1
|
Meyerholz DK, Burrough ER, Kirchhof N, Anderson DJ, Helke KL. Swine models in translational research and medicine. Vet Pathol 2024; 61:512-523. [PMID: 38197394 DOI: 10.1177/03009858231222235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Swine are increasingly studied as animal models of human disease. The anatomy, size, longevity, physiology, immune system, and metabolism of swine are more like humans than traditional rodent models. In addition, the size of swine is preferred for surgical placement and testing of medical devices destined for humans. These features make swine useful for biomedical, pharmacological, and toxicological research. With recent advances in gene-editing technologies, genetic modifications can readily and efficiently be made in swine to study genetic disorders. In addition, gene-edited swine tissues are necessary for studies testing and validating xenotransplantation into humans to meet the critical shortfall of viable organs versus need. Underlying all of these biomedical applications, the knowledge of husbandry, background diseases and lesions, and biosecurity needs are important for productive, efficient, and reproducible research when using swine as a human disease model for basic research, preclinical testing, and translational studies.
Collapse
|
2
|
Gu C, Yuan H, Yang C, Xie F, Chen J, Zhu L, Jiang Y, Sun J. Transbronchial cryoablation in peripheral lung parenchyma with a novel thin cryoprobe and initial clinical testing. Thorax 2024; 79:633-643. [PMID: 38242710 PMCID: PMC11187365 DOI: 10.1136/thorax-2023-220227] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 12/23/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND Transbronchial cryoablation shows potential as a local therapy for inoperable peripheral lung cancer. However, its clinical application for peripheral pulmonary lesions has not been reported yet. METHODS An improved cryoprobe with an 8-mm-long, 1.9-mm-wide cryotip was used. Initially, the safety and effectiveness of this cryoprobe were assessed in an in vivo porcine model. Transbronchial cryoablation with 2 or 3 freeze-thaw cycles (10 min or 15 min in each freezing time) was performed in 18 pigs under CT monitoring. Radiological and pathological examinations were performed to evaluate the extent of cryoablation. Subsequently, nine patients with stage IA peripheral lung cancer or metastases underwent transbronchial cryoablation with this cryoprobe under the guidance of navigation bronchoscopy and cone-beam CT. Technical success, safety and outcomes were assessed. RESULTS 36 cryoablation procedures were performed successfully without any major complications in the porcine model. The extent of cryoablation increased with freezing time and the number of freeze-thaw cycles, which peaked at 24 hours and then gradually decreased. Pathological results showed a change from massive haemorrhage at 24 hours to fibrous hyperplasia with chronic inflammation after 4 weeks. In the clinical trial, 10 cryoablations were performed on 9 tumours with a technical success rate of 100%. One mild treatment-related complication occurred. Of the nine tumours, seven achieved complete ablation, while two exhibited incomplete ablation and subsequent local progression at 6 months. CONCLUSION Our initial experience indicated that transbronchial cryoablation was a safe and feasible procedure for non-surgical peripheral stage IA lung cancer or pulmonary metastases. TRIAL REGISTRATION NUMBER ChiCTR2200061544.
Collapse
Affiliation(s)
- Chuanjia Gu
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai, China
| | - Haibin Yuan
- Department of Emergency, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chi Yang
- Research and Development Department, AccuTarget MediPharma (Shanghai) Co., Ltd, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Fangfang Xie
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai, China
| | - Junxiang Chen
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai, China
| | - Lei Zhu
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifeng Jiang
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayuan Sun
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai, China
| |
Collapse
|
3
|
Chang ATC, Chan JWY, Siu ICH, Lau RWH, Ng CSH. Safety and feasibility of transbronchial microwave ablation for subpleural lung nodules. Asian Cardiovasc Thorac Ann 2024; 32:294-305. [PMID: 38347699 DOI: 10.1177/02184923241228323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2024]
Abstract
BACKGROUND Transbronchial microwave ablation in treating lung nodules is gaining popularity. However, microwave ablation in subpleural lung nodules raised concerns about pleural-based complications due to the proximity between the pleura and the ablation zone. METHODS Patients who underwent transbronchial microwave ablation between March 2019 and November 2022 were included in this analysis. The lung nodules were categorized into the subpleural group-less than 5 mm distance to the nearest pleural surface; the deep nodule group-larger or equal to 5 mm distance to the nearest pleural surface. A review of the safety profile of subpleural lung nodule ablation was conducted. RESULTS Eighty-two lung nodules (n = 82) from 77 patients were treated. The mean nodule size was 14.2 ± 5.50 mm. The technical success rate was 100%. The mean procedural time was 133 min. No statistically significant differences were detected in the complication rate and the length of stay between the subpleural and deep nodule groups. Complications occured in 21 nodules (25.6%). No minor pneumothorax was reported. Total five cases of pneumothorax required drainage were observed (6.06% in subpleural nodules [n = 2] vs. 6.12% in deep nodules [n = 3], p = 0.991). Total seven cases of pleuritic chest pain were observed (12.1% in subpleural nodules [n = 4] vs. 6.12% in deep nodules [n = 3], p = 0.340). CONCLUSIONS This single-center retrospective analysis found no significant difference in the safety outcomes between subpleural and nonsubpleural lung nodule ablation. The overall rate of complications was low in the cohort. This demonstrated that transbronchial microwave was feasible and safe for most lung nodules.
