1
|
Lin Z, Zhuang J, He L, Zhu S, Kong W, Lu W, Zhang Z. Exploring Smad5: a review to pave the way for a deeper understanding of the pathobiology of common respiratory diseases. Mol Med 2024; 30:225. [PMID: 39578779 PMCID: PMC11585160 DOI: 10.1186/s10020-024-00961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024] Open
Abstract
Smad5 (small mothers against decapentaplegic 5) protein is a receptor-regulated member of the Smad family proteins, mainly participating in the bone morphogenetic protein (BMP) signaling pathway in its phosphorylated form. This article will provide a detailed review of Smad5, focusing on its gene characteristics, protein structure, and subcellular localization properties. We will also explore the related signaling pathways and the mechanisms of Smad5 in respiratory diseases, including chronic obstructive pulmonary disease (COPD), bronchial asthma, pulmonary arterial hypertension(PAH), lung cancer, and idiopathic pulmonary fibrosis (IPF). Additionally, the review will cover aspects such as proliferation, differentiation, apoptosis, anti-fibrosis, and mitochondrial function metabolism. In addition, the review will cover aspects of proliferation, differentiation, apoptosis, anti-fibrosis and functional mitochondrial metabolism related to the above topics. Numerous studies suggest that Smad5 may play a unique and important role in the pathogenesis of respiratory system diseases. However, in previous research, Smad5 was mainly used to broadly determine the activation of the BMP signaling pathway, and its own function has not been given much attention. It is worth noting that Smad5 has distinct nuclear-cytoplasmic distribution characteristics different from Smad1 and Smad8. It can undergo significant nuclear-cytoplasmic shuttling when intracellular pH (pHi) changes, playing important roles in both the classical BMP signaling pathway and non-BMP signaling pathways. Given that Smad5 can move intracellularly in response to changes in physicochemical properties, its cellular localization may play a crucial role in the development of respiratory diseases. This article will explore the possibility that its distribution characteristics may be an important factor that is easily overlooked and not adequately considered in disease research.
Collapse
Affiliation(s)
- Zeqiang Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiayu Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lixia He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Siyuan Zhu
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weiguo Kong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Zili Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Saraiva-Romanholo BM, de Genaro IS, de Almeida FM, Felix SN, Lopes MRC, Amorim TS, Vieira RP, Arantes-Costa FM, Martins MA, de Fátima Lopes Calvo Tibério I, Prado CM. Exposure to Sodium Hypochlorite or Cigarette Smoke Induces Lung Injury and Mechanical Impairment in Wistar Rats. Inflammation 2022; 45:1464-1483. [PMID: 35501465 DOI: 10.1007/s10753-022-01625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/11/2020] [Accepted: 01/11/2022] [Indexed: 11/05/2022]
Abstract
Pulmonary irritants, such as cigarette smoke (CS) and sodium hypochlorite (NaClO), are associated to pulmonary diseases in cleaning workers. We examined whether their association affects lung mechanics and inflammation in Wistar rats. Exposure to these irritants alone induced alterations in the lung mechanics, inflammation, and remodeling. The CS increased airway cell infiltration, acid mucus production, MMP-12 expression, and alveolar enlargement. NaClO increased the number of eosinophils and macrophages in the bronchoalveolar lavage fluid, with cells expressing IL-13, MMP-12, MMP-9, TIMP-1, and iNOS in addition to increased IL-1β and TNF-α levels. Co-exposure to both irritants increased epithelial and smooth muscle cell area, acid mucus production, and IL-13 expression in the airways, while it reduced the lung inflammation. In conclusion, the co-exposure of CS with NaClO reduced the pulmonary inflammation, but increased the acidity of mucus, which may protect lungs from more injury. A cross-resistance in people exposed to multiple lung irritants should also be considered.
Collapse
Affiliation(s)
- Beatriz Mangueira Saraiva-Romanholo
- Sao Paulo Hospital (IAMSPE), Sao Paulo, Brazil.
- Department of Medicine, School of Medicine, University of Sao Paulo, LIM 20 Av. Dr. Arnaldo, 455 - Sala 1210, 1º andar, CEP: 01246903, Sao Paulo, Brazil.
- University City of Sao Paulo (UNICID), Sao Paulo, Brazil.
