthma (NSA). CMs/Mφ were isolated from patients with SA (n = 19) and those with NSA (n = 18) and treated with LPS/interferon-gamma. Monocyte/M1Mφ extracellular traps (MoETs/M1ETs) were evaluated by western blotting, immunofluorescence, and PicoGreen assay. The effects of MoETs/M1ETs on neutrophils, airway epithelial cells (AECs), ILC1, and ILC3 were assessed in vitro and in vivo. RESULTS The SA group had significantly higher CM counts with increased migration as well as higher levels of serum MCP-1/sST2 than the NSA group. Moreover, the SA group had significantly greater production of MoETs/M1ETs (from CMs/M1Mφ) than the NSA group. The levels of MoETs/M1ETs were positively correlated with blood neutrophils and serum levels of MCP-1/sST2, but negatively correlated with FEV1%. In vitro/in vivo studies demonstrated that MoETs/M1ETs could activate AECs, neutrophils, ILC1, and ILC3 by increased migration as well as proinflammatory cytokine production. CONCLUSIONS CM/Mφ-derived MoETs/M1ETs could contribute to asthma severity by enhancing neutrophilic airway inflammation in SA, where modulating CMs/Mφ may be a potential therapeutic option.
Collapse
Affiliation(s)
- Quang Luu Quoc
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Thi Bich Tra Cao
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Ji-Young Moon
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Jae-Hyuk Jang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Min Sook Ryu
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
5
|
Mallick I, Panchal P, Kadam S, Mohite P, Scheele J, Seiz W, Agarwal A, Sharma OP. In-silico identification and prioritization of therapeutic targets of asthma. Sci Rep 2023; 13:15706. [PMID: 37735578 PMCID: PMC10514284 DOI: 10.1038/s41598-023-42803-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Asthma is a "common chronic disorder that affects the lungs causing variable and recurring symptoms like repeated episodes of wheezing, breathlessness, chest tightness and underlying inflammation. The interaction of these features of asthma determines the clinical manifestations and severity of asthma and the response to treatment" [cited from: National Heart, Lung, and Blood Institute. Expert Panel 3 Report. Guidelines for the Diagnosis and Management of Asthma 2007 (EPR-3). Available at: https://www.ncbi.nlm.nih.gov/books/NBK7232/ (accessed on January 3, 2023)]. As per the WHO, 262 million people were affected by asthma in 2019 that leads to 455,000 deaths ( https://www.who.int/news-room/fact-sheets/detail/asthma ). In this current study, our aim was to evaluate thousands of scientific documents and asthma associated omics datasets to identify the most crucial therapeutic target for experimental validation. We leveraged the proprietary tool Ontosight® Discover to annotate asthma associated genes and proteins. Additionally, we also collected and evaluated asthma related patient datasets through bioinformatics and machine learning based approaches to identify most suitable targets. Identified targets were further evaluated based on the various biological parameters to scrutinize their candidature for the ideal therapeutic target. We identified 7237 molecular targets from published scientific documents, 2932 targets from genomic structured databases and 7690 dysregulated genes from the transcriptomics and 560 targets from genomics mutational analysis. In total, 18,419 targets from all the desperate sources were analyzed and evaluated though our approach to identify most promising targets in asthma. Our study revealed IL-13 as one of the most important targets for asthma with approved drugs on the market currently. TNF, VEGFA and IL-18 were the other top targets identified to be explored for therapeutic benefit in asthma but need further clinical testing. HMOX1, ITGAM, DDX58, SFTPD and ADAM17 were the top novel targets identified for asthma which needs to be validated experimentally.
