1
|
Phylogenetic analyses of 5-hydroxytryptamine 3 (5-HT3) receptors in Metazoa. PLoS One 2023; 18:e0281507. [PMID: 36857360 PMCID: PMC9977066 DOI: 10.1371/journal.pone.0281507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/24/2023] [Indexed: 03/02/2023] Open
Abstract
The 5-hydroxytrptamine 3 (5-HT3) receptor is a member of the 'Cys-loop' family and the only pentameric ligand gated ion channel among the serotonin receptors. 5-HT3 receptors play an important role in controlling growth, development, and behaviour in animals. Several 5-HT3 receptor antagonists are used to treat diseases (e.g., irritable bowel syndrome, nausea and emesis). Humans express five different subunits (A-E) enabling a variety of heteromeric receptors to form but all contain 5HT3A subunits. However, the information available about the 5-HT3 receptor subunit occurrence among the metazoan lineages is minimal. In the present article we searched for 5-HT3 receptor subunit homologs from different phyla in Metazoa. We identified more than 1000 5-HT3 receptor subunits in Metazoa in different phyla and undertook simultaneous phylogenetic analysis of 526 5HT3A, 358 5HT3B, 239 5HT3C, 70 5HT3D, and 173 5HT3E sequences. 5-HT3 receptor subunits were present in species belonging to 11 phyla: Annelida, Arthropoda, Chordata, Cnidaria, Echinodermata, Mollusca, Nematoda, Orthonectida, Platyhelminthes, Rotifera and Tardigrada. All subunits were most often identified in Chordata phylum which was strongly represented in searches. Using multiple sequence alignment, we investigated variations in the ligand binding region of the 5HT3A subunit protein sequences in the metazoan lineage. Several critical amino acid residues important for ligand binding (common structural features) are commonly present in species from Nematoda and Platyhelminth gut parasites through to Chordata. Collectively, this better understanding of the 5-HT3 receptor evolutionary patterns raises possibilities of future pharmacological challenges facing Metazoa including effects on parasitic and other species in ecosystems that contain 5-HT3 receptor ligands.
Collapse
|
2
|
Gibbs E, Chakrapani S. Structure, Function and Physiology of 5-Hydroxytryptamine Receptors Subtype 3. Subcell Biochem 2021; 96:373-408. [PMID: 33252737 DOI: 10.1007/978-3-030-58971-4_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
5-hydroxytryptamine receptor subtype 3 (5-HT3R) is a pentameric ligand-gated ion channel (pLGIC) involved in neuronal signaling. It is best known for its prominent role in gut-CNS signaling though there is growing interest in its other functions, particularly in modulating non-serotonergic synaptic activity. Recent advances in structural biology have provided mechanistic understanding of 5-HT3R function and present new opportunities for the field. This chapter gives a broad overview of 5-HT3R from a physiological and structural perspective and then discusses the specific details of ion permeation, ligand binding and allosteric coupling between these two events. Biochemical evidence is summarized and placed within a physiological context. This perspective underscores the progress that has been made as well as outstanding challenges and opportunities for future 5-HT3R research.
Collapse
Affiliation(s)
- Eric Gibbs
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA.
| | - Sudha Chakrapani
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA. .,Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106-4970, USA.
| |
Collapse
|
3
|
Zarkadas E, Zhang H, Cai W, Effantin G, Perot J, Neyton J, Chipot C, Schoehn G, Dehez F, Nury H. The Binding of Palonosetron and Other Antiemetic Drugs to the Serotonin 5-HT3 Receptor. Structure 2020; 28:1131-1140.e4. [DOI: 10.1016/j.str.2020.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/18/2020] [Accepted: 07/08/2020] [Indexed: 12/19/2022]
|
4
|
Price KL, Lillestol RK, Ulens C, Lummis SCR. Palonosetron-5-HT 3 Receptor Interactions As Shown by a Binding Protein Cocrystal Structure. ACS Chem Neurosci 2016; 7:1641-1646. [PMID: 27656911 DOI: 10.1021/acschemneuro.6b00132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Palonosetron is a potent 5-HT3 receptor antagonist and an effective therapeutic agent against emesis. Here we identify the molecular determinants of compound recognition in the receptor binding site by obtaining a high resolution structure of palonosetron bound to an engineered acetylcholine binding protein that mimics the 5-HT3 receptor binding site, termed 5-HTBP, and by examining the potency of palonosetron in a range of 5-HT3 receptors with mutated binding site residues. The structural data indicate that palonosetron forms a tight and effective wedge in the binding pocket, made possible by its rigid tricyclic ring structure and its interactions with binding site residues; it adopts a binding pose that is distinct from the related antiemetics granisetron and tropisetron. The functional data show many residues previously shown to interact with agonists and antagonists in the binding site are important for palonosetron binding, and indicate those of particular importance are W183 (a cation-π interaction and a hydrogen bond) and Y153 (a hydrogen bond). This information, and the availability of the structure of palonosetron bound to 5-HTBP, should aid the development of novel and more efficacious drugs that act via 5-HT3 receptors.