- Laboratory of Studies in Pulmonary Inflammation, Department of Biosciences, Federal University of Sao Paulo (UNIFESP), Santos, Brazil.
| | - Isabella Santos de Genaro
- Sao Paulo Hospital (IAMSPE), Sao Paulo, Brazil
- Department of Medicine, School of Medicine, University of Sao Paulo, LIM 20 Av. Dr. Arnaldo, 455 - Sala 1210, 1º andar, CEP: 01246903, Sao Paulo, Brazil
| | - Francine Maria de Almeida
- Department of Medicine, School of Medicine, University of Sao Paulo, LIM 20 Av. Dr. Arnaldo, 455 - Sala 1210, 1º andar, CEP: 01246903, Sao Paulo, Brazil
| | - Soraia Nogueira Felix
- Sao Paulo Hospital (IAMSPE), Sao Paulo, Brazil
- Department of Medicine, School of Medicine, University of Sao Paulo, LIM 20 Av. Dr. Arnaldo, 455 - Sala 1210, 1º andar, CEP: 01246903, Sao Paulo, Brazil
| | | | | | - Rodolfo Paula Vieira
- Post-Graduation Program in Bioengineering and in Biomedical Engineering, Brazil University, Sao Paulo, Brazil
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Sao Jose dos Campos, Brazil
- Post-Graduation Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Santos, Brazil
- School of Medicine, Anhembi Morumbi University, Sao Jose dos Campos, SP, Brazil
| | - Fernanda Magalhães Arantes-Costa
- Department of Medicine, School of Medicine, University of Sao Paulo, LIM 20 Av. Dr. Arnaldo, 455 - Sala 1210, 1º andar, CEP: 01246903, Sao Paulo, Brazil
| | - Milton Arruda Martins
- Department of Medicine, School of Medicine, University of Sao Paulo, LIM 20 Av. Dr. Arnaldo, 455 - Sala 1210, 1º andar, CEP: 01246903, Sao Paulo, Brazil
| | - Iolanda de Fátima Lopes Calvo Tibério
- Department of Medicine, School of Medicine, University of Sao Paulo, LIM 20 Av. Dr. Arnaldo, 455 - Sala 1210, 1º andar, CEP: 01246903, Sao Paulo, Brazil
| | - Carla Máximo Prado
- Laboratory of Studies in Pulmonary Inflammation, Department of Biosciences, Federal University of Sao Paulo (UNIFESP), Santos, Brazil
| |
Collapse
|
3
|
Kawagoe J, Maeda Y, Kikuchi R, Takahashi M, Fuchikami JI, Tsuji T, Kono Y, Abe S, Yamaguchi K, Koyama N, Nakamura H, Aoshiba K. Differential effects of dexamethasone and roflumilast on asthma in mice with or without short cigarette smoke exposure. Pulm Pharmacol Ther 2021; 70:102052. [PMID: 34214693 DOI: 10.1016/j.pupt.2021.102052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/03/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023]
Abstract
Appropriate drug treatment for smoking asthmatics is uncertain because most smokers with asthma are less sensitive to treatment with glucocorticoids compared with non-smokers with asthma. We hypothesized that roflumilast (Rof), a selective phosphodiesterases-4 inhibitor regarded as an add-on therapy for chronic obstructive pulmonary disease, might be more effective than glucocorticoids for improving asthma in smokers. To investigate this hypothesis, we compared the therapeutic effects of dexamethasone (Dex) and Rof in a mouse model of ovalbumin-induced asthma with or without concurrent cigarette smoke (CS) exposure for 2 weeks. We found that recurrent asthma attacks increased lung tissue resistance. CS exposure in asthmatic mice decreased the central airway resistance, increased lung compliance, and attenuated airway hyper-responsiveness (AHR). CS exposure in asthmatic mice also increased the number of neutrophils and macrophages in the bronchoalveolar fluid. Treatment with Dex in asthmatic mice without CS exposure reduced airway resistance, AHR and airway eosinophilia. In asthmatic mice with CS exposure, however, Dex treatment unexpectedly increased lung tissue resistance and restored AHR that had been otherwise suppressed. Dex treatment in asthmatic mice with CS exposure inhibited eosinophilic inflammation but conversely exacerbated neutrophilic inflammation. On the other hand, treatment with Rof in asthmatic mice without CS exposure reduced airway resistance and airway eosinophilia, although the inhibitory effect of Rof on AHR was unremarkable. In asthmatic mice with CS exposure, Rof treatment did not exacerbate lung tissue resistance but modestly restored AHR, without any significant effects on airway inflammation. These results suggest that CS exposure mitigates sensitivity to both Dex and Rof. In asthmatic mice with CS exposure, Dex is still effective in reducing eosinophilic inflammation but increases lung tissue resistance, AHR and neutrophilic inflammation. Rof is ineffective in improving lung function and inflammation in asthmatic mice with CS exposure. This study did not support our initial hypothesis that Rof might be more effective than glucocorticoids for improving asthma in smokers. However, glucocorticoids may have a detrimental effect on smoking asthmatics.