Collapse
Affiliation(s)
- Ishita Mallick
- Innoplexus Consulting Pvt. Ltd, 7th Floor, Midas Tower, Next to STPI Building, Phase 1, Hinjewadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Pradnya Panchal
- Innoplexus Consulting Pvt. Ltd, 7th Floor, Midas Tower, Next to STPI Building, Phase 1, Hinjewadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Smita Kadam
- Innoplexus Consulting Pvt. Ltd, 7th Floor, Midas Tower, Next to STPI Building, Phase 1, Hinjewadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Priyanka Mohite
- Innoplexus Consulting Pvt. Ltd, 7th Floor, Midas Tower, Next to STPI Building, Phase 1, Hinjewadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Jürgen Scheele
- Innoplexus AG, Frankfurter Str. 27, 65760, Eschborn, Germany
| | - Werner Seiz
- Innoplexus AG, Frankfurter Str. 27, 65760, Eschborn, Germany
| | - Amit Agarwal
- Innoplexus Consulting Pvt. Ltd, 7th Floor, Midas Tower, Next to STPI Building, Phase 1, Hinjewadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | | |
Collapse
|
6
|
Frippiat T, Art T, Tosi I. Airway Hyperresponsiveness, but Not Bronchoalveolar Inflammatory Cytokines Profiles, Is Modified at the Subclinical Onset of Severe Equine Asthma. Animals (Basel) 2023; 13:2485. [PMID: 37570294 PMCID: PMC10417247 DOI: 10.3390/ani13152485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Airway hyperresponsiveness (AHR) and inflammation are both observed in human and equine asthma. The aim of this study was to assess the timeline and relationship of both features at the subclinical onset of severe equine asthma (SEA). First, the repeatability of the pulmonary function test (PFT) using impulse oscillometry system, and the methacholine bronchoprovocation test (BPT) were assessed at a 1-day interval on six SEA horses in clinical remission and six control horses. Then, clinical and ancillary tests were performed before and after a 1-week low-dust environmental challenge, including weighted clinical score, respiratory endoscopy, bronchoalveolar fluid cytology, PFT, and BPT. Both PFT and BPT showed acceptable repeatability. No test allowed SEA horses in clinical remission to be distinguished from control, unlike in human patients. Because of the low-dust environment, no significant difference was observed in the results of clinical and conventional ancillary examinations after the challenge. However, SEA horses showed increased AHR after the environmental challenge. At that stage, no signs of inflammation or changes in pro-inflammatory cytokines profiles (quantification and gene expression) were observed, suggesting AHR is present at an earlier stage of equine asthma than airway inflammation. This feature indicates SEA could present in a different disease pathway than neutrophilic human asthma.
Collapse
Affiliation(s)
- Thibault Frippiat
- Equine Sports Medicine Centre, FARAH Research Centre, Faculty of Veterinary Medicine, University of Liège, 4000 Liege, Belgium
- Sportpaardenarts–Equine Sports Medicine, 1250AD Laren, The Netherlands
| | - Tatiana Art
- Equine Sports Medicine Centre, FARAH Research Centre, Faculty of Veterinary Medicine, University of Liège, 4000 Liege, Belgium
| | - Irene Tosi
- Equine Sports Medicine Centre, FARAH Research Centre, Faculty of Veterinary Medicine, University of Liège, 4000 Liege, Belgium
| |
Collapse
|
7
|
Lin H, Yi J. CTRP3 regulates NF-κB and TGFβ1/Smad3 pathways to alleviate airway inflammation and remodeling in asthmatic mice induced by OVA. Allergol Immunopathol (Madr) 2023; 51:31-39. [PMID: 37422777 DOI: 10.15586/aei.v51i4.867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/17/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Asthma is a common illness with chronic airway inflammation. C1q/tumor necrosis factor (TNF)-related protein 3 (CTRP3) plays a vital role ininflammatory response, but its effect on asthma is imprecise. Herein, we analyzed the functions of CTRP3 in asthma. METHODS The BALB/c mice were randomized into four groups: control, ovalbumin (OVA), OVA+vector, and OVA+CTRP3. The asthmatic mice model was established by OVA stimulation. Overexpression of CTRP3 was implemented by the transfection of corresponding adeno-associated virus 6 (AAV6). The contents of CTRP3, E-cadherin, N-cadherin, smooth muscle alpha-actin (α-SMA), phosphorylated (p)-p65/p65, transforming growth factor-beta 1 (TGFβ1), and p-Smad3/Smad3 were determined by Western blot analysis. The quantity of total cells, eosinophils, neutrophils, and lymphocytes in bronchoalveolar lavage fluid (BALF) was assessed by using a hemocytometer. The contents of tumor necrosis factor-α and interleukin-1β in BALF were examined by enzyme-linked immunesorbent serologic assay. The lung function indicators and airway resistance (AWR) were measured. The bronchial and alveolar structures were evaluated by hematoxylin and eosin staining and sirius red staining. RESULTS The CTRP3 was downregulated in mice of OVA groups; however, AAV6-CTRP3 treatment markedly upregulated the expression of CTRP3. Upregulation of CTRP3 diminished asthmatic airway inflammation by decreasing the number of inflammatory cells and the contents of proinflammatory factors. CTRP3 markedly lessened AWR and improved lung function in OVA-stimulated mice. Histological analysis found that CTRP3 alleviated OVA-induced airway remodeling in mice. Moreover, CTRP3 modulated NF-κB and TGFβ1/Smad3 pathways in OVA-stimulated mice. CONCLUSION CTRP3 alleviated airway inflammation and remodeling in OVA-induced asthmatic mice via regulating NF-κB and TGFβ1/Smad3 pathways.