Collapse
Affiliation(s)
- Kerry L. Price
- Department
of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, United Kingdom
| | - Reidun K. Lillestol
- Department
of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, United Kingdom
| | - Chris Ulens
- The
Laboratory of Structural Neurobiology, Department of Cellular and
Molecular Medicine, KU Leuven, Herestraat 49,
PB 601, B-3000 Leuven, Belgium
| | - Sarah C. R. Lummis
- Department
of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, United Kingdom
| |
Collapse
|
5
|
Lochner M, Thompson AJ. The antimalarial drug proguanil is an antagonist at 5-HT3 receptors. J Pharmacol Exp Ther 2014; 351:674-84. [PMID: 25277140 DOI: 10.1124/jpet.114.218461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proguanil is an antimalarial prodrug that is metabolized to 4-chlorophenyl-1-biguanide (CPB) and the active metabolite cycloguanil (CG). These compounds are structurally related to meta-chlorophenyl biguanide (mCPBG), a 5-hydroxytryptamine 3 (5-HT3) receptor agonist. Here we examine the effects of proguanil and its metabolites on the electrophysiology and ligand-binding properties of human 5-HT3A receptors expressed in Xenopus oocytes and human embryonic kidney 293 cells, respectively. 5-HT3 receptor responses were reversibly inhibited by proguanil, with an IC50 of 1.81 μM. Competitive antagonism was shown by a lack of voltage-dependence, Schild plot (Kb = 1.70 μM), and radioligand competition (Ki = 2.61 μM) with the 5-HT3 receptor antagonist [(3)H]granisetron. Kinetic measurements (kon = 4.0 × 10(4) M(-1) s(-1) ; koff = 0.23 s(-1)) were consistent with a simple bimolecular reaction scheme with a Kb of 4.35 μM. The metabolites CG and CPB similarly inhibited 5-HT3 receptors as assessed by IC50 (1.48 and 4.36 μM, respectively), Schild plot (Kb = 2.97 and 11.4 μM), and radioligand competition (Ki = 4.89 and 0.41 μM). At higher concentrations, CPB was a partial agonist (EC50 = 14.1 μM; I/Imax = 0.013). These results demonstrate that proguanil competitively inhibits 5-HT3 receptors, with an IC50 that exceeds whole-blood concentrations following its oral administration. They may therefore be responsible for the occasional gastrointestinal side effects, nausea, and vomiting reported following its use. Clinical development of related compounds should therefore consider effects at 5-HT3 receptors as an early indication of possible unwanted gastrointestinal side effects.
Collapse
Affiliation(s)
- Martin Lochner
- Department of Pharmacology, Cambridge University, Cambridge, United Kingdom (A.J.T.); and Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland (M.L.)
| | - Andrew J Thompson
- Department of Pharmacology, Cambridge University, Cambridge, United Kingdom (A.J.T.); and Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland (M.L.)
| |
Collapse
|
6
|
Thompson AJ, Verheij MHP, Verbeek J, Windhorst AD, de Esch IJP, Lummis SCR. The binding characteristics and orientation of a novel radioligand with distinct properties at 5-HT3A and 5-HT3AB receptors. Neuropharmacology 2014; 86:378-88. [PMID: 25174552 PMCID: PMC4220016 DOI: 10.1016/j.neuropharm.2014.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/22/2014] [Accepted: 08/09/2014] [Indexed: 12/22/2022]
Abstract
VUF10166 (2-chloro-3-(4-methyl piperazin-1-yl)quinoxaline) is a ligand that binds with high affinity to 5-HT3 receptors. Here we synthesise [(3)H]VUF10166 and characterise its binding properties at 5-HT3A and 5-HT3AB receptors. At 5-HT3A receptors [(3)H]VUF10166 displayed saturable binding with a Kd of 0.18 nM. Kinetic measurements gave monophasic association (6.25 × 10(7) M(-1) min(-1)) and dissociation (0.01 min(-1)) rates that yielded a similar Kd value (0.16 nM). At 5-HT3AB receptors two association (6.15 × 10(-7), 7.23 M(-1) min(-1)) and dissociation (0.024, 0.162 min(-1)) rates were seen, yielding Kd values (0.38 nM and 22 nM) that were consistent with values obtained in saturation (Kd = 0.74 nM) and competition (Ki = 37 nM) binding experiments respectively. At both receptor types, specific binding was inhibited by classical 5-HT3 receptor-selective orthosteric ligands (5-HT, allosetron, d-tubocurarine, granisetron, mCPBG, MDL72222, quipazine), but not by non-competitive antagonists (bilobalide, ginkgolide B, picrotoxin) or competitive ligands of other Cys-loop receptors (ACh, bicuculline, glycine, gabazine). To explore VUF10166 ligand-receptor interactions we used in silico modelling and docking, and tested the predictions using site directed mutagenesis. The data suggest that VUF10166 adopts a similar orientation to 5-HT3 receptor agonists bound in AChBP (varenicline) and 5HTBP (5-HT) crystal structures.
Collapse
Affiliation(s)
| | - Mark H P Verheij
- Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Joost Verbeek
- VU University Medical Center, Dept Radiology & Nuclear Medicine, Amsterdam, The Netherlands
| | - Albert D Windhorst
- VU University Medical Center, Dept Radiology & Nuclear Medicine, Amsterdam, The Netherlands
| | - Iwan J P de Esch
- Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Sarah C R Lummis
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
Abstract
5-Hydroxytryptamine type 3 (5-HT(3)) receptors are cation-selective Cys loop receptors found in both the central and peripheral nervous systems. There are five 5-HT(3) receptor subunits (A-E), and all functional receptors require at least one A subunit. Regions from noncontiguous parts of the subunit sequence contribute to the agonist-binding site, and the roles of a range of amino acid residues that form the binding pocket have been identified. Drugs that selectively antagonize 5-HT(3) receptors (the "setrons") are the current gold standard for treatment of chemotherapy-induced and postoperative nausea and vomiting and have potential for the treatment of a range of other conditions.
Collapse
Affiliation(s)
- Sarah C R Lummis
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK.
| |
Collapse
|
8
|
Verheij MHP, Thompson AJ, van Muijlwijk-Koezen JE, Lummis SCR, Leurs R, de Esch IJP. Design, synthesis, and structure-activity relationships of highly potent 5-HT₃ receptor ligands. J Med Chem 2012; 55:8603-14. [PMID: 23006041 PMCID: PMC3504484 DOI: 10.1021/jm300801u] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
The 5-HT3 receptor, a pentameric ligand-gated
ion channel
(pLGIC), is an important therapeutic target. During a recent fragment
screen, 6-chloro-N-methyl-2-(4-methyl-1,4-diazepan-1-yl)quinazolin-4-amine
(1) was identified as a 5-HT3R hit fragment.