Collapse
Affiliation(s)
- Junichiro Kawagoe
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki 300-0395, Japan; Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Yuki Maeda
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki 300-0395, Japan.
| | - Ryota Kikuchi
- Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Maki Takahashi
- CMIC Pharma Science Co.,Ltd., Bioresearch Center, 10221 Kobuchisawa-cho, Hokuto-shi, Yamanashi, 408-0044, Japan.
| | - Jun-Ichi Fuchikami
- CMIC Pharma Science Co.,Ltd., Bioresearch Center, 10221 Kobuchisawa-cho, Hokuto-shi, Yamanashi, 408-0044, Japan.
| | - Takao Tsuji
- Otsuki Municipal Hospital, 1225 Hanasaki, Otsuki-machi, 401-0015 Yamanashi, Japan.
| | - Yuta Kono
- Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Shinji Abe
- Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Kazuhiro Yamaguchi
- Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Nobuyuki Koyama
- Department of Clinical Oncology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki 300-0395, Japan.
| | - Hiroyuki Nakamura
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki 300-0395, Japan.
| | - Kazutetsu Aoshiba
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki 300-0395, Japan.
| |
Collapse
|
4
|
Wei C, Huang L, Zheng Y, Cai X. Selective activation of cannabinoid receptor 2 regulates Treg/Th17 balance to ameliorate neutrophilic asthma in mice. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1015. [PMID: 34277815 PMCID: PMC8267324 DOI: 10.21037/atm-21-2778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022]
Abstract
Background The cannabinoid receptor 2 (CNR2) plays a critical role in relieving asthma, with the mechanism still unclear. We aimed to investigate the mechanism of the CNR2 agonist (β-caryophyllene, β-Car) in regulating the balance of regulatory T cells (Treg) and T helper cell 17 (Th17) and thus its role in asthma. Methods The study group of 50 pathogen-free female BALB/c mice were randomly divided at 6–8 weeks old into five groups of Control, Asthma, Asthma + β-Car (10 mg/kg), Asthma + β-Car + SR144528 (specific CNR2 antagonist, 3 mg/kg), and Asthma + β-Car + CMD178 (inhibitor of Treg cell, 10 mg/kg). ELISA was conducted to evaluate the main inflammatory cytokines [interleukin (IL)-6, IL-8, and tumor necrosis factor-α], and those secreted by Treg (transforming growth factor-β and IL-10), and Th17 (IL-17A and IL-22). Markers of Treg and Th17 cells were assessed by flow cytometry. In vitro, the CD4+ T cells were sorted and directed to differentiate to Treg and Th17 cells. The expression levels of CNR2, STAT5 and JNK1/2 were investigated by western blot and immunofluorescence assay. Results β-Car relieved neutrophilic asthma severity in mice by elevating the marker genes’ expression of Treg and inhibiting those of Th17, causing an increased proportion of Treg to Th17. β-Car also promoted the directed differentiation of CD4+ T cells into Treg, but not Th17. Activation of the CNR2 regulated the Treg/Th17 balance and relieved neutrophilic asthma possibly through promotion of phosphorylation of STAT5 and JNK1/2. Conclusions The effect of the selective CNR2 agonist activating STAT5 and JNK1/2 signaling was to change the Treg/Th17 balance and reduce the inflammatory reaction, thus ameliorating neutrophilic asthma in a mouse model.
Collapse
Affiliation(s)
- Chaochao Wei
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Haikou, China
| | - Linhui Huang
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Haikou, China
| | - Yamei Zheng
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Haikou, China
| | - Xingjun Cai
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Haikou, China
| |
Collapse
|
5
|
Chen IL, Todd I, Fairclough LC. Immunological and pathological effects of electronic cigarettes. Basic Clin Pharmacol Toxicol 2019; 125:237-252. [PMID: 30861614 DOI: 10.1111/bcpt.13225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/04/2019] [Indexed: 12/12/2022]
Abstract
Electronic cigarettes (E-cigarettes) are considered a preferable alternative to conventional cigarettes due to the lack of combustion and the absence of tobacco-specific toxicants. E-cigarettes have rapidly gained in popularity in recent years amongst both existing smokers and previous non-smokers. However, a growing literature demonstrates that E-cigarettes are not as safe as generally believed. Here, we discuss the immunological, and other, deleterious effects of E-cigarettes on a variety of cell types and host defence mechanisms in humans and in murine models. We review not only the effects of complete E-cigarette liquids, but also each of the main components-nicotine, humectants and flavourings. This MiniReview thus highlights the possible role of E-cigarettes in the pathogenesis of disease and raises awareness of the potential harm that E-cigarettes may cause.
