1
|
Lilien TA, Brinkman P, Fenn DW, van Woensel JBM, Bos LDJ, Bem RA. Breath Markers of Oxidative Stress in Children with Severe Viral Lower Respiratory Tract Infection. Am J Respir Cell Mol Biol 2024; 70:392-399. [PMID: 38315815 DOI: 10.1165/rcmb.2023-0349oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/05/2024] [Indexed: 02/07/2024] Open
Abstract
Severe viral lower respiratory tract infection (LRTI), resulting in both acute and long-term pulmonary disease, constitutes a substantial burden among young children. Viral LRTI triggers local oxidative stress pathways by infection and inflammation, and supportive care in the pediatric intensive care unit may further aggravate oxidative injury. The main goal of this exploratory study was to identify and monitor breath markers linked to oxidative stress in children over the disease course of severe viral LRTI. Exhaled breath was sampled during invasive ventilation, and volatile organic compounds (VOCs) were analyzed using gas chromatography and mass spectrometry. VOCs were selected in an untargeted principal component analysis and assessed for change over time. In addition, identified VOCs were correlated with clinical parameters. Seventy breath samples from 21 patients were analyzed. A total of 15 VOCs were identified that contributed the most to the explained variance of breath markers. Of these 15 VOCs, 10 were previously linked to pathways of oxidative stress. Eight VOCs, including seven alkanes and methyl alkanes, significantly decreased from the initial phase of ventilation to the day of extubation. No correlation was observed with the administered oxygen dose, whereas six VOCs showed a poor to strong positive correlation with driving pressure. In this prospective study of children with severe viral LRTI, the majority of VOCs that were most important for the explained variance mirrored clinical improvement. These breath markers could potentially help monitor the pulmonary oxidative status in these patients, but further research with other objective measures of pulmonary injury is required.
Collapse
Affiliation(s)
- Thijs A Lilien
- Department of Pediatric Intensive Care Medicine, Emma Children's Hospital
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | | | | | - Job B M van Woensel
- Department of Pediatric Intensive Care Medicine, Emma Children's Hospital
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Lieuwe D J Bos
- Department of Pulmonology, and
- Department of Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; and
| | - Reinout A Bem
- Department of Pediatric Intensive Care Medicine, Emma Children's Hospital
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Zhang S, Hagens LA, Heijnen NFL, Smit MR, Brinkman P, Fenn D, van der Poll T, Schultz MJ, Bergmans DCJJ, Schnabel RM, Bos LDJ. Breath metabolomics for diagnosis of acute respiratory distress syndrome. Crit Care 2024; 28:96. [PMID: 38521944 PMCID: PMC10960461 DOI: 10.1186/s13054-024-04882-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) poses challenges in early identification. Exhaled breath contains metabolites reflective of pulmonary inflammation. AIM To evaluate the diagnostic accuracy of breath metabolites for ARDS in invasively ventilated intensive care unit (ICU) patients. METHODS This two-center observational study included critically ill patients receiving invasive ventilation. Gas chromatography and mass spectrometry (GC-MS) was used to quantify the exhaled metabolites. The Berlin definition of ARDS was assessed by three experts to categorize all patients into "certain ARDS", "certain no ARDS" and "uncertain ARDS" groups. The patients with "certain" labels from one hospital formed the derivation cohort used to train a classifier built based on the five most significant breath metabolites. The diagnostic accuracy of the classifier was assessed in all patients from the second hospital and combined with the lung injury prediction score (LIPS). RESULTS A total of 499 patients were included in this study. Three hundred fifty-seven patients were included in the derivation cohort (60 with certain ARDS; 17%), and 142 patients in the validation cohort (47 with certain ARDS; 33%). The metabolites 1-methylpyrrole, 1,3,5-trifluorobenzene, methoxyacetic acid, 2-methylfuran and 2-methyl-1-propanol were included in the classifier. The classifier had an area under the receiver operating characteristics curve (AUROCC) of 0.71 (CI 0.63-0.78) in the derivation cohort and 0.63 (CI 0.52-0.74) in the validation cohort. Combining the breath test with the LIPS does not significantly enhance the diagnostic performance. CONCLUSION An exhaled breath metabolomics-based classifier has moderate diagnostic accuracy for ARDS but was not sufficiently accurate for clinical use, even after combination with a clinical prediction score.