Here we describe the synthesis and structure–activity relationships
(SAR) of a series of (iso)quinoline and quinazoline compounds that
were synthesized and screened for 5-HT3R affinity using
a [3H]granisetron displacement assay. These studies resulted
in the discovery of several high affinity ligands of which compound 22 showed the highest affinity (pKi > 10) for the 5-HT3 receptor. The observed SAR is
in
agreement with established pharmacophore models for 5-HT3 ligands and is used for ligand–receptor binding mode prediction
using homology modeling and in silico docking approaches.
Collapse
Affiliation(s)
- Mark H P Verheij
- Leiden/Amsterdam Center of Drug Research-LACDR, Amsterdam Institute for Molecules Medicines and Systems-AIMMS, Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
9
|
Thompson AJ, Price KL, Lummis SCR. Cysteine modification reveals which subunits form the ligand binding site in human heteromeric 5-HT3AB receptors. J Physiol 2011; 589:4243-57. [PMID: 21708905 PMCID: PMC3180581 DOI: 10.1113/jphysiol.2011.208439] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The ligand binding site of Cys-loop receptors is formed by residues on the principal (+) and complementary (-) faces of adjacent subunits, but the subunits that constitute the binding pocket in many heteromeric receptors are not yet clear. To probe the subunits involved in ligand binding in heteromeric human 5-HT(3)AB receptors, we made cysteine substitutions to the + and - faces of A and B subunits, and measured their functional consequences in receptors expressed in Xenopus oocytes. All A subunit mutations altered or eliminated function. The same pattern of changes was seen at homomeric and heteromeric receptors containing cysteine substitutions at A(R92) (- face), A(L126)(+), A(N128)(+), A(I139)(-), A(Q151)(-) and A(T181)(+), and these receptors displayed further changes when the sulphydryl modifying reagent methanethiosulfonate-ethylammonium (MTSEA) was applied. Modifications of A(R92C)(-)- and A(T181C)(+)-containing receptors were protected by the presence of agonist (5-HT) or antagonist (d-tubocurarine). In contrast modifications of the equivalent B subunit residues did not alter heteromeric receptor function. In addition a double mutant, A(S206C)(-)(/E229C)(+), only responded to 5-HT following DTT treatment in both homomeric and heteromeric receptors, indicating receptor function was inhibited by a disulphide bond between an A+ and an A- interface in both receptor types. Our results are consistent with binding to an A+A- interface at both homomeric and heteromeric human 5-HT(3) receptors, and explain why the competitive pharmacologies of these two receptors are identical.
Collapse
Affiliation(s)
- A J Thompson
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | | | | |
Collapse
|
10
|
Machu TK. Therapeutics of 5-HT3 receptor antagonists: current uses and future directions. Pharmacol Ther 2011; 130:338-47. [PMID: 21356241 PMCID: PMC3103470 DOI: 10.1016/j.pharmthera.2011.02.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 02/09/2011] [Indexed: 12/14/2022]
Abstract
The 5-Hydroxytryptamine3 (5-HT3) receptor is a member of the cys-loop family of ligand gated ion channels, of which the nicotinic acetylcholine receptor is the prototype. All other 5-HT receptors identified to date are metabotropic receptors. The 5-HT3 receptor is present in the central and peripheral nervous systems, as well as a number of non-nervous tissues. As an ion channel that is permeable to the cations, Na(+), K(+), and Ca(2+), the 5-HT3 receptor mediates fast depolarizing responses in pre- and post-synaptic neurons. As such, 5-HT3 receptor antagonists that are used clinically block afferent and efferent synaptic transmission. The most well established physiological roles of the 5-HT3 receptor are to coordinate emesis and regulate gastrointestinal motility. Currently marketed 5-HT3 receptor antagonists are indicated for the treatment of chemotherapy, radiation, and anesthesia-induced nausea and vomiting, as well as irritable bowel syndrome. Other therapeutic uses that have been explored include pain and drug addiction. The 5-HT3 receptor is one of a number of receptors that play a role in mediating nausea and vomiting, and as such, 5-HT3 receptor antagonists demonstrate the greatest anti-emetic efficacy when administered in combination with other drug classes.
Collapse
Affiliation(s)
- Tina K Machu
- Dept. of Medical Education and Dept. of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd. Fort Worth, TX 76107-2699, USA.
| |
Collapse
|
11
|
Abstract
Cys-loop receptors are membrane-spanning neurotransmitter-gated ion channels that are responsible for fast excitatory and inhibitory transmission in the peripheral and central nervous systems. The best studied members of the Cys-loop family are nACh, 5-HT3, GABAA and glycine receptors. All these receptors share a common structure of five subunits, pseudo-symmetrically arranged to form a rosette with a central ion-conducting pore. Some are cation selective (e.g. nACh and 5-HT3) and some are anion selective (e.g. GABAA and glycine). Each receptor has an extracellular domain (ECD) that contains the ligand-binding sites, a transmembrane domain (TMD) that allows ions to pass across the membrane, and an intracellular domain (ICD) that plays a role in channel conductance and receptor modulation. Cys-loop receptors are the targets for many currently used clinically relevant drugs (e.g. benzodiazepines and anaesthetics). Understanding the molecular mechanisms of these receptors could therefore provide the catalyst for further development in this field, as well as promoting the development of experimental techniques for other areas of neuroscience.In this review, we present our current understanding of Cys-loop receptor structure and function. The ECD has been extensively studied. Research in this area has been stimulated in recent years by the publication of high-resolution structures of nACh receptors and related proteins, which have permitted the creation of many Cys loop receptor homology models of this region. Here, using the 5-HT3 receptor as a typical member of the family, we describe how homology modelling and ligand docking can provide useful but not definitive information about ligand interactions. We briefly consider some of the many Cys-loop receptors modulators. We discuss the current understanding of the structure of the TMD, and how this links to the ECD to allow channel gating, and consider the roles of the ICD, whose structure is poorly understood. We also describe some of the current methods that are beginning to reveal the differences between different receptor states, and may ultimately show structural details of transitions between them.
