1
|
Yu JB, Padanilam BJ, Kim J. Activation of Yes-Associated Protein Is Indispensable for Transformation of Kidney Fibroblasts into Myofibroblasts during Repeated Administration of Cisplatin. Cells 2024; 13:1475. [PMID: 39273045 PMCID: PMC11393901 DOI: 10.3390/cells13171475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Cisplatin is a potent chemotherapy medication that is used to treat various types of cancer. However, it can cause nephrotoxic side effects, which lead to acute kidney injury (AKI) and subsequent chronic kidney disease (CKD). Although a clinically relevant in vitro model of CKD induced by repeated administration of low-dose cisplatin (RAC) has been established, its underlying mechanisms remain poorly understood. Here, we compared single administration of high-dose cisplatin (SAC) to repeated administration of low-dose cisplatin (RAC) in myofibroblast transformation and cellular morphology in a normal rat kidney fibroblast NRK-49F cell line. RAC instead of SAC transformed the fibroblasts into myofibroblasts as determined by α-smooth muscle actin, enlarged cell size as represented by F-actin staining, and increased cell flattening as expressed by the semidiameter ratio of attached cells to floated cells. Those phenomena, as well as cellular senescence, were significantly detected from the time right before the second administration of cisplatin. Interestingly, inhibition of the interaction between Yes-associated protein (YAP) and the transcriptional enhanced associated domain (TEAD) using Verteporfin remarkedly reduced cell size, cellular senescence, and myofibroblast transformation during RAC. These findings collectively suggest that YAP activation is indispensable for cellular hypertrophy, senescence, and myofibroblast transformation during RAC in kidney fibroblasts.
Collapse
Affiliation(s)
- Jia-Bin Yu
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea;
| | - Babu J. Padanilam
- Department of Urology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Jinu Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea;
- Department of Anatomy, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
2
|
Calthorpe RJ, Poulter C, Smyth AR, Sharkey D, Bhatt J, Jenkins G, Tatler AL. Complex roles of TGF-β signaling pathways in lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2023; 324:L285-L296. [PMID: 36625900 PMCID: PMC9988523 DOI: 10.1152/ajplung.00106.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023] Open
Abstract
As survival of extremely preterm infants continues to improve, there is also an associated increase in bronchopulmonary dysplasia (BPD), one of the most significant complications of preterm birth. BPD development is multifactorial resulting from exposure to multiple antenatal and postnatal stressors. BPD has both short-term health implications and long-term sequelae including increased respiratory, cardiovascular, and neurological morbidity. Transforming growth factor β (TGF-β) is an important signaling pathway in lung development, organ injury, and fibrosis and is implicated in the development of BPD. This review provides a detailed account on the role of TGF-β in antenatal and postnatal lung development, the effect of known risk factors for BPD on the TGF-β signaling pathway, and how medications currently in use or under development, for the prevention or treatment of BPD, affect TGF-β signaling.
Collapse
Affiliation(s)
- Rebecca J Calthorpe
- Lifespan & Population Health, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Caroline Poulter
- Department of Pediatrics, Queens Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Alan R Smyth
- Lifespan & Population Health, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Don Sharkey
- Centre for Perinatal Research, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Jayesh Bhatt
- Department of Pediatrics, Queens Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Gisli Jenkins
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Amanda L Tatler
- NIHR Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
3
|
Daghigh F, Karimi P, Alihemmati A, Majidi Zolbin M, Ahmadiasl N. Swimming training modulates lung injury induced by ovariectomy in diabetic rats: involvement of inflammatory and fibrotic biomarkers. Arch Physiol Biochem 2022; 128:514-520. [PMID: 31821061 DOI: 10.1080/13813455.2019.1699934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
CONTEXT Previous studies have noted that the incidence of inflammatory and fibrotic diseases is higher in diabetic menopausal women. OBJECTIVE In the present study, we evaluated effects of swimming training on inflammatory and fibrotic biomarkers in the lung of ovariectomized diabetic rats. MATERIALS AND METHODS Forty female rats were assigned into four groups: sham; rats underwent surgery without ovariectomies, OVX: rats that underwent ovariectomies, OVX.Dia: ovariectomized rats with high-fat diet, OVX.Dia. Exe: ovariectomized diabetic rats with 8 weeks of swimming training. At the end of experiment, protein expressions were assessed with western blot. Lung sections were subjected to immunohistochemical and haematoxylin eosin staining. RESULTS There was a significant difference in the protein expressions between exercise and ovariectomized diabetic groups (p < .05). CONCLUSION The present study showed strong potential of swimming training on oestrogen deficient diabetic lung. These data encourage further investigation into the inclusive effects of exercise in menopausal diabetic women.
