1
|
Li J, Sun Y, Xue C, Yang X, Duan Y, Zhao D, Han J. Nogo-B deficiency suppresses white adipogenesis by regulating β-catenin signaling. Life Sci 2023; 321:121571. [PMID: 36931495 DOI: 10.1016/j.lfs.2023.121571] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
AIMS Obesity is a global epidemic around the world. Reticulon-4B (Nogo-B) is an endoplasmic reticulum-resident protein. Our previous work demonstrated that Nogo-B deficiency inhibited obesity and decreased the size of white adipocytes. However, the underlying molecular mechanism of Nogo-B in white adipogenesis remains poorly understood. This study aims to explore the effect of Nogo-B in white adipogenesis, as well as its underlying molecular mechanisms. MAIN METHODS AND FINDINGS The study adopted mouse embryonic fibroblasts (MEFs) and 3T3-L1 preadipocytes to induce white adipogenesis and investigate the effect of Nogo-B on adipogenesis using qRT-PCR, Western blotting, immunofluorescence, lipid quantification, and Oil Red O staining. During white adipogenesis, Nogo-B expression was increased accompanied by upregulation of adipogenic markers. In contrast, Nogo-B deficiency inhibited white adipocyte markers expression and lipid accumulation. Furthermore, the mechanism study showed that Nogo-B deficiency decreased the destruction complex [AXIN1-APC-glycogen synthase kinase 3β (GSK3β)] levels through activating protein kinase B 2 (AKT2), resulting in β-catenin translocating into the nucleus and inhibiting the expression of adipogenic markers. Moreover, Nogo-B deficiency promoted the expression of brown/beige adipocytes markers while improving mitochondrial thermogenesis by activating β-catenin pathway. In addition, Nogo-B deficiency reduced the levels of inflammatory molecules during white adipogenic differentiation. SIGNIFICANCE This study revealed that Nogo-B deficiency inhibited white adipogenesis through AKT2/GSK3β/β-catenin pathway. Meanwhile, Nogo-B deficiency increased the expression of brown/beige adipocyte markers and promoted mitochondrial thermogenesis. In addition, Nogo-B deficiency reduced inflammatory cytokine levels caused by adipogenesis. Collectively, blocking Nogo-B expression may be a potential strategy to suppress white adipogenesis.
Collapse
Affiliation(s)
- Jiaqi Li
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Yuyao Sun
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Chao Xue
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Dan Zhao
- Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital of Henan University, Kaifeng, China.
| | - Jihong Han
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China; Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
2
|
Palmieri F, Monné M. Discoveries, metabolic roles and diseases of mitochondrial carriers: A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2362-78. [PMID: 26968366 DOI: 10.1016/j.bbamcr.2016.03.007] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 12/25/2022]
Abstract
Mitochondrial carriers (MCs) are a superfamily of nuclear-encoded proteins that are mostly localized in the inner mitochondrial membrane and transport numerous metabolites, nucleotides, cofactors and inorganic anions. Their unique sequence features, i.e., a tripartite structure, six transmembrane α-helices and a three-fold repeated signature motif, allow MCs to be easily recognized. This review describes how the functions of MCs from Saccharomyces cerevisiae, Homo sapiens and Arabidopsis thaliana (listed in the first table) were discovered after the genome sequence of S. cerevisiae was determined in 1996. In the genomic era, more than 50 previously unknown MCs from these organisms have been identified and characterized biochemically using a method consisting of gene expression, purification of the recombinant proteins, their reconstitution into liposomes and transport assays (EPRA). Information derived from studies with intact mitochondria, genetic and metabolic evidence, sequence similarity, phylogenetic analysis and complementation of knockout phenotypes have guided the choice of substrates that were tested in the transport assays. In addition, the diseases associated to defects of human MCs have been briefly reviewed. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy.
| | - Magnus Monné
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy; Department of Sciences, University of Basilicata, Via Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
3
|
Lin JC. Impacts of Alternative Splicing Events on the Differentiation of Adipocytes. Int J Mol Sci 2015; 16:22169-89. [PMID: 26389882 PMCID: PMC4613302 DOI: 10.3390/ijms160922169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/07/2015] [Accepted: 09/07/2015] [Indexed: 02/07/2023] Open
Abstract
Alternative splicing was found to be a common phenomenon after the advent of whole transcriptome analyses or next generation sequencing. Over 90% of human genes were demonstrated to undergo at least one alternative splicing event. Alternative splicing is an effective mechanism to spatiotemporally expand protein diversity, which influences the cell fate and tissue development. The first focus of this review is to highlight recent studies, which demonstrated effects of alternative splicing on the differentiation of adipocytes. Moreover, use of evolving high-throughput approaches, such as transcriptome analyses (RNA sequencing), to profile adipogenic transcriptomes, is also addressed.
