1
|
Zhou H, Lai Y, Zhu Y, Shao F, Ma G, Yang N, Ma X, Sun Y, Shi Q. Quercetin improves airway remodeling in COPD rats by suppressing phenotypic switch of ASMCs via inhibiting the Wnt5a/β-catenin pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156491. [PMID: 39955824 DOI: 10.1016/j.phymed.2025.156491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/02/2025] [Accepted: 02/08/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND AND PURPOSE Airway remodeling in chronic obstructive pulmonary disease (COPD) is a contributor to airflow limitation, promotes disease progression, and affects disease outcome and prognosis. Quercetin has been identified as a potential therapeutic agent for COPD. Currently, there is insufficient research providing direct evidence to support this hypothesis. The present study investigates the therapeutic effects and the underlying mechanisms of quercetin in the alleviation of airway remodeling in rat models of COPD. EXPERIMENTAL STEPS This study used a network pharmacology approach to predict, for the first time, the potential molecular targets of quercetin in COPD. The effects of quercetin on phenotypic switching and mitochondrial function of ASMCs were assessed in vitro using CCK-8, EdU staining, migration assays, western blotting, and JC-1 staining. Additionally, the interaction between Wnt5a and quercetin was analyzed via molecular docking, and findings were experimentally confirmed using the cellular thermal shift assay (CETSA). Quercetin's influence on airway remodeling in COPD was examined in vivo through pulmonary function evaluation, H&E staining, and Modified Sirius Red staining. Molecular alterations associated with phenotypic switching, oxidative stress, autophagy and Wnt5a/β-Catenin pathway were examined by Western blotting, immunofluorescence, immunohistochemistry, DHE staining and ELISA. KEY RESULTS The results showed that quercetin has a beneficial therapeutic effect on COPD. Its ability to mitigate airway remodeling is linked to modulating autophagy levels, reducing oxidative stress, alleviating mitochondrial damage, and influencing the phenotypic switch in ASMCs. By increasing oxidative stress tolerance, quercetin reduces mitochondrial damage and regulates the phenotypic switch in ASMCs. Furthermore, quercetin suppresses autophagy hyperactivation, which subsequently lowers oxidative stress levels in ASMCs. Notably, quercetin modulates autophagy through the regulation of the Wnt5a/β-catenin signaling pathway. CONCLUSION AND IMPLICATIONS In conclusion, quercetin demonstrates potential therapeutic effects in COPD by suppressing the Wnt5a/β-cateninsignaling pathway, autophagy as well as oxidative stress, and thereby alleviating mitochondrial damage and the phenotypic switch in ASMCs. These findings may have clinical applications and offer new insights for the development of COPD treatments.
Collapse
Affiliation(s)
- Hui Zhou
- College of Traditional Chinese Medicine/College of Life Sciences, Jiangxi University of Chinese Medicine, Nanchang 330004, PR China
| | - Yingying Lai
- Department of Anesthesiology, Affiliated Hospital of Jiaxing University, Jiaxing 314001, PR China
| | - Yuanyuan Zhu
- College of Traditional Chinese Medicine/College of Life Sciences, Jiangxi University of Chinese Medicine, Nanchang 330004, PR China
| | - Feng Shao
- Key Laboratory of Innovation Drug and Efficient Energy- saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China
| | - Guangqiang Ma
- College of Traditional Chinese Medicine/College of Life Sciences, Jiangxi University of Chinese Medicine, Nanchang 330004, PR China
| | - Ningning Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325027, PR China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Xianhui Ma
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, PR China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325027, PR China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Yinxiang Sun
- Qi Huang Chinese Medicine Academy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330025, PR China.
| | - Qiang Shi
- Qi Huang Chinese Medicine Academy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330025, PR China.
