1
|
Guadagno AH, Medina SH. The manifold role of octapeptide repeats in prion protein assembly. Pept Sci (Hoboken) 2023; 115:e24303. [PMID: 37153755 PMCID: PMC10162500 DOI: 10.1002/pep2.24303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
Prion protein misfolding is associated with fatal neurodegenerative disorders such as kuru, Creutzfeldt-Jakob disease, and several animal encephalopathies. While the C-terminal 106-126 peptide has been well studied for its role in prion replication and toxicity, the octapeptide repeat (OPR) sequence found within the N-terminal domain has been relatively under explored. Recent findings that the OPR has both local and long-range effects on prion protein folding and assembly, as well as its ability to bind and regulate transition metal homeostasis, highlights the important role this understudied region may have in prion pathologies. This review attempts to collate this knowledge to advance a deeper understanding on the varied physiologic and pathologic roles the prion OPR plays, and connect these findings to potential therapeutic modalities focused on OPR-metal binding. Continued study of the OPR will not only elucidate a more complete mechanistic model of prion pathology, but may enhance knowledge on other neurodegenerative processes underlying Alzheimer's, Parkinson's, and Huntington's diseases.
Collapse
Affiliation(s)
- Amy H. Guadagno
- Nanomedicine, Intercollegiate Degree Program, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott H. Medina
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
Prasad KN, Bondy SC. Oxidative and Inflammatory Events in Prion Diseases: Can They Be Therapeutic Targets? Curr Aging Sci 2020; 11:216-225. [PMID: 30636622 PMCID: PMC6635421 DOI: 10.2174/1874609812666190111100205] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/17/2018] [Accepted: 12/10/2018] [Indexed: 01/15/2023]
Abstract
Prion diseases are a group of incurable infectious terminal neurodegenerative diseases caused by the aggregated misfolded PrPsc in selected mammals including humans. The complex physical interaction between normal prion protein PrPc and infectious PrPsc causes conformational change from the α- helix structure of PrPc to the β-sheet structure of PrPsc, and this process is repeated. Increased oxidative stress is one of the factors that facilitate the conversion of PrPc to PrPsc. This overview presents evidence to show that increased oxidative stress and inflammation are involved in the progression of this disease. Evidence is given for the participation of redoxsensitive metals Cu and Fe with PrPsc inducing oxidative stress by disturbing the homeostasis of these metals. The fact that some antioxidants block the toxicity of misfolded PrPc peptide supports the role of oxidative stress in prion disease. After exogenous infection in mice, PrPsc enters the follicular dendritic cells where PrPsc replicates before neuroinvasion where they continue to replicate and cause inflammation leading to neurodegeneration. Therefore, reducing levels of oxidative stress and inflammation may decrease the rate of the progression of this disease. It may be an important order to reduce oxidative stress and inflammation at the same time. This may be achieved by increasing the levels of antioxidant enzymes by activating the Nrf2 pathway together with simultaneous administration of dietary and endogenous antioxidants. It is proposed that a mixture of micronutrients could enable these concurrent events thereby reducing the progression of human prion disease.