Collapse
Affiliation(s)
- Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan.
| |
Collapse
|
4
|
Du C, Ma X, Meruvu S, Hugendubler L, Mueller E. The adipogenic transcriptional cofactor ZNF638 interacts with splicing regulators and influences alternative splicing. J Lipid Res 2014; 55:1886-96. [PMID: 25024404 DOI: 10.1194/jlr.m047555] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Increasing evidence indicates that transcription and alternative splicing are coordinated processes; however, our knowledge of specific factors implicated in both functions during the process of adipocyte differentiation is limited. We have previously demonstrated that the zinc finger protein ZNF638 plays a role as a transcriptional coregulator of adipocyte differentiation via induction of PPARγ in cooperation with CCAAT/enhancer binding proteins (C/EBPs). Here we provide new evidence that ZNF638 is localized in nuclear bodies enriched with splicing factors, and through biochemical purification of ZNF638's interacting proteins in adipocytes and mass spectrometry analysis, we show that ZNF638 interacts with splicing regulators. Functional analysis of the effects of ectopic ZNF638 expression on a minigene reporter demonstrated that ZNF638 is sufficient to promote alternative splicing, a function enhanced through its recruitment to the minigene promoter at C/EBP responsive elements via C/EBP proteins. Structure-function analysis revealed that the arginine/serine-rich motif and the C-terminal zinc finger domain required for speckle localization are necessary for the adipocyte differentiation function of ZNF638 and for the regulation of the levels of alternatively spliced isoforms of lipin1 and nuclear receptor co-repressor 1. Overall, our data demonstrate that ZNF638 participates in splicing decisions and that it may control adipogenesis through regulation of the relative amounts of differentiation-specific isoforms.
Collapse
Affiliation(s)
- Chen Du
- Genetics of Development and Disease Branch of the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Xinran Ma
- Genetics of Development and Disease Branch of the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sunitha Meruvu
- Genetics of Development and Disease Branch of the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Lynne Hugendubler
- Genetics of Development and Disease Branch of the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Elisabetta Mueller
- Genetics of Development and Disease Branch of the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
5
|
Abstract
The mitochondrion relies on compartmentalization of certain enzymes, ions and metabolites for the sake of efficient metabolism. In order to fulfil its activities, a myriad of carriers are properly expressed, targeted and folded in the inner mitochondrial membrane. Among these carriers, the six-transmembrane-helix mitochondrial SLC25 (solute carrier family 25) proteins facilitate transport of solutes with disparate chemical identities across the inner mitochondrial membrane. Although their proper function replenishes building blocks needed for metabolic reactions, dysfunctional SLC25 proteins are involved in pathological states. It is the purpose of the present review to cover the current knowledge on the role of SLC25 transporters in health and disease.
Collapse
|
6
|
Han J, Murthy R, Wood B, Song B, Wang S, Sun B, Malhi H, Kaufman RJ. ER stress signalling through eIF2α and CHOP, but not IRE1α, attenuates adipogenesis in mice. Diabetologia 2013; 56:911-24. [PMID: 23314846 PMCID: PMC3606029 DOI: 10.1007/s00125-012-2809-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 11/27/2012] [Indexed: 01/21/2023]
Abstract
AIMS/HYPOTHESIS Although obesity is associated with endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) in adipose tissue, it is not known how UPR signalling affects adipogenesis. To test whether signalling through protein kinase RNA-like ER kinase/eukaryotic initiation factor 2 alpha (PERK/eIF2α) or inositol-requiring enzyme 1 alpha/X-box binding protein 1 (IRE1α/XBP1) is required for adipogenesis, we studied the role of UPR signalling in adipocyte differentiation in vitro and in vivo in mice. METHODS The role of UPR signalling in adipogenesis was investigated using 3T3-L1 cells and primary mouse embryonic fibroblasts (MEFs) by activation or inhibition of PERK-mediated phosphorylation of the eIF2α- and IRE1α-mediated splicing of Xbp1 mRNA. Body weight change, fat mass composition and adipocyte number and size were measured in wild-type and genetically engineered mice fed a control or high-fat diet (HFD). RESULTS ER stress repressed adipocyte differentiation in 3T3-L1 cells. Impaired eIF2α phosphorylation enhanced adipocyte differentiation in MEFs, as well as in mice. In contrast, increased eIF2α phosphorylation reduced adipocyte differentiation in 3T3-L1 cells. Forced production of CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP), a downstream target of eIF2α phosphorylation, inhibited adipogenesis in 3T3-L1 cells. Mice with deletion of Chop (also known as Ddit3) (Chop (-/-)) gained more fat mass than wild-type mice on HFD. In addition, Chop deletion in genetically obese Lepr (db/db) mice increased body fat mass without altering adipocyte size. In contrast to the eIF2α-CHOP pathway, activation or deletion of Ire1a (also known as Ern1) did not alter adipocyte differentiation in 3T3-L1 cells. CONCLUSIONS/INTERPRETATION These results demonstrate that eIF2α-CHOP suppresses adipogenesis and limits expansion of fat mass in vivo in mice, rendering this pathway a potential therapeutic target.