Collapse
|
12
|
Nyce HL, Stober ST, Abrams CF, White MM. Mapping spatial relationships between residues in the ligand-binding domain of the 5-HT3 receptor using a molecular ruler. Biophys J 2010; 98:1847-55. [PMID: 20441748 DOI: 10.1016/j.bpj.2010.01.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 01/11/2010] [Accepted: 01/14/2010] [Indexed: 12/24/2022] Open
Abstract
The serotonin 5-HT(3) receptor (5-HT(3)R) is a member of the Cys-loop ligand-gated ion channel family. We used a combination of site-directed mutagenesis, homology modeling, and ligand-docking simulations to analyze antagonist-receptor interactions. Mutation of E236, which is near loop C of the binding site, to aspartate prevents expression of the receptor on the cell surface, and no specific ligand binding can be detected. On the other hand, mutation to glutamine, asparagine, or alanine produces receptors that are expressed on the cell surface, but decreases receptor affinity for the competitive antagonist d-tubocurarine (dTC) 5-35-fold. The results of a double-mutant cycle analysis employing a panel of dTC analogs to identify specific points of interactions between the dTC analogs and E236 are consistent with E236 making a direct physical interaction with the 12 -OH of dTC. dTC is a rigid molecule of known three-dimensional structure. Together with previous studies linking other regions of dTC to specific residues in the binding site, these data allow us to define the relative spatial arrangement of three different residues in the ligand-binding site: R92 (loop D), N128 (loop A), and E236 (near loop C). Molecular modeling employing these distance constraints followed by molecular-dynamics simulations produced a dTC/receptor complex consistent with the experimental data. The use of the rigid ligands as molecular rulers in conjunction with double-mutant cycle analysis provides a means of mapping the relative positions of various residues in the ligand-binding site of any ligand-receptor complex, and thus is a useful tool for delineating the architecture of the binding site.
Collapse
Affiliation(s)
- Heather L Nyce
- Department of Biochemistry, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
13
|
Hazai E, Joshi P, Skoviak EC, Suryanarayanan A, Schulte MK, Bikadi Z. A comprehensive study on the 5-hydroxytryptamine3A receptor binding of agonists serotonin and m-chlorophenylbiguanidine. Bioorg Med Chem 2009; 17:5796-805. [DOI: 10.1016/j.bmc.2009.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 07/06/2009] [Accepted: 07/13/2009] [Indexed: 01/07/2023]
|
14
|
Morelli E, Gemma S, Budriesi R, Campiani G, Novellino E, Fattorusso C, Catalanotti B, Coccone SS, Ros S, Borrelli G, Persico M, Fiorini I, Nacci V, Ioan P, Chiarini A, Hamon M, Cagnotto A, Mennini T, Fracasso C, Colovic M, Caccia S, Butini S. Specific Targeting of Peripheral Serotonin 5-HT3 Receptors. Synthesis, Biological Investigation, and Structure−Activity Relationships. J Med Chem 2009; 52:3548-62. [DOI: 10.1021/jm900018b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Elena Morelli
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Roberta Budriesi
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Ettore Novellino
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Caterina Fattorusso
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Bruno Catalanotti
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Salvatore Sanna Coccone
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Sindu Ros
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Giuseppe Borrelli
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Marco Persico
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Isabella Fiorini
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Vito Nacci
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Pierfranco Ioan
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Alberto Chiarini
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Michel Hamon
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Alfredo Cagnotto
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Tiziana Mennini
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Claudia Fracasso
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Milena Colovic
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Silvio Caccia
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Stefania Butini
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| |
Collapse
|
15
|
Gating mechanisms in Cys-loop receptors. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:37-49. [PMID: 19404635 DOI: 10.1007/s00249-009-0452-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/23/2009] [Accepted: 03/27/2009] [Indexed: 10/20/2022]
Abstract
The Cys-loop receptor superfamily of ligand-gated ion channels has a prominent role in neuronal signalling. These receptors are pentamers, each subunit containing ten beta-strands in the extracellular domain and four alpha-helical transmembrane domains (M1-M4). The M2 domain of each subunit lines the intrinsic ion channel pore and residues within the extracellular domain form ligand binding sites. Ligand binding initiates a conformational change that opens the ion-selective pore. The coupling between ligand binding in the extracellular domain and opening of the intrinsic ion channel pore located in the membrane is not fully understood. Several loop structures, such as loop 2, the Cys-loop, the pre-M1 region and the M2-M3 loop have been implicated in receptor activation. The current "conformational change wave" hypothesis suggests that binding of a ligand initiates a rotation of the beta-sheets around an axis that passes through the Cys-loop. Due to this rotation, the Cys-loop and loop 2 are displaced. Movement of the M2-M3 loop then twists the M2 domain leading to a separation of the helices and opening of the pore. The publication of a crystal structure of an acetylcholine binding protein and the refined structure of the Torpedo marmorata acetylcholine receptor have improved the understanding of the mechanisms and structures involved in coupling ligand binding to channel gating. In this review, the most recent findings on some of these loop structures will be reported and discussed in view of their role in the gating mechanism.
Collapse
|
16
|
Barnes NM, Hales TG, Lummis SC, Peters JA. The 5-HT3 receptor--the relationship between structure and function. Neuropharmacology 2009; 56:273-84. [PMID: 18761359 PMCID: PMC6485434 DOI: 10.1016/j.neuropharm.2008.08.003] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 07/31/2008] [Accepted: 08/01/2008] [Indexed: 12/15/2022]
Abstract
The 5-hydroxytryptamine type-3 (5-HT3) receptor is a cation-selective ion channel of the Cys-loop superfamily. 5-HT3 receptor activation in the central and peripheral nervous systems evokes neuronal excitation and neurotransmitter release. Here, we review the relationship between the structure and the function of the 5-HT3 receptor. 5-HT3A and 5-HT3B subunits are well established components of 5-HT3 receptors but additional HTR3C, HTR3D and HTR3E genes expand the potential for molecular diversity within the family. Studies upon the relationship between subunit structure and the ionic selectivity and single channel conductances of 5-HT3 receptors have identified a novel domain (the intracellular MA-stretch) that contributes to ion permeation and selectivity. Conventional and unnatural amino acid mutagenesis of the extracellular domain of the receptor has revealed residues, within the principle (A-C) and complementary (D-F) loops, which are crucial to ligand binding. An area requiring much further investigation is the subunit composition of 5-HT3 receptors that are endogenous to neurones, and their regional expression within the central nervous system. We conclude by describing recent studies that have identified numerous HTR3A and HTR3B gene polymorphisms that impact upon 5-HT3 receptor function, or expression, and consider their relevance to (patho)physiology.