Collapse
Affiliation(s)
- Kedar N Prasad
- Engage Global, 245 El Faison Drive, San Rafael, CA, United States
| | - Stephen C Bondy
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA 92697, United States
| |
Collapse
|
3
|
Custodio W, Silva WJ, Paes Leme AF, Cury JA, Del Bel Cury AA. Plasma proteins in the acquired denture pellicle enhance substrate surface free energy and Candida albicans
phospholipase and proteinase activities. ACTA ACUST UNITED AC 2014; 6:273-81. [DOI: 10.1111/jicd.12101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 03/04/2014] [Indexed: 01/04/2023]
Affiliation(s)
- William Custodio
- Piracicaba Dental School; State University of Campinas; Piracicaba São Paulo Brazil
| | - Wander J. Silva
- Piracicaba Dental School; State University of Campinas; Piracicaba São Paulo Brazil
| | | | - Jaime A. Cury
- Piracicaba Dental School; State University of Campinas; Piracicaba São Paulo Brazil
| | | |
Collapse
|
4
|
Shirai T, Saito M, Kobayashi A, Asano M, Hizume M, Ikeda S, Teruya K, Morita M, Kitamoto T. Evaluating prion models based on comprehensive mutation data of mouse PrP. Structure 2014; 22:560-71. [PMID: 24560805 DOI: 10.1016/j.str.2013.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 12/21/2013] [Accepted: 12/28/2013] [Indexed: 10/25/2022]
Abstract
The structural details of the essential entity of prion disease, fibril prion protein (PrP(Sc)), are still elusive despite the large body of evidence supporting the prion hypothesis. Five major working models of PrP(Sc) structure, which are not compatible with each other, have been proposed. However, no systematic evaluation has been performed on those models. We devised a method that combined systematic point mutation with threading on knowledge-based amino acid potentials. A comprehensive mutation experiment was performed on mouse prion protein, and the PrP(Sc) conversion efficiency of each mutant was examined. The models were evaluated based on the mutation data by using the threading method. Although the data turned out to be rather more consistent with the models that assumed a conversion of the N-terminal region of core PrP into a β helix than with others, substantial modifications were also required to further improve the current model based on recent experimental results.
Collapse
Affiliation(s)
- Tsuyoshi Shirai
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan; Bioinformatics Research Division, Japan Science and Technology Agency, 5-3, Yonbancho, Chiyoda-ku, Tokyo 102-8666 Japan.
| | - Mihoko Saito
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan; Bioinformatics Research Division, Japan Science and Technology Agency, 5-3, Yonbancho, Chiyoda-ku, Tokyo 102-8666 Japan
| | - Atsushi Kobayashi
- Department of Neurological Science, Tohoku University Graduate School of Medicine Research, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Masahiro Asano
- Department of Neurological Science, Tohoku University Graduate School of Medicine Research, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Masaki Hizume
- Department of Neurological Science, Tohoku University Graduate School of Medicine Research, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Shino Ikeda
- Department of Neurological Science, Tohoku University Graduate School of Medicine Research, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Kenta Teruya
- Department of Neurological Science, Tohoku University Graduate School of Medicine Research, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Masanori Morita
- Department of Neurological Science, Tohoku University Graduate School of Medicine Research, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; Research and Development Division, Benesis Corporation, Kitahama, Chuo-Ku, Osaka 541-850, Japan
| | - Tetsuyuki Kitamoto
- Department of Neurological Science, Tohoku University Graduate School of Medicine Research, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| |
Collapse
|
5
|
Chakroun N, Fornili A, Prigent S, Kleinjung J, Dreiss CA, Rezaei H, Fraternali F. Decrypting Prion Protein Conversion into a β-Rich Conformer by Molecular Dynamics. J Chem Theory Comput 2013; 9:2455-2465. [PMID: 23700393 PMCID: PMC3656828 DOI: 10.1021/ct301118j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Indexed: 01/08/2023]
Abstract
Prion diseases are fatal neurodegenerative diseases characterized by the formation of β-rich oligomers and the accumulation of amyloid fibrillar deposits in the central nervous system. Understanding the conversion of the cellular prion protein into its β-rich polymeric conformers is fundamental to tackling the early stages of the development of prion diseases. In this paper, we have identified unfolding and refolding steps critical to the conversion into a β-rich conformer for different constructs of the ovine prion protein by molecular dynamics simulations. By combining our results with in vitro experiments, we show that the folded C-terminus of the ovine prion protein is able to recurrently undergo a drastic conformational change by displacement of the H1 helix, uncovering of the H2H3 domain, and formation of persistent β-sheets between H2 and H3 residues. The observed β-sheets refold toward the C-terminus exposing what we call a "bending region" comprising residues 204-214. This is strikingly coincident with the region harboring mutations determining the fate of the prion oligomerization process. The β-rich intermediate is used here for the construction of a putative model for the assembly into an oligomeric aggregate. The results presented here confirm the importance of the H2H3 domain for prion oligomer formation and therefore its potential use as molecular target in the design of novel prion inhibitors.