Collapse
Affiliation(s)
- Hai Lin
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jinrong Yi
- Department of Anesthesiology, Ganzhou Women and Children's Health Care Hospital, Ganzhou, Jiangxi, China;
| |
Collapse
|
8
|
Quoc QL, Cao TBT, Kim SH, Choi Y, Ryu MS, Choi Y, Park HS, Shin YS. Endocrine-disrupting chemical exposure augments neutrophilic inflammation in severe asthma through the autophagy pathway. Food Chem Toxicol 2023; 175:113699. [PMID: 36871881 DOI: 10.1016/j.fct.2023.113699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/07/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
Corticosteroid resistance, progressive lung function decline, and frequent asthma exacerbations are the hallmarks of neutrophilic asthma (NA). However, the potential contributors and their mechanisms of NA aggravation have not yet been fully clarified. This study was conducted to assess the precise mechanism and inflammatory effects of endocrine-disrupting chemicals using mono-n-butyl phthalate (MnBP) on an NA model. BALB/c mice from normal control and LPS/OVA-induced NA groups were treated with or without MnBP. The effects of MnBP on the airway epithelial cells (AECs), macrophages (Mφ), and neutrophils were investigated in vitro and in vivo. NA mice exposed to MnBP had significantly increased airway hyperresponsiveness, total and neutrophil cell counts in the bronchoalveolar lavage fluid, and the percentage of M1Mφ in the lung tissues compared to those non-exposed to MnBP. In in vitro study, MnBP induced the human neutrophil activation to release neutrophil DNA extracellular traps, Mφ polarizing toward M1Mφ, and AEC damage. Treatment with hydroxychloroquine (an autophagy inhibitor) reduced the effects of MnBP in vivo and in vitro. The results of our study suggest that MnBP exposure may increase the risk of neutrophilic inflammation in severe asthma and autophagy pathway-targeted therapeutics can help control MnBP-induced harmful effects in asthma.
Collapse
Affiliation(s)
- Quang Luu Quoc
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Thi Bich Tra Cao
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Seo-Hee Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Yeji Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Min Sook Ryu
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
9
|
The Influence of Severity and Disease Duration on TNF Receptors' Redistribution in Asthma and Rheumatoid Arthritis. Cells 2022; 12:cells12010005. [PMID: 36611799 PMCID: PMC9818723 DOI: 10.3390/cells12010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
One of the mechanisms of cellular dysfunction during the chronization of immune-system-mediated inflammatory diseases is a change in the profile of expression and co-expression of receptors on cells. The aim of this study was to compare patterns of redistribution of TNF receptors (TNFRs) among patients with different durations of rheumatoid arthritis (RA) or asthma. Subgroup analysis was performed on RA (n = 41) and asthma (n = 22) patients with disease duration<10 years and >10 years and on 30 comparable healthy individuals. The co-expression profile of TNFR1 and TNFR2 was assessed in T cells, B cells, monocytes, regulatory T cells, T-helper subsets, and cytotoxic T-lymphocyte subsets. Percentages of cells with different co-expression combinations and receptor density per cell were estimated. Longer disease duration was significantly associated with a redistribution of receptors in immunocompetent cell subsets with an increase in the expression of TNFR1 in asthma but did not correlate with significant unidirectional changes in receptor expression in RA. In asthma, a higher proportion of cells with a certain type of TNF receptor (as compared with the healthy group) was correlated with a simultaneous greater density of this receptor type. In RA, an inverse correlation was observed (compensatory lower receptor density). Mechanisms of long-term changes in the expression of TNF receptors differ significantly between the diseases of autoimmune and allergic etiology. The formation of irreversible morphostructural alterations was strongly correlated with changes in the expression of TNFR1 in asthma and with changes in the expression of TNFR2 in RA.
Collapse
|
10
|
Alshevskaya A, Zhukova J, Kireev F, Lopatnikova J, Evsegneeva I, Demina D, Nepomniashchikch V, Gladkikh V, Karaulov A, Sennikov S. Redistribution of TNF Receptor 1 and 2 Expression on Immune Cells in Patients with Bronchial Asthma. Cells 2022; 11:cells11111736. [PMID: 35681430 PMCID: PMC9179889 DOI: 10.3390/cells11111736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Background: The co-expression patterns of type 1 and 2 tumor necrosis factor (TNF)-α membrane receptors (TNFR1/TNFR2) are associated with the presence, stage, and activity of allergic diseases. The aim of this study was to assess the expression levels and dynamics of TNFRs on immune cells and to assess associations between their expression and severity of bronchial asthma (BA). Methods: Patients with severe (n = 8), moderate (n = 10), and mild (n = 4) BA were enrolled. As a comparison group, data from 46 healthy volunteers (HV) were accessed. Co-expression of TNFR1/2 was evaluated as a percentage of cells and the number of receptors of each type per cell. Multivariate logistic regression analysis was used to identify diagnostic biomarkers of BA. Results: More than 90% of the monocytes in patients with mild BA were TNFR1+TNFR2+ but had significantly lower TNFR1 expression density compared with HV (7.82- to 14.08-fold, depending on disease severity). Lower percentages of the TNFR+ B-lymphocytes were observed in combination with significantly lower receptors density in BA compared with HV (2.59- to 11.64-fold for TNFR1 and 1.72- to 3.4-fold for TNFR2, depending on disease severity). The final multivariate model for predicting the presence of BA included the percentage of double-positive CD5+ B-lymphocytes and average number of TNFR1 molecules expressed on cytotoxic naive T-lymphocytes and T-helper cells (R2 = 0.87). Conclusions: The co-expression patterns of TNFRs on immune cells in BA differed significantly compared with HV. The expression differences were associated with disease severity. TNFR1 expression changes were key parameters that discriminated patients with BA from those with HV.