Collapse
Affiliation(s)
- I-Ling Chen
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Ian Todd
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
6
|
Belvisi MG, Baker K, Malloy N, Raemdonck K, Dekkak B, Pieper M, Nials AT, Birrell MA. Modelling the asthma phenotype: impact of cigarette smoke exposure. Respir Res 2018; 19:89. [PMID: 29747661 PMCID: PMC5946402 DOI: 10.1186/s12931-018-0799-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/29/2018] [Indexed: 12/28/2022] Open
Abstract
Background Asthmatics that are exposed to inhaled pollutants such as cigarette smoke (CS) have increased symptom severity. Approximately 25% of adult asthmatics are thought to be active smokers and many sufferers, especially in the third world, are exposed to high levels of inhaled pollutants. The mechanism by which CS or other airborne pollutants alter the disease phenotype and the effectiveness of treatment in asthma is not known. The aim of this study was to determine the impact of CS exposure on the phenotype and treatment sensitivity of rodent models of allergic asthma. Methods Models of allergic asthma were configured that mimicked aspects of the asthma phenotype and the effect of CS exposure investigated. In some experiments, treatment with gold standard asthma therapies was investigated and end-points such as airway cellular burden, late asthmatic response (LAR) and airway hyper-Reactivity (AHR) assessed. Results CS co-exposure caused an increase in the LAR but interestingly attenuated the AHR. The effectiveness of LABA, LAMA and glucocorticoid treatment on LAR appeared to be retained in the CS-exposed model system. The eosinophilia or lymphocyte burden was not altered by CS co-exposure, nor did CS appear to alter the effectiveness of glucocorticoid treatment. Steroids, however failed to reduce the neutrophilic inflammation in sensitized mice exposed to CS. Conclusions These model data have certain parallels with clinical findings in asthmatics, where CS exposure did not impact the anti-inflammatory efficacy of steroids but attenuated AHR and enhanced symptoms such as the bronchospasm associated with the LAR. These model systems may be utilised to investigate how CS and other airborne pollutants impact the asthma phenotype; providing the opportunity to identify novel targets.
Collapse
Affiliation(s)
- Maria G Belvisi
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.,Respiratory, Inflammation Autoimmunity RIA IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden.,MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK
| | - Katie Baker
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Nicole Malloy
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Kristof Raemdonck
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.,Department of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.,Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450, Porto, Portugal
| | - Bilel Dekkak
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Michael Pieper
- Boehringer Ingelheim Pharma GmbH & Co. KG, Rhein, Germany
| | | | - Mark A Birrell
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK. .,Respiratory, Inflammation Autoimmunity RIA IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden. .,MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK.
| |
Collapse
|
7
|
Kim YS, Kim HY, Ahn HS, Sohn TS, Song JY, Lee YB, Lee DH, Lee JI, Jeong SC, Chae HS, Han K, Yeo CD. The Association between Tobacco Smoke and Serum Immunoglobulin E Levels in Korean Adults. Intern Med 2017; 56:2571-2577. [PMID: 28883244 PMCID: PMC5658521 DOI: 10.2169/internalmedicine.8737-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective Smoking is common in patients with allergic diseases. The aim of this study was to evaluate the cross-sectional association between the current smoking status and total and specific Immunoglobulin E (IgE) levels in Korean adults. Methods Data were obtained from the 2010 Korean National Health and Nutrition Examination Survey, a national cross-sectional study. We analyzed the data of subjects whose smoking status and serum IgE levels were of acceptable quality. Results A total of 1,963 subjects (1,118 never smokers, 340 ex-smokers, and 505 current smokers) were included. The total IgE levels and specific IgE levels to house dust mite Dermatophagoides farinae (Df), cockroach, and dog allergens in never smokers were significantly (p<0.0001) lower than in ex-smokers or current smokers. After adjusting for other variables, current smokers independently had significantly higher levels of total IgE and cockroach-specific IgE than ex-smokers or never smokers. The proportions of subjects with total IgE ≥150 kU/L and specific IgE ≥0.35 kU/L to Df-specific IgE were significantly (p value for trend <0.05) increased in ex-smokers and current smokers. The total IgE levels and IgE levels specific to Df, cockroaches, and dogs significantly (p value for trend <0.05) and proportionally increased with increasing numbers of cigarettes smoked daily. Conclusion Smoking was associated with elevated total IgE levels and IgE levels specific to Df, cockroach, and dog allergens in a cumulative, dose-dependent manner. Furthermore, current smoking status was an independent risk factor for elevated total IgE levels and IgE levels specific to cockroach allergen.