Collapse
Affiliation(s)
- Nicholas M. Barnes
- Cellular and Molecular Neuropharmacology Research Group, Department of Pharmacology, Division of Neuroscience, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Tim G. Hales
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA
| | - Sarah C.R. Lummis
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - John A. Peters
- Neurosciences Institute, Division of Pathology and Neuroscience, Ninewells Hospital and Medical School, The University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
17
|
Zhang R, Wen X, Militante J, Hester B, Rhubottom HE, Sun H, Leidenheimer NJ, Yan D, White MM, Machu TK. The role of loop F residues in determining differential d-tubocurarine potencies in mouse and human 5-hydroxytryptamine 3A receptors. Biochemistry 2007; 46:1194-204. [PMID: 17260949 DOI: 10.1021/bi0616100] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The competitive antagonist d-tubocurarine (curare) has greater potency at mouse than at human 5-hydroxytryptamine 3A (5-HT3A) receptors, despite 84% amino acid sequence identity between the receptors. Within the ligand binding domain of this receptor are six loops (A-F). A previous report demonstrated that loop C of the 5-HT3A receptor contributed to differential potency between the receptors [Hope, A. G. et al. (1999) Mol. Pharmacol. 55, 1037-1043]. The present study tested the hypothesis that loop F plays a significant role in conferring interspecies curare potency differences. Wild-type, chimeric, and point mutant 5-HT3A receptors were expressed in Xenopus oocytes, and two-electrode voltage clamp electrophysiological recordings were performed. Our data suggest that loops C and F contribute to curare potency, given that the curare IC50's (concentration of drug that produces 50% inhibition of the response) for chimeric human receptors with substitutions of mouse residues in loop C (40.07 +/- 2.52 nM) or loop F (131.8 +/- 5.95 nM) were intermediate between those for the mouse (12.99 +/- 0.77 nM) and human (1817 +/- 92.36 nM) wild-type receptors. Two human point mutant receptors containing mouse receptor substitutions in loop F (H-K195E or H-V202I) had significantly lower curare IC50's than that of the human receptor. The human double mutant receptor, H-K195E,V202I, had the same curare IC50 (133.8 +/- 6.38 nM) as that of the human receptor containing all six loop F mouse substitutions. These results demonstrate that two loop F residues make a significant contribution in determining curare potency at the 5-HT3A receptor.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 Fourth Street, Lubbock, Texas 79430, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kloda JH, Czajkowski C. Agonist-, antagonist-, and benzodiazepine-induced structural changes in the alpha1 Met113-Leu132 region of the GABAA receptor. Mol Pharmacol 2007; 71:483-93. [PMID: 17108261 DOI: 10.1124/mol.106.028662] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The structural basis by which agonists, antagonists, and allosteric modulators exert their distinct actions on ligand-gated ion channels is poorly understood. We used the substituted cysteine accessibility method to probe the structure of the GABAA receptor in the presence of ligands that elicit different pharmacological effects. Residues in the alpha1 Met113-Leu132 region of the GABA binding site were individually mutated to cysteine and expressed with wild-type beta2 and gamma2 subunits in Xenopus laevis oocytes. Using electrophysiology, we determined the rates of reaction of N-biotinaminoethyl methaneth-iosulfonate (MTSEA-biotin) with the introduced cysteines in the resting (unliganded) state and compared them with rates determined in the presence of GABA (agonist), 4-[6-imino-3-(4-methoxyphenyl)pyridazin-1-yl]butanoic acid hydrobromide (SR-95531; antagonist), pentobarbital (allosteric modulator), and flurazepam (allosteric modulator). alpha1N115C, alpha1L117C, alpha1T129C, and alpha1R131C are predicted to line the GABA binding pocket because MTSEA-biotin modification of these residues decreased the amount of current elicited by GABA, and the rates/extents of modification were decreased both by GABA and SR-95531. Reaction rates of some substituted cysteines were different depending on the ligand, indicating that barbiturate- and GABA-induced channel gating, antagonist binding, and benzodiazepine modulation induce specific structural rearrangements. Chemical reactivity of alpha1E122C was decreased by either GABA or pentobarbital but was unaltered by SR-95531 binding, whereas alpha1L127C reactivity was decreased by agonist and antagonist binding but not affected by pentobarbital. Furthermore, alpha1E122C, alpha1L127C, and alpha1R131C changed accessibility in response to flurazepam, providing structural evidence that residues in and near the GABA binding site move in response to benzodiazepine modulation.
Collapse
Affiliation(s)
- Jessica Holden Kloda
- Department of Physiology and Molecular and Cellular Pharmacology Program, University of Wisconsin at Madison, 601 Science Drive, Madison, WI 53711, USA
| | | |
Collapse
|
19
|
Joshi PR, Suryanarayanan A, Hazai E, Schulte MK, Maksay G, Bikádi Z. Interactions of granisetron with an agonist-free 5-HT3A receptor model. Biochemistry 2006; 45:1099-105. [PMID: 16430206 DOI: 10.1021/bi051676f] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A new homology model of type-3A serotonin receptors (5-HT(3A)Rs) was built on the basis of the electron microscopic structure of the nicotinic acetylcholine receptor and with an agonist-free binding cavity. The new model was used to re-evaluate the interactions of granisetron, a 5-HT(3A)R antagonist. Docking of granisetron identified two possible binding modes, including a newly identified region for antagonists formed by loop B, C, and E residues. Amino acid residues L184-D189 in loop B were mutated to alanine, while Y143 and Y153 in loop E were mutated to phenylalanine. Mutation H185A resulted in no detectable granisetron binding, while D189A resulted in a 22-fold reduction in affinity. Y143F and Y153F decreased granisetron affinity to the same extent as Y143A and Y153A mutations, supporting the role of the OH groups of these tyrosines in loop E. Modeling and mutation studies suggest that granisetron plays its antagonist role by hindering the closure of the back wall of the binding cavity.