| |
Collapse
|
2
|
Nucera F, Di Stefano A, Ricciardolo FLM, Gnemmi I, Pizzimenti C, Monaco F, Tuccari G, Caramori G, Ieni A. Role of ATG4 Autophagy-Related Protein Family in the Lower Airways of Patients with Stable COPD. Int J Mol Sci 2024; 25:8182. [PMID: 39125750 PMCID: PMC11311497 DOI: 10.3390/ijms25158182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Autophagy is a complex physiological pathway mediating homeostasis and survival of cells degrading damaged organelles and regulating their recycling. Physiologic autophagy can maintain normal lung function, decrease lung cellular senescence, and inhibit myofibroblast differentiation. It is well known that autophagy is activated in several chronic inflammatory diseases; however, its role in the pathogenesis of chronic obstructive pulmonary disease (COPD) and the expression of autophagy-related genes (ATGs) in lower airways of COPD patients is still controversial. The expression and localization of all ATG proteins that represented key components of the autophagic machinery modulating elongation, closure, and maturation of autophagosome membranes were retrospectively measured in peripheral lungs of patients with stable COPD (n = 10), control smokers with normal lung function (n = 10), and control nonsmoking subjects (n = 8) using immunohistochemical analysis. These results show an increased expression of ATG4 protein in alveolar septa and bronchiolar epithelium of stable COPD patients compared to smokers with normal lung function and non-smoker subjects. In particular, the genes in the ATG4 protein family (including ATG4A, ATG4B, ATG4C, and ATG4D) that have a key role in the modulation of the physiological autophagic machinery are the most important ATGs increased in the compartment of lower airways of stable COPD patients, suggesting that the alteration shown in COPD patients can be also correlated to impaired modulation of autophagic machinery modulating elongation, closure, and maturation of autophagosomes membranes. Statistical analysis was performed by the Kruskal-Wallis test and the Mann-Whitney U test for comparison between groups. A statistically significant increased expression of ATG4A (p = 0.0047), ATG4D (p = 0.018), and ATG5 (p = 0.019) was documented in the bronchiolar epithelium as well in alveolar lining for ATG4A (p = 0.0036), ATG4B (p = 0.0054), ATG4C (p = 0.0064), ATG4D (p = 0.0084), ATG5 (p = 0.0088), and ATG7 (p = 0.018) in patients with stable COPD compared to control groups. The ATG4 isoforms may be considered as additional potential targets for the development of new drugs in COPD.
Collapse
Affiliation(s)
- Francesco Nucera
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, Section of Pneumology, University of Messina, 98125 Messina, Italy;
| | - Antonino Di Stefano
- Istituti Clinici Scientifici Maugeri, IRCCS, Respiratory Rehabilitation Unit of Gattico-Veruno, Section of Pneumology, Laboratory of Cytoimmunopathology in Cardio Respiratory System, 28013 Gattico-Veruno, Italy; (A.D.S.); (I.G.)
| | - Fabio Luigi Massimo Ricciardolo
- Department of Clinical and Biological Sciences, Severe Asthma, Rare Lung Disease and Respiratory Pathophysiology Unit, San Luigi Gonzaga University Hospital, University of Turin, 10043 Orbassano, Italy;
| | - Isabella Gnemmi
- Istituti Clinici Scientifici Maugeri, IRCCS, Respiratory Rehabilitation Unit of Gattico-Veruno, Section of Pneumology, Laboratory of Cytoimmunopathology in Cardio Respiratory System, 28013 Gattico-Veruno, Italy; (A.D.S.); (I.G.)
| | - Cristina Pizzimenti
- Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, Section of Pathology, University of Messina, 98125 Messina, Italy; (C.P.); (G.T.)
| | - Francesco Monaco
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, Section of Toracic Surgery, University of Messina, 98125 Messina, Italy;
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, Section of Pathology, University of Messina, 98125 Messina, Italy; (C.P.); (G.T.)
| | - Gaetano Caramori
- Department of Medicine and Surgery, Sections of Pneumology, University of Parma, 43126 Parma, Italy;
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, Section of Pathology, University of Messina, 98125 Messina, Italy; (C.P.); (G.T.)
| |
Collapse
|
3
|
Li Z, Jiao Y, Wu Z, Liu H, Li Y, Cai Y, Wei W, Cao F. The role of quercetin in ameliorating bleomycin-induced pulmonary fibrosis: insights into autophagy and the SIRT1/AMPK signaling pathway. Mol Biol Rep 2024; 51:795. [PMID: 39001907 DOI: 10.1007/s11033-024-09752-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a disease of unknown etiology characterized by a constant incidence rate. Unfortunately, effective pharmacological treatments for this condition are lacking and the identification of novel therapeutic approaches and underlying pathological mechanisms are required. This study investigated the potential of quercetin in alleviating pulmonary fibrosis by promoting autophagy and activation of the SIRT1/AMPK pathway. METHODS Mouse models of IPF were divided into four treatment groups: control, bleomycin (BLM), quercetin (Q), and quercetin + EX-527 (Q + E) treatment. Pulmonary fibrosis was induced in the mouse models through intratracheal instillation of BLM. Various indexes were identified through histological staining, Western blotting analysis, enzyme-linked immunosorbent assay, immunohistochemistry, and transmission electron microscopy. RESULTS Quercetin treatment ameliorated the pathology of BLM-induced pulmonary fibrosis of mice by reducing α-smooth muscle actin (α-SMA), collagen I (Col I), and collagen III (Col III) levels, and also improved the level of E-cadherin in lung tissue. Furthermore, Quercetin significantly enhanced LC3II/LC3I levels, decreased P62 expression, and increased the number of autophagosomes in lung tissue. These effects were accompanied by the activation of the SIRT1/AMPK pathway. Treatment with EX-527, an inhibitor for SIRT1, reversed all effects induced by quercetin. CONCLUSION This study showed that quercetin could alleviate pulmonary fibrosis and improve epithelial-mesenchymal transition by acting on the SIRT1/AMPK signaling pathway, which may be achieved by regulating the level of autophagy.