Collapse
Affiliation(s)
- Young Soo Kim
- Epidemiology Study Cluster of Uijeongbu St. Mary's Hospital, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Korea
| | - Hee Yeon Kim
- Epidemiology Study Cluster of Uijeongbu St. Mary's Hospital, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Korea
| | - Hyo-Suk Ahn
- Epidemiology Study Cluster of Uijeongbu St. Mary's Hospital, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Korea
| | - Tae Seo Sohn
- Epidemiology Study Cluster of Uijeongbu St. Mary's Hospital, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Korea
| | - Jae Yen Song
- Epidemiology Study Cluster of Uijeongbu St. Mary's Hospital, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Korea
| | - Young Bok Lee
- Epidemiology Study Cluster of Uijeongbu St. Mary's Hospital, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Korea
| | - Dong-Hee Lee
- Epidemiology Study Cluster of Uijeongbu St. Mary's Hospital, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Korea
| | - Jae-Im Lee
- Epidemiology Study Cluster of Uijeongbu St. Mary's Hospital, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Korea
| | - Seong Cheol Jeong
- Epidemiology Study Cluster of Uijeongbu St. Mary's Hospital, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Korea
| | - Hiun Suk Chae
- Epidemiology Study Cluster of Uijeongbu St. Mary's Hospital, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Korea
| | - Kyungdo Han
- Epidemiology Study Cluster of Uijeongbu St. Mary's Hospital, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Korea
| | - Chang Dong Yeo
- Epidemiology Study Cluster of Uijeongbu St. Mary's Hospital, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Korea
| |
Collapse
|
8
|
Tilp C, Bucher H, Haas H, Duechs MJ, Wex E, Erb KJ. Effects of conventional tobacco smoke and nicotine-free cigarette smoke on airway inflammation, airway remodelling and lung function in a triple allergen model of severe asthma. Clin Exp Allergy 2016; 46:957-72. [PMID: 26502779 DOI: 10.1111/cea.12665] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 10/14/2015] [Accepted: 10/21/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND Patients with asthma who smoke have reduced lung function, increased exacerbation rates and increased steroid resistance compared to non-smoking asthmatics. In mice, cigarette smoke has been reported to have both pro- and anti-Th2 response effects. OBJECTIVE We hypothesized that combining tobacco cigarette smoke (tCS) with allergen exposure increases inflammation, airway remodelling and lung function in mice. To test this hypothesis, we combined a severe triple allergen model with tCS exposure and investigated whether effects were due to Toll-like receptor 4 signalling and/or nicotine and also observed when nicotine-free cigarettes were used. METHODS Mice were sensitized with ovalbumin, cockroach and house dust mite allergen in alum followed by intratracheal challenges with allergen twice a week for 6 weeks or additionally exposed to tCS during the allergen challenge period. Nicotine or nicotine-free herbal cigarette smoke was also applied to allergen challenged mice. RESULTS tCS significantly reduced eosinophil numbers, IL-4 and IL-5 concentrations in the lung, total and allergen-specific IgE in serum, improved lung function and reduced collagen I levels. With the exception of collagen I all parameters reduced by tobacco cigarette smoke were also reduced in Toll-like receptor 4-deficient mice. Nicotine-free cigarette smoke also had significant anti-inflammatory effects on eosinophils, IL-4 and IL-5 concentrations in the lung and reduced airway hyperreactivity, albeit weaker than tobacco smoke. Applying nicotine alone also reduced Th2 cytokine levels and eosinophil numbers in the airways. CONCLUSION Our experiments show that tCS exposure reduces allergen-induced Th2 response in the lung and associated collagen I production and development of airway hyperreactivity. With the exception on collagen I formation, these effects were not dependent on Toll-like receptor 4. The observed anti-Th2 effects of both nicotine and nicotine-free herbal cigarette smoke together suggests that tCS reduces the Th2 responses through nicotine and other products released by burning tobacco.
Collapse
Affiliation(s)
- C Tilp
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Germany
| | - H Bucher
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Germany
| | - H Haas
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Germany
| | - M J Duechs
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Germany
| | - E Wex
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Germany
| | - K J Erb
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Germany
| |
Collapse
|
9
|
Abstract
To study the complexity of human asthma disease, the development of different animal models is needed. Among all different laboratory animals, mice represent a useful tool for the development of asthma. This chapter will describe protocols for designing different animal models applied to the studying of asthma phenotypes.
Collapse
Affiliation(s)
- Fernando Marqués-García
- Department of Clinical Biochemistry, University Hospital of Salamanca, Paseo de San Vicente 58, Salamanca, 37007, Spain.
- Salamanca Institute for Biomedical Research (IBSAL), Salamanca, Spain.
| | - Elena Marcos-Vadillo
- Department of Clinical Biochemistry, University Hospital of Salamanca, Paseo de San Vicente 58, Salamanca, 37007, Spain
- Salamanca Institute for Biomedical Research (IBSAL), Salamanca, Spain
| |
Collapse
|
10
|
Dong M, Xie SY, Li FC, Lv N, Wei XP. Is acupuncture better than sham acupuncture for attenuated airway inflammation and regulated cytokines produced by diverse Th subtypes in chronic OVA inhalation in asthma induced mice. Eur J Integr Med 2015. [DOI: 10.1016/j.eujim.2015.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Ko CH, Chan RLY, Siu WS, Shum WT, Leung PC, Zhang L, Cho CH. Deteriorating effect on bone metabolism and microstructure by passive cigarette smoking through dual actions on osteoblast and osteoclast. Calcif Tissue Int 2015; 96:389-400. [PMID: 25694359 DOI: 10.1007/s00223-015-9966-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/09/2015] [Indexed: 12/11/2022]
Abstract
There is no clear evidence to show the direct causal relationship between passive cigarette smoking and osteoporosis. Furthermore, the underlying mechanism is unknown. The objective of this study is to demonstrate the effects of long-term passive cigarette smoking on bone metabolism and microstructure by a mouse model and cell culture systems. BALB/c mice were exposed to 2 or 4 % cigarette smoke for 14 weeks. The bone turnover biochemical markers in urine and serum and also the bone micro-architecture by micro-CT were compared with the control group exposed to normal ambient air. In the cell culture experiments, mouse MC3T3-E1 and RAW264.7 cell lines to be employed as osteoblast and osteoclast, respectively, were treated with the sera obtained from 4 % smoking or control mice. Their actions on cell viability, differentiation, and function on these bone cells were assessed. The urinary mineral and deoxypyridinoline (DPD) levels, and also the serum alkaline phosphatase activity, were significantly higher in the 4 % smoking group when compared with the control group, indicating an elevated bone metabolism after cigarette smoking. In addition, femoral osteopenic condition was observed in the 4 % smoking group, as shown by the decrease of relative bone volume and trabecular thickness. In isolated cell studies, osteoblast differentiation and bone formation were inhibited while osteoclast differentiation was increased. The current mouse smoking model and the isolated cell studies demonstrate that passive cigarette smoke could induce osteopenia by exerting a direct detrimental effect on bone cells differentiation and further on bone remodeling process.