Collapse
MESH Headings
- Amino Acids/genetics
- Amino Acids/metabolism
- Animals
- Binding Sites/drug effects
- Binding Sites/genetics
- Cells, Cultured
- Granisetron/chemistry
- Granisetron/metabolism
- Granisetron/pharmacology
- Ionophores/metabolism
- Ligands
- Lymnaea/chemistry
- Lymnaea/metabolism
- Mice
- Models, Molecular
- Mutagenesis, Site-Directed
- Mutation
- Receptors, Nicotinic/chemistry
- Receptors, Nicotinic/metabolism
- Receptors, Serotonin, 5-HT3/chemistry
- Receptors, Serotonin, 5-HT3/genetics
- Receptors, Serotonin, 5-HT3/metabolism
- Serotonin 5-HT3 Receptor Antagonists
- Transfection
- Tumor Cells, Cultured
- Xenopus
Collapse
Affiliation(s)
- Prasad R Joshi
- Department of Chemistry and Biochemistry, The University of Alaska, Fairbanks, Alaska 99775, USA
| | | | | | | | | | | |
Collapse
|
20
|
Suryanarayanan A, Joshi PR, Bikádi Z, Mani M, Kulkarni TR, Gaines C, Schulte MK. The loop C region of the murine 5-HT3A receptor contributes to the differential actions of 5-hydroxytryptamine and m-chlorophenylbiguanide. Biochemistry 2005; 44:9140-9. [PMID: 15966738 DOI: 10.1021/bi050661e] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sequence and predicted structural similarities between members of the Cys loop superfamily of ligand-gated ion channel receptors and the acetylcholine binding protein (AChBP) suggest that the ligand-binding site is formed by six loops that intersect at subunit interfaces. We employed site-directed mutagenesis to investigate the role of amino acids from the loop C region of the murine 5-HT(3AS)R in interacting with two structurally different agonists, serotonin (5-HT) and m-chlorophenylbiguanide (mCPBG). Mutant receptors were evaluated using radioligand binding, two-electrode voltage clamp, and immunofluorescence studies. Electrophysiological assays were employed to identify changes in response characteristics and relative efficacies of mCPBG and the partial agonist, 2-methyl 5-HT (2-Me5-HT). We have also constructed novel 5-HT and mCPBG docked models of the receptor binding site based on homology models of the AChBP. Both ligand-docked models correlate well with results from mutagenesis and electrophysiological assays. Four key amino acids were identified as being important to ligand binding and/or gating of the receptor. Among these, I228 and D229 are specific for effects mediated by 5-HT compared to mCPBG, indicating a differential interaction of these ligands with loop C. Residues F226 and Y234 are important for both 5-HT and mCPBG interactions. Mutations at F226, I228, and Y234 also altered the relative efficacies of agonists, suggesting a role in the gating mechanism.
Collapse
Affiliation(s)
- Asha Suryanarayanan
- Department of Chemistry and Biochemistry, The University of Alaska, Fairbanks, Alaska 99775, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Yan D, White MM. Spatial orientation of the antagonist granisetron in the ligand-binding site of the 5-HT3 receptor. Mol Pharmacol 2005; 68:365-71. [PMID: 15914697 DOI: 10.1124/mol.105.011957] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The serotonin type 3 receptor (5-HT(3)R) is a member of the cys-loop ligand-gated ion channel (LGIC) superfamily. Like almost all membrane proteins, high-resolution structural data are unavailable for this class of receptors. We have taken advantage of the high degree of homology between LGICs and the acetylcholine binding protein (AChBP) from the freshwater snail Lymnea stagnalis, for which high-resolution structural data are available, to create a structural model for the extracellular (i.e., ligand-binding) domain of the 5-HT(3)R and to perform a series of ligand docking experiments to delineate the architecture of the ligand-binding site. Structural models were created using homology modeling with the AChBP as a template. Docking of the antagonist granisetron was carried out using a Lamarckian genetic algorithm to produce models of ligand-receptor complexes. Two energetically similar conformations of granisetron in the binding site were obtained from the docking simulations. In one model, the indazole ring of granisetron is near Trp90 and the tropane ring is near Arg92; in the other, the orientation is reversed. We used double-mutant cycle analysis to determine which of the two orientations is consistent with experimental data and found that the data are consistent with the model in which the indazole ring of granisetron interacts with Arg92 and the tropane ring interacts with Trp90. The combination of molecular modeling with double-mutant cycle analysis offers a powerful approach for the delineation of the architecture of the ligand-binding site.
Collapse
Affiliation(s)
- Dong Yan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA 19102, USA
| | | |
Collapse
|
22
|
Cappelli A, Gallelli A, Manini M, Anzini M, Mennuni L, Makovec F, Menziani MC, Alcaro S, Ortuso F, Vomero S. Further Studies on the Interaction of the 5-Hydroxytryptamine3 (5-HT3) Receptor with Arylpiperazine Ligands. Development of a New 5-HT3 Receptor Ligand Showing Potent Acetylcholinesterase Inhibitory Properties. J Med Chem 2005; 48:3564-75. [PMID: 15887964 DOI: 10.1021/jm0493461] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Novel arylpiperazine derivatives bearing lipophilic probes were designed, synthesized, and evaluated for their potential ability to interact with the 5-hydroxytryptamine(3) (5-HT(3)) receptor. Most of the new compounds show subnanomolar 5-HT(3) receptor affinity. Ester 6bc showing a picomolar K(i) value is one of the most potent 5-HT(3) receptor ligands so far synthesized. The structure-affinity relationship study suggests the existence of a certain degree of conformational freedom of the amino acid residues interacting with the substituents in positions 3 and 4 of the quipazine quinoline nucleus. Thus, the tacrine-related heterobivalent ligand 6o was designed in an attempt to capitalize on the evidence of such a steric tolerance. Compound 6o shows a nanomolar potency for both the 5-HT(3) receptor and the human AChE and represents the first example of a rationally designed high-affinity 5-HT(3) receptor ligand showing nanomolar AChE inhibitory activity. Finally, the computational analysis performed on compound 6o allowed the rationalization of the structure-energy determinants for AChE versus BuChE selectivity and revealed the existence of a subsite at the boundary of the 5-HT(3) receptor extracellular domain, which could represent a "peripheral" site similar to that evidenced in the AChE gorge.