Collapse
Affiliation(s)
- Aliss Tsz Ching Chang
- Division of Cardiothoracic Surgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Joyce Wing Yan Chan
- Division of Cardiothoracic Surgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Ivan Chi Hin Siu
- Division of Cardiothoracic Surgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Rainbow Wing Hung Lau
- Division of Cardiothoracic Surgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Calvin Sze Hang Ng
- Division of Cardiothoracic Surgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| |
Collapse
|
4
|
Fang Z, Wu C, Cao L, Wang T, Hong X, Moser MAJ, Zhang W, Zhang B. Development of non-invasive flexible directional microwave ablation for central lung cancer: a simulation study. Phys Med Biol 2024; 69:09NT04. [PMID: 38527368 DOI: 10.1088/1361-6560/ad3795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Transbronchial microwave ablation (MWA) with flexible antennas has gradually become an attractive alternative to percutaneous MWA for lung cancer due to its characteristic of non-invasiveness. However, flexible antennas for the precision ablation of lung tumors that are adjacent to critical bronchial structures are still not available. In this study, a non-invasive flexible directional (FD) antenna for early stage central lung tumors surrounding the bronchia was proposed. A comprehensive numerical MWA model with the FD antenna was developed in a real human-sized left lung model. The structure of the antenna and the treatment protocol were optimized by a generic algorithm for the precision ablation of two cases of early stage central lung cancer (i.e. spherical-like and ellipsoidal tumors). The electromagnetic efficiency of the optimized antenna was also improved by implementing an optimizedπ-matching network for impedance matching. The results indicate that the electromagnetic energy of MWA can be restricted to a particular area for precision ablation of specific lung tumors using the FD antenna. This study contributes to the field of lung cancer management with MWA.
Collapse
Affiliation(s)
- Zheng Fang
- Intelligent Energy-based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, People's Republic of China
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Chen Wu
- Intelligent Energy-based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, People's Republic of China
| | - Lin Cao
- Department of Automatic Control and Systems Engineering, the University of Sheffield, Sheffield, United Kingdom
| | - Tao Wang
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaowu Hong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
- Research Institute of Fudan University, Ningbo, People's Republic of China
| | - Michael A J Moser
- Department of Surgery, University of Saskatchewan, Saskatoon, Canada
| | - Wenjun Zhang
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Bing Zhang
- Intelligent Energy-based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Vidjak K, Farina L, Challapalli RS, Quinn AM, O'Halloran M, Lowery A, Ruvio G, Cavagnaro M. Histology-validated electromagnetic characterization of ex-vivo ovine lung tissue for microwave-based medical applications. Sci Rep 2024; 14:5940. [PMID: 38467672 PMCID: PMC10928158 DOI: 10.1038/s41598-024-55035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
Microwave thermal ablation is an established therapeutic technique for treating malignant tissue in various organs. Its success greatly depends on the knowledge of dielectric properties of the targeted tissue and on how they change during the treatment. Innovation in lung navigation has recently increased the clinical interest in the transbronchial microwave ablation treatment of lung cancer. However, lung tissue is not largely characterized, thus its dielectric properties investigation prior and post ablation is key. In this work, dielectric properties of ex-vivo ovine lung parenchyma untreated and ablated at 2.45 GHz were recorded in the 0.5-8 GHz frequency range. The measured dielectric properties were fitted to 2-pole Cole-Cole relaxation model and the obtained model parameters were compared. Based on observed changes in the model parameters, the physical changes of the tissue post-ablation were discussed and validated through histology analysis. Additionally, to investigate the link of achieved results with the rate of heating, another two sets of samples, originating from both ovine and porcine tissues, were heated with a microwave oven for different times and at different powers. Dielectric properties were measured in the same frequency range. It was found that lung tissue experiences a different behavior according to heating rates: its dielectric properties increase post-ablation while a decrease is found for low rates of heating. It is hypothesized, and validated by histology, that during ablation, although the tissue is losing water, the air cavities deform, lowering air content and increasing the resulting tissue properties.