Collapse
Affiliation(s)
- Chun Hay Ko
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Fischer KD, Agrawal DK. Vitamin D regulating TGF-β induced epithelial-mesenchymal transition. Respir Res 2014; 15:146. [PMID: 25413472 PMCID: PMC4245846 DOI: 10.1186/s12931-014-0146-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/06/2014] [Indexed: 01/14/2023] Open
Abstract
Background Subepithelial fibrosis is a characteristic hallmark of airway remodeling in asthma. A critical regulator of fibrosis, transforming growth factor β (TGF-β), can induce airway remodeling in epithelial cells through induction of epithelial-mesenchymal transition (EMT). Vitamin D has immunomodulatory functions, however, its effect on controlling subepithelial fibrosis is not known. Methods Human bronchial epithelial cells (BEAS-2B) were exposed to calcitriol followed by stimulation with TGF-β1 or TGF-β2. The protein expression and mRNA transcripts for E-cadherin, Snail, vimentin, and N-cadherin were analyzed by Western blot and qPCR. An invasion assay and scratch wound assay were performed to identify the migratory properties of the cells following treatments. Results TGF-β1 decreased E-cadherin expression and increased protein expression and mRNA transcripts of Snail, vimentin, and N-cadherin together with increased cell invasion and migration. TGF-β2 elicited migratory response similar to TGF-β1 but induced the expression of EMT markers differently from that by TGF-β1. Calcitriol attenuated TGF-β1- and TGF-β2-induced cell motility. Also, calcitriol inhibited the expression of EMT markers in TGF-β1-treated epithelial cells with less effect on TGF-β2. Conclusions These data suggest that calcitriol inhibits both migration and invasion induced by TGF-β1 and TGF-β2 in human airway epithelial cells. However, the regulatory effect of vitamin D in epithelial-mesenchymal transition was more effective to TGF-β1-induced changes. Thus, calcitriol could be a potential therapeutic agent in the prevention and management of subepithelial fibrosis and airway remodeling.
Collapse
Affiliation(s)
- Kimberly D Fischer
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA.
| | - Devendra K Agrawal
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA. .,Center for Clinical and Translational Science Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
13
|
Hong GU, Kim NG, Ro JY. Expression of airway remodeling proteins in mast cell activated by TGF-β released in OVA-induced allergic responses and their inhibition by low-dose irradiation or 8-oxo-dG. Radiat Res 2014; 181:425-38. [PMID: 24720751 DOI: 10.1667/rr13547.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Allergic asthma is characterized by chronic airway remodeling, which is associated with the expression of extracellular matrix proteins (ECM) by TGF-β. However, to date there are no reports demonstrating that structural proteins are directly expressed in mast cells. This study aimed to investigate whether ECM proteins are expressed in mast cells activated with antigen/antibody reaction, and whether the resolution effects of irradiation or 8-oxo-dG may contribute to allergic asthma prevention. Bone marrow-derived mast cells (BMMCs) were activated with DNP-HSA/anti-DNP IgE antibody (act-BMMCs). C57BL/6 mice were sensitized and challenged with ovalbumin (OVA) to induce allergic asthma. Mice were treated orally with 8-oxo-dG or exposed to whole body irradiation (using (137)Cs gamma ray at a dose of 0.5 Gy) for three consecutive days 24 h after OVA challenge. Expression of extracellular matrix (ECM) proteins, TGF-β signaling molecules and NF-κB/AP-1 was determined in the BMMCs, bronchoalveolar lavage (BAL) cells or lung tissues using Western blot, polymerase chain reaction (PCR) and electrophoretic mobility shift assay (EMSA), respectively. Act-BMMCs increased expression of ECM proteins, TGF-β/TGF-β receptor I, TGF-β signaling molecules and cytokines; and increased both NF-κB and AP-1 activity. In addition, the population of mast cells; expression of mast cell markers, TGF-β signaling molecules, ECM proteins/amounts; OVA-specific serum IgE level; numbers of goblet cells; airway hyperresponsiveness; cytokines/chemokines were increased in BAL cells and lung tissues of OVA-challenged mice. All of the above end points were reduced by irradiation or 8-oxo-dG in vitro and in vivo, respectively. The data suggest that mast cells induce expression of ECM proteins through TGF-β produced in inflammatory cells of OVA mice and that post treatment of irradiation or 8-oxo-dG after OVA-challenge may reduce airway remodeling through down-regulating mast cell re-activation by TGF-β/Smad signals.