Collapse
Affiliation(s)
- Shiqi Zhang
- Amsterdam UMC, Location AMC, Department of Intensive Care, University of Amsterdam, Meibergdreef 9, Room G3-228, 1105 AZ, Amsterdam, The Netherlands.
| | - Laura A Hagens
- Amsterdam UMC, Location AMC, Department of Intensive Care, University of Amsterdam, Meibergdreef 9, Room G3-228, 1105 AZ, Amsterdam, The Netherlands
| | - Nanon F L Heijnen
- Department of Intensive Care, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Marry R Smit
- Amsterdam UMC, Location AMC, Department of Intensive Care, University of Amsterdam, Meibergdreef 9, Room G3-228, 1105 AZ, Amsterdam, The Netherlands
| | - Paul Brinkman
- Amsterdam UMC, Location AMC, University of Amsterdam, Pulmonary Medicine, Amsterdam, The Netherlands
| | - Dominic Fenn
- Amsterdam UMC, Location AMC, University of Amsterdam, Pulmonary Medicine, Amsterdam, The Netherlands
| | - Tom van der Poll
- Amsterdam UMC, Location AMC, Division of Infectious Diseases, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC, Location AMC, Center of Experimental and Molecular Medicine (CEMM), University of Amsterdam, Amsterdam, The Netherlands
| | - Marcus J Schultz
- Amsterdam UMC, Location AMC, Department of Intensive Care, University of Amsterdam, Meibergdreef 9, Room G3-228, 1105 AZ, Amsterdam, The Netherlands
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dennis C J J Bergmans
- Department of Intensive Care, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Maastricht University Medical Centre+, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht, The Netherlands
| | - Ronny M Schnabel
- Department of Intensive Care, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Lieuwe D J Bos
- Amsterdam UMC, Location AMC, Department of Intensive Care, University of Amsterdam, Meibergdreef 9, Room G3-228, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam UMC, Location AMC, University of Amsterdam, Pulmonary Medicine, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Lilien TA, Fenn DW, Brinkman P, Hagens LA, Smit MR, Heijnen NFL, van Woensel JBM, Bos LDJ, Bem RA. HS-GC-MS analysis of volatile organic compounds after hyperoxia-induced oxidative stress: a validation study. Intensive Care Med Exp 2024; 12:14. [PMID: 38345723 PMCID: PMC10861410 DOI: 10.1186/s40635-024-00600-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Exhaled volatile organic compounds (VOCs), particularly hydrocarbons from oxidative stress-induced lipid peroxidation, are associated with hyperoxia exposure. However, important heterogeneity amongst identified VOCs and concerns about their precise pathophysiological origins warrant translational studies assessing their validity as a marker of hyperoxia-induced oxidative stress. Therefore, this study sought to examine changes in VOCs previously associated with the oxidative stress response in hyperoxia-exposed lung epithelial cells. METHODS A549 alveolar epithelial cells were exposed to hyperoxia for 24 h, or to room air as normoxia controls, or hydrogen peroxide as oxidative-stress positive controls. VOCs were sampled from the headspace, analysed by gas chromatography coupled with mass spectrometry and compared by targeted and untargeted analyses. A secondary analysis of breath samples from a large cohort of critically ill adult patients assessed the association of identified VOCs with clinical oxygen exposure. RESULTS Following cellular hyperoxia exposure, none of the targeted VOCs, previously proposed as breath markers of oxidative stress, were increased, and decane was significantly decreased. Untargeted analysis did not reveal novel identifiable hyperoxia-associated VOCs. Within the clinical cohort, three previously proposed breath markers of oxidative stress, hexane, octane, and decane had no real diagnostic value in discriminating patients exposed to hyperoxia. CONCLUSIONS Hyperoxia exposure of alveolar epithelial cells did not result in an increase in identifiable VOCs, whilst VOCs previously linked to oxidative stress were not associated with oxygen exposure in a cohort of critically ill patients. These findings suggest that the pathophysiological origin of previously proposed breath markers of oxidative stress is more complex than just oxidative stress from hyperoxia at the lung epithelial cellular level.
Collapse
Affiliation(s)
- Thijs A Lilien
- Department of Paediatric Intensive Care Medicine, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
- Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
| | - Dominic W Fenn
- Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Pulmonary Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Paul Brinkman
- Department of Pulmonary Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Laura A Hagens
- Department of Intensive Care Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Marry R Smit
- Department of Intensive Care Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Nanon F L Heijnen
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Job B M van Woensel
- Department of Paediatric Intensive Care Medicine, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Lieuwe D J Bos
- Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Intensive Care Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Reinout A Bem
- Department of Paediatric Intensive Care Medicine, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| |
Collapse
|