Collapse
Affiliation(s)
- Klementina Vidjak
- Department of Information Engineering, Electronics, and Telecommunications, Sapienza University of Rome, Rome, Italy
| | | | - Ritihaas Surya Challapalli
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, Galway, Ireland
| | - Anne Marie Quinn
- Department of Anatomic Pathology, University Hospital Galway, Galway, Ireland
| | - Martin O'Halloran
- Translational Medical Device Lab, National University of Ireland Galway, Galway, Ireland
| | - Aoife Lowery
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, Galway, Ireland
| | | | - Marta Cavagnaro
- Department of Information Engineering, Electronics, and Telecommunications, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
6
|
Sebek J, Goh S, Beard WL, Biller DS, Hodgson DS, Highland MA, Smith A, Hemphill N, Yu KC, Myers RA, Lam S, Wibowo H, Prakash P. Bronchoscopy-Guided High-Power Microwave Ablation in an in vivo Porcine Lung Model. Biomed Hub 2024; 9:108-117. [PMID: 39145138 PMCID: PMC11324231 DOI: 10.1159/000539864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/12/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction Percutaneous microwave ablation (MWA) is clinically accepted for the treatment of lung tumors and oligometastatic disease. Bronchoscopic MWA is under development and evaluation in the clinical setting. We previously reported on the development of a bronchoscopy-guided MWA system integrated with clinical virtual bronchoscopy and navigation and demonstrated the feasibility of transbronchial MWA, using a maximum power of 60 W at the catheter input. Here, we assessed the performance of bronchoscopy-guided MWA with an improved catheter (maximum power handling of up to 120 W) in normal porcine lung in vivo (as in the previous study). Methods A total of 8 bronchoscopy-guided MWA were performed (n = 2 pigs; 4 ablations per pig) with power levels of 90 W and 120 W applied for 5 and 10 min, respectively. Virtual bronchoscopy planning and navigation guided transbronchial or endobronchial positioning of the MWA applicator for ablation of lung parenchyma. Following completion of ablations and post-procedure CT imaging, the lungs were harvested and sectioned for gross and histopathologic ablation analysis. Results Bronchoscopy-guided MWA with applied energy levels of 90 W/5 min and 120 W/10 min yielded ablation zones with short-axis diameters in the range of 20-28 mm (56-116% increase) as compared to ∼13 mm from our previous study (60 W/10 min). Histology of higher-power and previous lower-power ablations was consistent, including a central necrotic zone, a thermal fixation zone with intact tissue architecture, and a hemorrhagic periphery. Catheter positioning and its confirmation via intra-procedural 3D imaging (e.g., cone-beam CT) proved to be critical for ablation consistency. Conclusion Bronchoscopy-guided MWA with an improved catheter designed for maximum power 120 W yields large ablations in normal porcine lung in vivo.