Collapse
Affiliation(s)
- Alina Alshevskaya
- Federal State Budgetary Scientific Institution, Research Institute of Fundamental and Clinical Immunology (RIFCI), Novosibirsk 630099, Russia; (A.A.); (J.Z.); (F.K.); (J.L.); (D.D.); (V.N.)
| | - Julia Zhukova
- Federal State Budgetary Scientific Institution, Research Institute of Fundamental and Clinical Immunology (RIFCI), Novosibirsk 630099, Russia; (A.A.); (J.Z.); (F.K.); (J.L.); (D.D.); (V.N.)
| | - Fedor Kireev
- Federal State Budgetary Scientific Institution, Research Institute of Fundamental and Clinical Immunology (RIFCI), Novosibirsk 630099, Russia; (A.A.); (J.Z.); (F.K.); (J.L.); (D.D.); (V.N.)
| | - Julia Lopatnikova
- Federal State Budgetary Scientific Institution, Research Institute of Fundamental and Clinical Immunology (RIFCI), Novosibirsk 630099, Russia; (A.A.); (J.Z.); (F.K.); (J.L.); (D.D.); (V.N.)
| | - Irina Evsegneeva
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov, First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow 101000, Russia; (I.E.); (A.K.)
| | - Daria Demina
- Federal State Budgetary Scientific Institution, Research Institute of Fundamental and Clinical Immunology (RIFCI), Novosibirsk 630099, Russia; (A.A.); (J.Z.); (F.K.); (J.L.); (D.D.); (V.N.)
| | - Vera Nepomniashchikch
- Federal State Budgetary Scientific Institution, Research Institute of Fundamental and Clinical Immunology (RIFCI), Novosibirsk 630099, Russia; (A.A.); (J.Z.); (F.K.); (J.L.); (D.D.); (V.N.)
| | - Victor Gladkikh
- Biostatistics and Clinical Trials Center, Novosibirsk 630099, Russia;
| | - Alexander Karaulov
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov, First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow 101000, Russia; (I.E.); (A.K.)
| | - Sergey Sennikov
- Federal State Budgetary Scientific Institution, Research Institute of Fundamental and Clinical Immunology (RIFCI), Novosibirsk 630099, Russia; (A.A.); (J.Z.); (F.K.); (J.L.); (D.D.); (V.N.)
- Correspondence: ; Tel.: +7-(383)-2221910
| |
Collapse
|
11
|
Gautam Y, Johansson E, Mersha TB. Multi-Omics Profiling Approach to Asthma: An Evolving Paradigm. J Pers Med 2022; 12:jpm12010066. [PMID: 35055381 PMCID: PMC8778153 DOI: 10.3390/jpm12010066] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Asthma is a complex multifactorial and heterogeneous respiratory disease. Although genetics is a strong risk factor of asthma, external and internal exposures and their interactions with genetic factors also play important roles in the pathophysiology of asthma. Over the past decades, the application of high-throughput omics approaches has emerged and been applied to the field of asthma research for screening biomarkers such as genes, transcript, proteins, and metabolites in an unbiased fashion. Leveraging large-scale studies representative of diverse population-based omics data and integrating with clinical data has led to better profiling of asthma risk. Yet, to date, no omic-driven endotypes have been translated into clinical practice and management of asthma. In this article, we provide an overview of the current status of omics studies of asthma, namely, genomics, transcriptomics, epigenomics, proteomics, exposomics, and metabolomics. The current development of the multi-omics integrations of asthma is also briefly discussed. Biomarker discovery following multi-omics profiling could be challenging but useful for better disease phenotyping and endotyping that can translate into advances in asthma management and clinical care, ultimately leading to successful precision medicine approaches.
Collapse
|