Collapse
Affiliation(s)
- Gwan Ui Hong
- Department of Pharmacology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, South Korea
| | | | | |
Collapse
|
14
|
Chen YS, Lee SM, Lin YJ, Chiang SH, Lin CC. Effects of Danshensu and Salvianolic Acid B from Salvia miltiorrhiza Bunge (Lamiaceae) on cell proliferation and collagen and melanin production. Molecules 2014; 19:2029-41. [PMID: 24531218 PMCID: PMC6271020 DOI: 10.3390/molecules19022029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/01/2014] [Accepted: 02/08/2014] [Indexed: 01/27/2023] Open
Abstract
Danshensu (DSU) and salvianolic acid B (SAB) are the primary water-soluble compounds of Salvia miltiorrhiza Bunge (Lamiaceae). In this study, we analyzed the effects of DSU, SAB and a S. miltiorrhiza extract (SME) on cell proliferation. Additionally, the effects of DSU and SAB on collagen synthesis in Detroit 551 human normal fibroblast cells and on melanin production in B16 melanoma cells were verified. The results demonstrated that SME can enhance the proliferation of Detroit 551 cells and that this boost may be caused by DSU and SAB. This research showed that SME, DSU and SAB all have the ability to increase the production of collagen in Detroit 551 cells. The results also confirmed that DSU and SAB can attenuate the α-MSH-stimulated melanin production of B16 cells by inhibiting tyrosinase activity. Therefore, SME, DSU and SAB each have the potential to be utilized as active ingredients in wound healing or cosmetic treatments. In the future, DSU and SAB could also be used as functional components for treating hyperpigmentation.
Collapse
Affiliation(s)
- Yi-Shyan Chen
- Department of Cosmetic Science, Providence University, 200 Chung-Chi Road, Shalu, Taichung 43301, Taiwan.
| | - Shu-Mei Lee
- Department of Cosmetic Science and Management, Mackay Medicine, Nursing and Management College, 92 Shengjing Road, Beitou, Taipei 11260, Taiwan.
| | - Ying-Ju Lin
- Department of Medical Research, China Medical University Hospital, 2 Yuh-Der Road, Taichung 40447, Taiwan.
| | - Shu-Hua Chiang
- Department of Food and Beverage Management, Taiwan Hospitality and Tourism College, 268 Chong-Hsing St., Feng-Shan Village, Shou-Feng County, Hualien 974, Taiwan.
| | - Chih-Chien Lin
- Department of Cosmetic Science, Providence University, 200 Chung-Chi Road, Shalu, Taichung 43301, Taiwan.
| |
Collapse
|
15
|
Givi ME, Blokhuis BR, Da Silva CA, Adcock I, Garssen J, Folkerts G, Redegeld FA, Mortaz E. Cigarette smoke suppresses the surface expression of c-kit and FcεRI on mast cells. Mediators Inflamm 2013; 2013:813091. [PMID: 23476107 PMCID: PMC3583132 DOI: 10.1155/2013/813091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/01/2013] [Accepted: 01/02/2013] [Indexed: 11/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a multicomponent disease characterized by emphysema and/or chronic bronchitis. COPD is mostly associated with cigarette smoking. Cigarette smoke contains over 4,700 chemical compounds, including free radicals and LPS (a Toll-Like Receptor 4 agonist) at concentrations which may contribute to the pathogenesis of diseases like COPD. We have previously shown that short-term exposure to cigarette smoke medium (CSM) can stimulate several inflammatory cells via TLR4 and that CSM reduces the degranulation of bone-marrow-derived mast cells (BMMCs). In the current study, the effect of CSM on mast cells maturation and function was investigated. Coculturing of BMMC with CSM during the development of bone marrow progenitor cells suppressed the granularity and the surface expression of c-kit and Fc ε RI receptors. Stimulation with IgE/antigen resulted in decreased degranulation and release of Th1 and Th2 cytokines. The effects of CSM exposure could not be mimicked by the addition of LPS to the culture medium. In conclusion, this study shows that CSM may affect mast cell development and subsequent response to allergic activation in a TLR4-independent manner.