Collapse
Affiliation(s)
- J. Han
- Del E. Webb Neuroscience, Aging and Stem Cell Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037-1062, USA
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - R. Murthy
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - B. Wood
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - B. Song
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - S. Wang
- Del E. Webb Neuroscience, Aging and Stem Cell Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037-1062, USA
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - B. Sun
- Otsuka Maryland Medicinal Laboratories, Rockville, MD, USA
| | - H. Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - R. J. Kaufman
- Del E. Webb Neuroscience, Aging and Stem Cell Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037-1062, USA
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| |
Collapse
|
7
|
MacKenzie J, Koekemoer TC, Roux S, van de Venter M, Dealtry GB. Effect of Sutherlandia frutescens
on the Lipid Metabolism in an Insulin Resistant Rat Model and 3T3-L1 Adipocytes. Phytother Res 2012; 26:1830-7. [DOI: 10.1002/ptr.4653] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 01/30/2012] [Accepted: 01/30/2012] [Indexed: 12/14/2022]
Affiliation(s)
- Janine MacKenzie
- Nelson Mandela Metropolitan University; Biochemistry and Microbiology; PO Box 77000 Port Elizabeth 6031 South Africa
| | - Trevor C. Koekemoer
- Nelson Mandela Metropolitan University; Biochemistry and Microbiology; PO Box 77000 Port Elizabeth 6031 South Africa
| | - Saartjie Roux
- Nelson Mandela Metropolitan University; Biochemistry and Microbiology; PO Box 77000 Port Elizabeth 6031 South Africa
| | - Maryna van de Venter
- Nelson Mandela Metropolitan University; Biochemistry and Microbiology; PO Box 77000 Port Elizabeth 6031 South Africa
| | - Gill B. Dealtry
- Nelson Mandela Metropolitan University; Biochemistry and Microbiology; PO Box 77000 Port Elizabeth 6031 South Africa
| |
Collapse
|
8
|
Zhu GZ, Zhang M, Kou CZ, Ni YH, Ji CB, Cao XG, Guo XR. Effects of Lyrm1 knockdown on mitochondrial function in 3 T3-L1 murine adipocytes. J Bioenerg Biomembr 2012; 44:225-32. [PMID: 22249831 DOI: 10.1007/s10863-012-9404-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 11/09/2011] [Indexed: 12/18/2022]
Abstract
To explore the effects of Lyrm1 knockdown on the mitochondrial function of 3 T3-L1 adipocytes using small interfering RNA (siRNA). 3 T3-L1 preadipocytes were infected with either a negative control (NC) expression lentivirus or a Lyrm1-shRNA expression lentivirus and induced to differentiate. The knockdown efficiency of Lrym1-specific shRNA in 3 T3-L1 cells was evaluated by real-time PCR. The ultrastructure of the mitochondria in adipocytes was visualized using transmission electron microscopy after differentiation. The levels of mitochondrial DNA copy numbers and Ucp2 mRNA were detected by real-time quantitative PCR. The levels of ATP production was detected using a photon-counting luminometer. The mitochondrial membrane potential and ROS levels of cells were analyzed with a FACScan flow cytometer using Cell Quest software. Cells transfected with lentiviral-Lyrm1-shRNA showed a significantly reduced transcription of Lyrm1 mRNA compared with NC cells. The size and ultrastructure of mitochondria in Lyrm1 knockdown adipocytes was similar to those of the NC cells. There was no significant difference in mtDNA copy number between the two groups. The total level of ATP production, mitochondrial membrane potential and Ucp2 mRNA expression levels were dramatically increased in adipocytes transfected with Lyrm1 RNAi. Furthermore, the level of ROS was dramatically decreased in Lyrm1 knockdown adipocytes. Knockdown of the Lyrm1 gene in adipocytes resulted in dramatically increased cellular ATP production, mitochondrial membrane potentials and levels Ucp2 mRNA, while ROS levels were significantly decreased. These results imply that mitochondrial function is improved in adipocytes after the knockdown of Lyrm1.
Collapse
Affiliation(s)
- Guan-Zhong Zhu
- Institute of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | |
Collapse
|