Collapse
Affiliation(s)
- Zhipeng Li
- Graduate school, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yang Jiao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Zhisong Wu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Haoge Liu
- Zhejiang Provincial Hospital of Traditional Chinese Medicine Affiliated to Zhejiang University of Chinese Medicine, Hangzhou, 310006, China
| | - Yang Li
- Graduate school, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yaodong Cai
- Graduate school, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wan Wei
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| | - Fang Cao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| |
Collapse
|
4
|
Shinde A, Shannahan J. Inhalation exposure-induced toxicity and disease mediated via mTOR dysregulation. Exp Biol Med (Maywood) 2024; 249:10135. [PMID: 38711460 PMCID: PMC11070522 DOI: 10.3389/ebm.2024.10135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/05/2024] [Indexed: 05/08/2024] Open
Abstract
Environmental air pollution is a global health concern, associated with multiple respiratory and systemic diseases. Epidemiological supports continued urbanization and industrialization increasing the prevalence of inhalation exposures. Exposure to these inhaled pollutants induces toxicity via activation of numerous cellular mechanisms including oxidative stress, autophagy, disrupted cellular metabolism, inflammation, tumorigenesis, and others contributing to disease development. The mechanistic target of rapamycin (mTOR) is a key regulator involved in various cellular processes related to the modulation of metabolism and maintenance of homeostasis. Dysregulation of mTOR occurs following inhalation exposures and has also been implicated in many diseases such as cancer, obesity, cardiovascular disease, diabetes, asthma, and neurodegeneration. Moreover, mTOR plays a fundamental role in protein transcription and translation involved in many inflammatory and autoimmune diseases. It is necessary to understand inhalation exposure-induced dysregulation of mTOR since it is key regulator which may contribute to numerous disease processes. This mini review evaluates the available literature regarding several types of inhalation exposure and their impacts on mTOR signaling. Particularly we focus on the mTOR signaling pathway related outcomes of autophagy, lipid metabolism, and inflammation. Furthermore, we will examine the implications of dysregulated mTOR pathway in exposure-induced diseases. Throughout this mini review, current gaps will be identified related to exposure-induced mTOR dysregulation which may enable the targeting of mTOR signaling for the development of therapeutics.
Collapse
Affiliation(s)
| | - Jonathan Shannahan
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
5
|
Pileggi S, Colombo EA, Ancona S, Quadri R, Bernardelli C, Colapietro P, Taiana M, Fontana L, Miozzo M, Lesma E, Sirchia SM. Dysfunction in IGF2R Pathway and Associated Perturbations in Autophagy and WNT Processes in Beckwith-Wiedemann Syndrome Cell Lines. Int J Mol Sci 2024; 25:3586. [PMID: 38612397 PMCID: PMC11011696 DOI: 10.3390/ijms25073586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Beckwith-Wiedemann Syndrome (BWS) is an imprinting disorder characterized by overgrowth, stemming from various genetic and epigenetic changes. This study delves into the role of IGF2 upregulation in BWS, focusing on insulin-like growth factor pathways, which are poorly known in this syndrome. We examined the IGF2R, the primary receptor of IGF2, WNT, and autophagy/lysosomal pathways in BWS patient-derived lymphoblastoid cell lines, showing different genetic and epigenetic defects. The findings reveal a decreased expression and mislocalization of IGF2R protein, suggesting receptor dysfunction. Additionally, our results point to a dysregulation in the AKT/GSK-3/mTOR pathway, along with imbalances in autophagy and the WNT pathway. In conclusion, BWS cells, regardless of the genetic/epigenetic profiles, are characterized by alteration of the IGF2R pathway that is associated with the perturbation of the autophagy and lysosome processes. These alterations seem to be a key point of the molecular pathogenesis of BWS and potentially contribute to BWS's characteristic overgrowth and cancer susceptibility. Our study also uncovers alterations in the WNT pathway across all BWS cell lines, consistent with its role in growth regulation and cancer development.
Collapse
Affiliation(s)
- Silvana Pileggi
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (S.P.)
| | - Elisa A. Colombo
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (S.P.)
| | - Silvia Ancona
- Pharmacology, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy (E.L.)
| | - Roberto Quadri
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Clara Bernardelli
- Pharmacology, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy (E.L.)
| | - Patrizia Colapietro
- Medical Genetics, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Michela Taiana
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Laura Fontana
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (S.P.)
- Unit of Medical Genetics, ASST Santi Paolo e Carlo, 20142 Milan, Italy
| | - Monica Miozzo
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (S.P.)
- Unit of Medical Genetics, ASST Santi Paolo e Carlo, 20142 Milan, Italy
| | - Elena Lesma
- Pharmacology, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy (E.L.)
| | - Silvia M. Sirchia
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (S.P.)
| |
Collapse
|