Collapse
Affiliation(s)
- Jan Sebek
- Mike Wiegers Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| | | | - Warren L. Beard
- Department of Clinical Sciences, Kansas State University, Manhattan, KS, USA
| | - David S. Biller
- Department of Clinical Sciences, Kansas State University, Manhattan, KS, USA
| | - David S. Hodgson
- Department of Clinical Sciences, Kansas State University, Manhattan, KS, USA
| | - Margaret A. Highland
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
- Wisconsin Veterinary Diagnostic Laboratory, University of Wisconsin-Madison, Madison, WI, USA
| | - Abbe Smith
- Broncus Medical, Inc., San Jose, CA, USA
| | - Nicholas Hemphill
- Department of Clinical Sciences, Kansas State University, Manhattan, KS, USA
| | | | - Renelle A. Myers
- Department of Integrative Oncology, British Columbia Cancer Research Center, and The University of British Columbia, Vancouver, BC, Canada
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Research Center, and The University of British Columbia, Vancouver, BC, Canada
| | | | - Punit Prakash
- Mike Wiegers Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
7
|
Advanced Imaging for Robotic Bronchoscopy: A Review. Diagnostics (Basel) 2023; 13:diagnostics13050990. [PMID: 36900134 PMCID: PMC10001114 DOI: 10.3390/diagnostics13050990] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Recent advances in navigational platforms have led bronchoscopists to make major strides in diagnostic interventions for pulmonary parenchymal lesions. Over the last decade, multiple platforms including electromagnetic navigation and robotic bronchoscopy have allowed bronchoscopists to safely navigate farther into the lung parenchyma with increased stability and accuracy. Limitations persist, even with these newer technologies, in achieving a similar or higher diagnostic yield when compared to the transthoracic computed tomography (CT) guided needle approach. One of the major limitations to this effect is due to CT-to-body divergence. Real-time feedback that better defines the tool-lesion relationship is vital and can be obtained with additional imaging using radial endobronchial ultrasound, C-arm based tomosynthesis, cone-beam CT (fixed or mobile), and O-arm CT. Herein, we describe the role of this adjunct imaging with robotic bronchoscopy for diagnostic purposes, describe potential strategies to counteract the CT-to-body divergence phenomenon, and address the potential role of advanced imaging for lung tumor ablation.
Collapse
|
8
|
Folch E, Guo Y, Senitko M. Therapeutic Bronchoscopy for Lung Nodules: Where Are We Now? Semin Respir Crit Care Med 2022; 43:480-491. [PMID: 36104025 DOI: 10.1055/s-0042-1749368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Lobar resection has been the established standard of care for peripheral early-stage non-small cell lung cancer (NSCLC). Over the last few years, surgical lung sparing approach (sublobar resection [SLR]) has been compared with lobar resection in T1N0 NSCLC. Three nonsurgical options are available in those patients who have a prohibitive surgical risk, and those who refuse surgery: stereotactic body radiotherapy (SBRT), percutaneous ablation, and bronchoscopic ablation. Local ablation involves placement of a probe into a tumor, and subsequent application of either heat or cold energy, pulsing electrical fields, or placement of radioactive source under an image guidance to create a zone of cell death that encompasses the targeted lesion and an ablation margin. Despite being in their infancy, the bronchoscopic ablative techniques are undergoing rapid research, as they extrapolate a significant knowledge-base from the percutaneous techniques that have been in the radiologist's armamentarium since 2000. Here, we discuss selected endoscopic and percutaneous thermal and non-thermal therapies with the focus on their efficacy and safety.
Collapse
Affiliation(s)
- Erik Folch
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yanglin Guo
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michal Senitko
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Mississippi Medical Center, Jackson, Mississippi.,Division of Cardiothoracic Surgery, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
9
|
Cramer P, Pua BB. The Latest on Lung Ablation. Semin Intervent Radiol 2022; 39:285-291. [PMID: 36062233 PMCID: PMC9433157 DOI: 10.1055/s-0042-1753526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Lung cancer is the second most common cancer in both men and women. Despite smoking cessation efforts and advances in lung cancer detection and treatment, long-term survival remains low. For early-stage primary lung carcinoma, surgical resection offers the best chance of long-term survival; however, only about one-third of patients are surgical candidates. For nonsurgical candidates, minimally invasive percutaneous thermal ablation therapies have become recognized as safe and effective treatment alternatives, including radiofrequency ablation, microwave ablation, and cryoablation. Lung ablation is also an acceptable treatment for limited oligometastatic and oligorecurrent diseases. This article discusses the technologies and techniques available for tumor ablation of thoracic malignancies, as well as new treatments on the horizon.