Collapse
Affiliation(s)
- Nesrine Chakroun
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom ; Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London, SE1 1UL, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
6
|
Rigter A, Priem J, Langeveld JPM, Bossers A. Prion protein self-interaction in prion disease therapy approaches. Vet Q 2011; 31:115-28. [PMID: 22029882 DOI: 10.1080/01652176.2011.604976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases are unique disorders that are not caused by infectious micro-organisms (bacteria or fungi), viruses or parasites, but rather seem to be the result of an infectious protein. TSEs are comprised of fatal neurodegenerative disorders affecting both human and animals. Prion diseases cause sponge-like degeneration of neuronal tissue and include (among others) Creutzfeldt-Jacob disease in humans, bovine spongiform encephalopathy (BSE) in cattle and scrapie in sheep. TSEs are characterized by the formation and accumulation of transmissible (infectious) disease-associated protease-resistant prion protein (PrP(Sc)), mainly in tissues of the central nervous system. The exact molecular processes behind the conversion of PrP(C) into PrP(Sc) are not clearly understood. Correlations between prion protein polymorphisms and disease have been found, however in what way these polymorphisms influence the conversion processes remains an enigma; is stabilization or destabilization of the prion protein the basis for a higher conversion propensity? Apart from the disease-associated polymorphisms of the prion protein, the molecular processes underlying conversion are not understood. There are some notions as to which regions of the prion protein are involved in refolding of PrP(C) into PrP(Sc) and where the most drastic structural changes take place. Direct interactions between PrP(C) molecules and/or PrP(Sc) are likely at the basis of conversion, however which specific amino acid domains are involved and to what extent these domains contribute to conversion resistance/sensitivity of the prion protein or the species barrier is still unknown.
Collapse
Affiliation(s)
- Alan Rigter
- Department of Infection Biology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands.
| | | | | | | |
Collapse
|
7
|
Cruite JT, Abalos GC, Bellon A, Solforosi L. Histidines in the octapeptide repeat of PrPC react with PrPSc at an acidic pH. Biochemistry 2011; 50:1618-23. [PMID: 21268659 DOI: 10.1021/bi1017683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cellular PrP is actively cycled between the cell surface and the endosomal pathway. The exact site and mechanism of conversion from PrP(C) to PrP(Sc) remain unknown. We have previously used recombinant antibodies containing grafts of PrP sequence to identify three regions of PrP(C) (aa23-27, 98-110, and 136-158) that react with PrP(Sc) at neutral pH. To determine if any regions of PrP(C) react with PrP(Sc) at an acidic pH similar to that of an endosomal compartment, we tested our panel of grafted antibodies for the ability to precipitate PrP(Sc) in a range of pH conditions. At pH near or lower than 6, PrP-grafted antibodies representing the octapeptide repeat react strongly with PrP(Sc) but not PrP(C). Modified grafts in which the histidines of the octarepeat were replaced with alanines did not react with PrP(Sc). PrP(Sc) precipitated by the octapeptide at pH 5.7 was able to seed conversion of normal PrP to PrP(Sc) in vitro. However, modified PrP containing histidine to alanine substitutions within the octapeptide repeats was still converted to PrP(Sc) in N2a cells. These results suggest that once PrP has entered the endosomal pathway, the acidic environment facilitates the binding of PrP(Sc) to the octarepeat of PrP(C) by the change in charge of the histidines within the octarepeat.
Collapse
Affiliation(s)
- Justin T Cruite
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, United States.
| | | | | | | |
Collapse
|