Collapse
Affiliation(s)
- Andrea Cappelli
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università di Siena, Via A. Moro, 53100 Siena, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Thompson AJ, Price KL, Reeves DC, Chan SL, Chau PL, Lummis SCR. Locating an antagonist in the 5-HT3 receptor binding site using modeling and radioligand binding. J Biol Chem 2005; 280:20476-82. [PMID: 15781467 DOI: 10.1074/jbc.m413610200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have used a homology model of the extracellular domain of the 5-HT(3) receptor to dock granisetron, a 5-HT(3) receptor antagonist, into the binding site using AUTODOCK. This yielded 13 alternative energetically favorable models. The models fell into 3 groups. In model type A the aromatic rings of granisetron were between Trp-90 and Phe-226 and its azabicyclic ring was between Trp-183 and Tyr-234, in model type B this orientation was reversed, and in model type C the aromatic rings were between Asp-229 and Ser-200 and the azabicyclic ring was between Phe-226 and Asn-128. Residues located no more than 5 A from the docked granisetron were identified for each model; of 26 residues identified, 8 were found to be common to all models, with 18 others being represented in only a subset of the models. To identify which of the docking models best represents the ligand-receptor complex, we substituted each of these 26 residues with alanine and a residue with similar chemical properties. The mutant receptors were expressed in human embryonic kidney (HEK)293 cells and the affinity of granisetron determined using radioligand binding. Mutation of 2 residues (Trp-183 and Glu-129) ablated binding, whereas mutation of 14 other residues caused changes in the [(3)H]granisetron binding affinity in one or both mutant receptors. The data showed that residues both in and close to the binding pocket can affect antagonist binding and overall were found to best support model B.
Collapse
Affiliation(s)
- Andrew J Thompson
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | | | | | | | | | | |
Collapse
|
24
|
Maksay G, Simonyi M, Bikádi Z. Subunit rotation models activation of serotonin 5-HT3AB receptors by agonists. J Comput Aided Mol Des 2005; 18:651-64. [PMID: 15849995 DOI: 10.1007/s10822-004-6259-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The N-terminal extracellular regions of heterooligomeric 3AB-type human 5-hydroxytryptamine receptors (5-HT3ABR) were modelled based on the crystal structure of snail acetylcholine binding protein AChBP. Stepwise rotation of subunit A by 5 degrees was performed between -10 degrees and 15 degrees to mimic agonist binding and receptor activation. Anticlockwise rotation reduced the size of the binding cavity in interface AB and reorganised the network of hydrogen bonds along the interface. AB subunit dimers with different rotations were applied for docking of ligands with different efficacies: 5-HT, m-chlorophenylbiguanide, SR 57227, quinolinyl piperazine and lerisetron derivatives. All ligands were docked into the dimer with -10 degrees rotation representing ligand-free, open binding cavities similarly, without pharmacological discrimination. Their ammonium ions were in hydrogen bonding distance to the backbone carbonyl of W183. Anticlockwise rotation and contraction of the binding cavity led to distinctive docking interactions of agonists with E129 and cation-pi interactions of their ammonium ions. Side chains of several further amino acids participating in docking (Y143, Y153, Y234 and E236) are in agreement with the effects of point mutations in the binding loops. Our model postulates that 5-HT binds to W183 in a hydrophobic cleft as well as to E236 in a hydrophilic vestibule. Then it elicits anticlockwise rotation to draw in loop C via pi-cation-pi interactions of its ammonium ion with W183 and Y234. Finally, closure of the binding cavity might end in rebinding of 5-HT to E129 in the hydrophilic vestibule.
Collapse
Affiliation(s)
- Gábor Maksay
- Molecular Pharmacology Group, Institute for Biomolecular Chemistry, Chemical Research Centre, Hungarian Academy of Sciences, PO Box 17, 1525 Budapest, Hungary
| | | | | |
Collapse
|
25
|
Beene DL, Price KL, Lester HA, Dougherty DA, Lummis SCR. Tyrosine residues that control binding and gating in the 5-hydroxytryptamine3 receptor revealed by unnatural amino acid mutagenesis. J Neurosci 2005; 24:9097-104. [PMID: 15483128 PMCID: PMC6730062 DOI: 10.1523/jneurosci.2429-04.2004] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The mechanism by which agonist binding triggers pore opening in ligand-gated ion channels is poorly understood. Here, we used unnatural amino acid mutagenesis to introduce subtle changes to the side chains of tyrosine residues (Tyr141, Tyr143, Tyr153, and Tyr234), which dominate the 5-HT3 receptor binding site. Heterologous expression in oocytes, combined with radioligand binding data and a model of 5-HT (serotonin) computationally docked into the binding site, has allowed us to determine which of these residues are responsible for binding and/or gating. We have shown that Tyr 143 forms a hydrogen bond that is essential for receptor gating but does not affect binding, whereas a hydrogen bond formed by Tyr153 is involved in both binding and gating of the receptor. The aromatic group of Tyr234 is essential for binding and gating, whereas its hydroxyl does not affect binding but plays a steric role in receptor gating. Tyr141 is not involved in agonist binding or receptor gating but is important for antagonist interactions. These data, combined with a new model of the nonliganded 5-HT3 receptor, lead to a mechanistic explanation of the interactions that initiate the conformational change leading to channel opening. Thus, we suggest that agonist entry into the binding pocket may displace Tyr143 and Tyr153 and results in their forming new hydrogen bonds. These bonds may form part of the network of bond rearrangements that trigger the conformational change leading to channel opening. Similar rearrangements may initiate gating in all Cys-loop receptors.