Collapse
Affiliation(s)
- Peyton Cramer
- Division of Interventional Radiology, Department of Radiology, New York Presbyterian Hospital/Weill Cornell Medicine, New York, New York
| | - Bradley B. Pua
- Division of Interventional Radiology, Department of Radiology, New York Presbyterian Hospital/Weill Cornell Medicine, New York, New York
| |
Collapse
|
10
|
Pfannenstiel A, Iannuccilli J, Cornelis FH, Dupuy DE, Beard WL, Prakash P. Shaping the future of microwave tumor ablation: a new direction in precision and control of device performance. Int J Hyperthermia 2022; 39:664-674. [DOI: 10.1080/02656736.2021.1991012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Austin Pfannenstiel
- Precision Microwave Inc, Manhattan, KS, USA
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| | - Jason Iannuccilli
- Department of Diagnostic Imaging, Division of Interventional Oncology, Rhode Island Hospital, Providence, RI, USA
| | - Francois H. Cornelis
- Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, NY, USA
| | - Damian E. Dupuy
- Diagnostic Imaging, Brown University, Radiology, Cape Cod Hospital, MA, USA
| | - Warren L. Beard
- Department of Clinical Sciences, Kansas State University, Manhattan, KS, USA
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
11
|
Endobronchial Therapies for Diagnosis, Staging, and Treatment of Lung Cancer. Surg Clin North Am 2022; 102:393-412. [DOI: 10.1016/j.suc.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Jendzjowsky N, Laing A, Malig M, Matyas J, de Heuvel E, Dumonceaux C, Dumoulin E, Tremblay A, Leigh R, Chee A, Kelly MM. Long-term modulation of airway remodelling in severe asthma following bronchial thermoplasty. Eur Respir J 2022; 59:2100622. [PMID: 34049950 DOI: 10.1183/13993003.00622-2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/16/2021] [Indexed: 11/05/2022]
Abstract
RationaleBronchial thermoplasty is a mechanical therapeutic intervention that has been advocated as an effective treatment option for severe asthma. The mechanism is promoted as being related to the attenuation of airway smooth muscle which has been shown to occur in the short-term. However, long-term studies of the effects of bronchial thermoplasty on airway remodelling are few, with only limited assessment of airway remodelling indices.ObjectivesTo evaluate the effect of bronchial thermoplasty on 1) airway epithelial and smooth muscle cells in culture and 2) airway remodelling in patients with severe asthma who have been prescribed bronchial thermoplasty up to 12 months post-treatment.MethodsThe distribution of heat within the airway by bronchial thermoplasty was assessed in a porcine model. Culture of human airway smooth muscle cells and bronchial epithelial cells evaluated the impact of thermal injury. Histological evaluation and morphometric assessment were performed on bronchial biopsies obtained from severe asthma patients at baseline, 6 weeks and 12 months following bronchial thermoplasty.ResultsBronchial thermoplasty resulted in heterogeneous heating of the airway wall. Airway smooth muscle cell cultures sustained thermal injury, whilst bronchial epithelial cells were relatively resistant to heat. Airway smooth muscle and neural bundles were significantly reduced at 6 weeks and 12 months post-treatment. At 6 weeks post-treatment, submucosal collagen was reduced and vessel density increased, with both indices returning to baseline at 12 months. Goblet cell numbers, submucosal gland area and sub-basement membrane thickness were not significantly altered at any time point examined.ConclusionsBronchial thermoplasty primarily affects airway smooth muscle and nerves with the effects still present at 12 months post-treatment.