Collapse
Affiliation(s)
- M. E. Givi
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - B. R. Blokhuis
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - C. A. Da Silva
- Integrative Pharmacology, Department of Biosciences, AstraZeneca R&D Lund Respiratory and Inflammation Research Area, 22 187 Lund, 43183 Mölndal, Sweden
| | - I. Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - J. Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
- Danone Research-Centre for Specialised Nutrition, P.O. Box 7005, 6700 CA Wageningen, The Netherlands
| | - G. Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - F. A. Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - E. Mortaz
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
- Department of Immunology, Chronic Respiratory Disease Research Center and National Research Institute of Tuberculosis and Lung Disease (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, P.O. Box 19575/154, Tehran, Iran
| |
Collapse
|
16
|
Randhawa V, Bagler G. Identification of SRC as a potent drug target for asthma, using an integrative approach of protein interactome analysis and in silico drug discovery. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:513-26. [PMID: 22775150 DOI: 10.1089/omi.2011.0160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Network-biology inspired modeling of interactome data and computational chemistry have the potential to revolutionize drug discovery by complementing conventional methods. We consider asthma, a complex disease characterized by intricate molecular mechanisms, for our study. We aim to integrate prediction of potent drug targets using graph-theoretical methods and subsequent identification of small molecules capable of modulating activity of the best target. In this work, we construct the protein interactome underlying this disease: Asthma Protein Interactome (API). Using a strategy based on network analysis of the interactome, we identify a set of potential drug targets for asthma. Topologically and dynamically, v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (SRC) emerges as the most central target in API. SRC is known to play an important role in promoting airway smooth muscle cell growth and facilitating migration in airway remodeling. From interactome analysis, and with the reported role in respiratory mechanisms, SRC emerges as a promising drug target for asthma. Further, we proceed to identify leads for SRC from a public database of small molecules. We predict two potential leads for SRC using ligand-based virtual screening methodology.
Collapse
Affiliation(s)
- Vinay Randhawa
- Biotechnology Division, Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research (CSIR-IHBT), Palampur, India
| | | |
Collapse
|
17
|
Gudelj I, Kobal IM, Škvorc HM, Miše K, Vrbica Ž, Plavec D, Tudorić N. Intraregional differences in asthma prevalence and risk factors for asthma among adolescents in Split-Dalmatia County, Croatia. Med Sci Monit 2012; 18:PH43-50. [PMID: 22460102 PMCID: PMC3560826 DOI: 10.12659/msm.882609] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 10/10/2011] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Our aim was to assess the differences in intraregional prevalence of asthma in adolescents in Split-Dalmatia County to determine asthma risk factors in our population and estimate the specificity and sensitivity of the questionnaire used. MATERIAL/METHODS We conducted the study using the European Community Respiratory Health Survey II short questionnaire supplemented by some questions from the International Study of Asthma in Childhood questionnaire. The participants suspected to have asthma were invited for examination by an asthma specialist who established the final diagnosis of asthma according to the medical history, physical examination, skin-prick tests, and peak flow measurements. RESULTS A total of 4027 students (51.2% male) participated in the study. According to the prevalence of wheezing during the last 12 months, asthma prevalence was estimated at 9.7%. The total prevalence of asthma confirmed by an asthma specialist in the selected population was 5.60% (95% CI, 4.93-6.36%); 6.18% in Split (95% CI, 5.37-7.09), 5.63% in Imotski (95% CI, 3.48-8.58), and 2.90% in Sinj (95% CI, 1.67-4.68) (P=0.0028). We found sensitization to aeroallergens and peanuts, and active smoking to be independent risk factors for asthma. CONCLUSIONS Split-Dalmatia County has moderate asthma prevalence, with a significant intraregional difference. Asthma prevalence estimated by a questionnaire (9.7%) overestimates the prevalence of asthma confirmed by an asthma specialist (5.6%) in adolescents in Croatia. Our data confirmed the need of a more complex questionnaire to evaluate the accurate prevalence of current asthma or the need for subsequent clinical evaluation of the questionnaire obtained data. Allergic sensitization to aeroallergens and active smoking were important risk factors for asthma.
Collapse
Affiliation(s)
- Ivan Gudelj
- Department of Pulmonary Diseases, University Hospital Center Split, University Split, Split, Croatia
| | - Iva Mrkić Kobal
- Children’s Hospital Srebrnjak, Reference Center for Clinical Pediatric Allergy of the Ministry of Health and Social Welfare, Zagreb, Croatia
| | - Helena Munivrana Škvorc
- Children’s Hospital Srebrnjak, Reference Center for Clinical Pediatric Allergy of the Ministry of Health and Social Welfare, Zagreb, Croatia
| | - Kornelija Miše
- Department of Pulmonary Diseases, University Hospital Center Split, University Split, Split, Croatia
| | - Žarko Vrbica
- Department of Pulmonary Diseases, County Hospital Dubrovnik, Dubrovnik, Croatia
| | - Davor Plavec
- Children’s Hospital Srebrnjak, Reference Center for Clinical Pediatric Allergy of the Ministry of Health and Social Welfare, Zagreb, Croatia
| | - Neven Tudorić
- Department of Pulmonary Diseases, University Hospital Dubrava, Zagreb, Croatia
| |
Collapse
|