Collapse
Affiliation(s)
- Darren L Beene
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
26
|
Zhang Y, Venkatachalan SP, Xu H, Xu X, Joshi P, Ji HF, Schulte M. Micromechanical measurement of membrane receptor binding for label-free drug discovery. Biosens Bioelectron 2004; 19:1473-8. [PMID: 15093219 DOI: 10.1016/j.bios.2003.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2003] [Revised: 09/21/2003] [Accepted: 12/02/2003] [Indexed: 10/26/2022]
Abstract
A potential novel binding assay based on binding-driven micromechanical motion is described. A membrane preparation containing 5-HT(3AS) receptors was used to modify a microcantilever. The modified microcantilever was found to bend on application of the naturally occurring agonist (5-hydroxytryptamine, which is also called serotonin) or the antagonist MDL-72222, but not to other similar molecules. Control experiments show that cantilevers modified by membrane preparations that do not contain 5-HT(3AS) receptors do not respond to serotonin or MDL-72222. K(d) values obtained for serotonin and MDL-72222 are identical to those obtained from radio-ligand binding assays. These results suggest that the microcantilever system has potential for use in label-free, drug screening applications.
Collapse
Affiliation(s)
- Yifei Zhang
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA 71272, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Price KL, Lummis SCR. The role of tyrosine residues in the extracellular domain of the 5-hydroxytryptamine3 receptor. J Biol Chem 2004; 279:23294-301. [PMID: 14998995 DOI: 10.1074/jbc.m314075200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aromatic residues play an important role in the ligand-binding domain of Cys loop receptors. Here we examine the role of the 11 tyrosines in this domain of the 5-HT3 receptor in ligand binding and receptor function by substituting them for alanine, for serine, and, for some residues, also for phenylalanine. The mutant receptors were expressed in HEK293 cells and Xenopus oocytes and examined using radioligand binding, Ca2+ imaging, electrophysiology, and immunochemistry. The data suggest that Tyr50 and Tyr91 are critical for receptor assembly and/or structure, Tyr141 is important for antagonist binding and/or the structure of the binding pocket, Tyr143 plays a critical role in receptor gating and/or agonist binding, and Tyr153 and Tyr234 are involved in ligand binding and/or receptor gating. Tyr73, Tyr88, Tyr94, Tyr167, and Tyr240 do not appear to play major roles either in the structure of the extracellular domain or in ligand binding. The data support the location of these residues on a model of 5-HT docked into the ligand-binding domain and also provide evidence for the structural similarity of the extracellular domain to AChBP and the homologous regions of other Cys loop ligand-gated ion channels.
Collapse
Affiliation(s)
- Kerry L Price
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | | |
Collapse
|
28
|
Maksay G, Bikádi Z, Simonyi M. Binding Interactions of Antagonists with 5‐Hydroxytryptamine3AReceptor Models. J Recept Signal Transduct Res 2003; 23:255-70. [PMID: 14626451 DOI: 10.1081/rrs-120025568] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Homology modeling was performed on the N-terminal extracellular regions of human, mouse, and guinea pig 5-hydroxytryptamine type 3A receptors (5-HT3R) based on the 24% sequence homology with and on the crystal structure of the snail acetylcholine binding protein (AChBP). Docking of 5-HT3 antagonists granisetron, tropisetron, ondansetron, dolasetron ('setrons), and (+)-tubocurarine suggests an aromatic binding cleft behind a hydrophilic vestibule. Several intra- and interface interactions, H-bonds, and salt bridges stabilize the pentameric structure and the binding cleft. The planar rings of antagonists are intercalated between aromatic side-chains (W183-Y234, Y143-Y153). S227 donates H-bonds to the carbonyl groups of 'setrons. The tertiary ammonium ions interact with E236, N128 or E129, and/or W90 (cation-pi interaction). This offers a molecular explanation of the pharmacophore models of 5-HT3R antagonists. Docking artifacts suggest some ambiguities in the binding loops A and C of the 5-HT3AR models. Lower potencies of (+)-tubocurarine for human, and those of tropisetron for guinea pig 5-HT3ARs can be attributed to steric differences of I/S230 in the binding cleft and to distinct binding interactions with E229 and S227, respectively. Ligand binding interferes with crucial intra- and interface interactions along the binding cleft.
Collapse
Affiliation(s)
- Gábor Maksay
- Department of Molecular Pharmacology, Chemical Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | |
Collapse
|
29
|
Reeves DC, Sayed MFR, Chau PL, Price KL, Lummis SCR. Prediction of 5-HT3 receptor agonist-binding residues using homology modeling. Biophys J 2003; 84:2338-44. [PMID: 12668442 PMCID: PMC1302800 DOI: 10.1016/s0006-3495(03)75039-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
5-HT(3) receptors demonstrate significant structural and functional homology to other members of the Cys-loop ligand-gated ion channel superfamily. The extracellular domains of these receptors share similar sequence homology (approximately 20%) with Limnaea acetylcholine binding protein, for which an x-ray crystal structure is available. We used this structure as a template for computer-based homology modeling of the 5-HT(3) receptor extracellular domain. AutoDock software was used to dock 5-HT into the putative 5-HT(3) receptor ligand-binding site, resulting in seven alternative energetically favorable models. Residues located no more than 5 A from the docked 5-HT were identified for each model; of these, 12 were found to be common to all seven models with five others present in only certain models. Some docking models reflected the cation-pi interaction previously demonstrated for W183, and data from these and other studies were used to define our preferred models.
Collapse
Affiliation(s)
- David C Reeves
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1AG, United Kingdom
| | | | | | | | | |
Collapse
|