Collapse
Affiliation(s)
- Nicholas Jendzjowsky
- Dept of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Authors contributed equally
| | - Austin Laing
- Dept of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Dept of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Authors contributed equally
| | - Michelle Malig
- Dept of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Dept of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - John Matyas
- Dept of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Elaine de Heuvel
- Dept of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Curtis Dumonceaux
- Dept of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Elaine Dumoulin
- Dept of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alain Tremblay
- Dept of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Richard Leigh
- Dept of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Dept of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alex Chee
- Dept of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Authors contributed equally
| | - Margaret M Kelly
- Dept of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Dept of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Authors contributed equally
| |
Collapse
|
13
|
Zheng X, Yuan H, Gu C, Yang C, Xie F, Zhang X, Xu B, Sun J. Transbronchial lung parenchyma cryoablation with a novel flexible cryoprobe in an in vivo porcine model. Diagn Interv Imaging 2021; 103:49-57. [PMID: 34593335 DOI: 10.1016/j.diii.2021.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE The purpose of this study was to evaluate the feasibility and safety of transbronchial cryoablation with a novel flexible cryoprobe using nitrogen as the refrigerant in an in vivo porcine model of lung parenchyma. MATERIALS AND METHODS A novel flexible cryoprobe using nitrogen as the refrigerant was used for transbronchial cryoablation of lung parenchyma in six normal female pigs. The cryoprobe was delivered to the distal bronchus in the bilateral porcine lungs via the bronchoscopic working channel under virtual bronchoscopy guidance. The position was confirmed with real-time computed tomography (CT). The whole procedure included two freeze-thaw cycles (15 min and 2 min, respectively). CT images were obtained during cryoablation and at 24 h, one week, two weeks and four weeks after the treatment to assess the effectiveness and safety of the procedure. Ablation zone tissue samples were obtained at 24 h and four weeks after the cryoablation for further histopathological analysis. RESULTS All ablation procedures (12/12; 100%) were performed successfully. No major complications occurred during the procedure or the observation period. The ablation zones were clearly depicted on CT with a maximal ablation zone volume at 24 h (21.88 ± 12.61 [SD] cm3) compared to 3.64 ± 2.06 (SD) cm3 and 10.73 ± 3.84 (SD) cm3 at the end of the 1st and 2nd freeze-thaw cycles, respectively (P < 0.001). Histopathological analysis revealed that a coagulative necrotic zone was formed along the target bronchus, with obvious vascular occlusion and hemorrhage 24 h after treatment. The lesions gradually formed fibrosis after four weeks. CONCLUSION The novel flexible bronchoscopy-guided cryoablation is a feasible, safe and effective modality in an in vivo porcine model of peripheral normal lung parenchyma, suggesting potential capabilities for the treatment of peripheral lung cancer in humans.
Collapse
Affiliation(s)
- Xiaoxuan Zheng
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University, 200030 Shanghai, China; Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 200030 Shanghai, China; Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai, China
| | - Haibin Yuan
- Department of Emergency, Shanghai Chest Hospital, Shanghai Jiao Tong University, 200030 Shanghai, China
| | - Chuanjia Gu
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University, 200030 Shanghai, China; Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 200030 Shanghai, China; Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai, China
| | - Chi Yang
- Research and Development Department, AccuTarget MediPharma (Shanghai) Co., Ltd., 201318 Shanghai, China; School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 200093 Shanghai, China
| | - Fangfang Xie
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University, 200030 Shanghai, China; Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 200030 Shanghai, China; Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai, China
| | - Xueyan Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 200030 Shanghai, China
| | - Binkai Xu
- Research and Development Department, AccuTarget MediPharma (Shanghai) Co., Ltd., 201318 Shanghai, China; School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 200093 Shanghai, China
| | - Jiayuan Sun
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University, 200030 Shanghai, China; Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 200030 Shanghai, China; Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai, China.
| |
Collapse
|
14
|
Sebek J, Taeprasartsit P, Wibowo H, Beard WL, Bortel R, Prakash P. Microwave ablation of lung tumors: A probabilistic approach for simulation-based treatment planning. Med Phys 2021; 48:3991-4003. [PMID: 33964020 DOI: 10.1002/mp.14923] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Microwave ablation (MWA) is a clinically established modality for treatment of lung tumors. A challenge with existing application of MWA, however, is local tumor progression, potentially due to failure to establish an adequate treatment margin. This study presents a robust simulation-based treatment planning methodology to assist operators in comparatively assessing thermal profiles and likelihood of achieving a specified minimum margin as a function of candidate applied energy parameters. METHODS We employed a biophysical simulation-based probabilistic treatment planning methodology to evaluate the likelihood of achieving a specified minimum margin for candidate treatment parameters (i.e., applied power and ablation duration for a given applicator position within a tumor). A set of simulations with varying tissue properties was evaluated for each considered combination of power and ablation duration, and for four different scenarios of contrast in tissue biophysical properties between tumor and normal lung. A treatment planning graph was then assembled, where distributions of achieved minimum ablation zone margins and collateral damage volumes can be assessed for candidate applied power and treatment duration combinations. For each chosen power and time combination, the operator can also visualize the histogram of ablation zone boundaries overlaid on the tumor and target volumes. We assembled treatment planning graphs for generic 1, 2, and 2.5 cm diameter spherically shaped tumors and also illustrated the impact of tissue heterogeneity on delivered treatment plans and resulting ablation histograms. Finally, we illustrated the treatment planning methodology on two example patient-specific cases of tumors with irregular shapes. RESULTS The assembled treatment planning graphs indicate that 30 W, 6 min ablations achieve a 5-mm minimum margin across all simulated cases for 1-cm diameter spherical tumors, and 70 W, 10 min ablations achieve a 3-mm minimum margin across 90% of simulations for a 2.5-cm diameter spherical tumor. Different scenarios of tissue heterogeneity between tumor and lung tissue revealed 2 min overall difference in ablation duration, in order to reliably achieve a 4-mm minimum margin or larger each time for 2-cm diameter spherical tumor. CONCLUSIONS An approach for simulation-based treatment planning for microwave ablation of lung tumors is illustrated to account for the impact of specific geometry of the treatment site, tissue property uncertainty, and heterogeneity between the tumor and normal lung.
Collapse
Affiliation(s)
- Jan Sebek
- Department of Electrical and Computer Engineering, Kansas State University Manhattan, KS, 66506, USA.,Department of Circuit Theory, Czech Technical University in Prague, Prague, Czech Republic
| | - Pinyo Taeprasartsit
- PhenoMapper, LLC, San Jose, CA, 95112, USA.,Department of Computing, Faculty of Science, Silpakorn University, Thailand
| | | | - Warren L Beard
- Department of Clinical Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Radoslav Bortel
- Department of Circuit Theory, Czech Technical University in Prague, Prague, Czech Republic
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University Manhattan, KS, 66506, USA
| |
Collapse
|
15
|
Chan JWY, Lau RWH, Ngai JCL, Tsoi C, Chu CM, Mok TSK, Ng CSH. Transbronchial microwave ablation of lung nodules with electromagnetic navigation bronchoscopy guidance-a novel technique and initial experience with 30 cases. Transl Lung Cancer Res 2021; 10:1608-1622. [PMID: 34012778 PMCID: PMC8107744 DOI: 10.21037/tlcr-20-1231] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Microwave ablation of lung nodules may provide a faster, larger and more predictable ablation zone than other energy sources, while bronchoscopic transbronchial ablation has theoretical advantage of fewer pleural-based complications than percutaneous approach. Our study aims to determine whether the novel combination of bronchoscopic approach and microwave ablation in management of lung nodules is technically feasible, safe and effective. Methods This is a retrospective analysis of a single center experience in electromagnetic navigation bronchoscopy microwave ablation in hybrid operating room. Patients had high surgical risks while lung nodules were either proven malignant or radiologically suspicious. Primary endpoints include technical feasibility and safety. Results Total of 30 lung nodules from 25 patients were treated. Mean nodule size was 15.1 mm, and bronchus directly leads to the nodules (bronchus sign positive) in only half of them. Technical success rate was 100%, although some nodules required double ablation for adequate coverage. Mean minimal ablation margin was 5.51 mm. The mean actual ablation zone volume was -21.4% compared to predicted, likely due to significant tissue contraction ranging from 0-43%. There was no significant heat sink effect. Mean hospital stay was 1.73 days, and only 1 patient stayed for more than 3 days. Complications included pain (13.3%), pneumothorax requiring drainage (6.67%), post-ablation reaction (6.67%), pleural effusion (3.33%) and hemoptysis (3.33%). After median follow up of 12 months, none of the nodules had evidence of progression. Conclusions Bronchoscopic transbronchial microwave ablation is safe and feasible for treatment of malignant lung nodules. Prospective study on clinical application of this novel technique is warranted.
Collapse
Affiliation(s)
- Joyce W Y Chan
- Division of Cardiothoracic Surgery, Department of Surgery, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong, China
| | - Rainbow W H Lau
- Division of Cardiothoracic Surgery, Department of Surgery, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong, China
| | - Jenny C L Ngai
- Department of Medicine and Therapeutics, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong, China
| | - Carita Tsoi
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong, China
| | - Cheuk Man Chu
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong, China
| | - Tony S K Mok
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong, China
| | - Calvin S H Ng
- Division of Cardiothoracic Surgery, Department of Surgery, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|