Collapse
Affiliation(s)
- Faeze Daghigh
- Department of Physiology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Tuberculosis and Lung diseases research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Alihemmati
- Department of Histology & Embryology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Majidi Zolbin
- Department of Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Ahmadiasl
- Tuberculosis and Lung diseases research center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Zhong Y, Zhang Z, Chen X. Inhibition of miR-21 improves pulmonary vascular responses in bronchopulmonary dysplasia by targeting the DDAH1/ADMA/NO pathway. Open Med (Wars) 2022; 17:1949-1964. [PMID: 36561848 PMCID: PMC9743197 DOI: 10.1515/med-2022-0584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/07/2022] [Accepted: 10/02/2022] [Indexed: 12/14/2022] Open
Abstract
miR-21 has been confirmed to be overexpressed in neonatal rat lungs with hyperoxia-mediated bronchopulmonary dysplasia (BPD). The specific function of miR-21 in BPD is still unclear. We established the hyperoxia-induced BPD rat model in vivo and the hyperoxia-induced pulmonary microvascular endothelial cells (PMVECs) model in vitro. Transwell assay was utilized to detect the migratory capability of PMVECs. Tube formation assay was utilized to measure angiogenesis ability. ELISA was utilized to test nitric oxide (NO) production and the intracellular and extracellular Asymmetric Dimethylarginine (ADMA) concentration. Furthermore, the interaction between miR-21 and dimethylarginine dimethylaminohydrolase 1 (DDAH1) was evaluated using luciferase reporter assay. We found that miR-21 expression in PMVECs was increased by hyperoxia stimulation. Inhibition of miR-21 improved the migratory and angiogenic activities of PMVECs and overexpression of miR-21 exerted the opposite effects. Furthermore, knockdown of miR-21 increased NO production and decreased intracellular and extracellular ADMA concentration in hyperoxia-treated PMVECs. Next we proved that miR-21 could bind to DDAH1 and negatively regulate its expression. Rescues assays showed that DDAH1 knockdown reversed the effects of miR-21 depletion on hyperoxia-mediated PMVEC functions, NO production, and ADMA concentration. Importantly, miR-21 downregulation restored alveolarization and vascular density in BPD rats. This study demonstrates that inhibition of miR-21 improves pulmonary vascular responses in BPD by targeting the DDAH1/ADMA/NO pathway.
Collapse
Affiliation(s)
- Ying Zhong
- Department of Child Health Care, The First Affiliated Hospital of Nanjing Medical University, 368 Jiangdong North Road, Nanjing 210036, Jiangsu, China
| | - Zhiqun Zhang
- Department of Neonatology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Xiaoqing Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210036, Jiangsu, China
| |
Collapse
|
5
|
Wen X, Zhang H, Xiang B, Zhang W, Gong F, Li S, Chen H, Luo X, Deng J, You Y, Hu Z, Jiang C. Hyperoxia-induced miR-342-5p down-regulation exacerbates neonatal bronchopulmonary dysplasia via the Raf1 regulator Spred3. Br J Pharmacol 2021; 178:2266-2283. [PMID: 33434946 DOI: 10.1111/bph.15371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 12/10/2020] [Accepted: 01/01/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Bronchopulmonary dysplasia (BPD) is the most prevalent chronic paediatric lung disease and is linked to the development of chronic obstructive pulmonary disease. MicroRNA-based regulation of type II alveolar epithelial cell (T2AEC) proliferation and apoptosis is an important factor in the pathogenesis of BPD and warrants further investigation. EXPERIMENTAL APPROACH Two murine models of hyperoxic lung injury (with or without miR-342-5p or Sprouty-related, EVH1 domain-containing protein 3 [Spred3] modulation) were employed: a hyperoxia-induced acute lung injury model (100% O2 on postnatal days 1-7) and the BPD model (100% O2 on postnatal days 1-4, followed by room air for 10 days). Tracheal aspirate pellets from healthy control and moderate/severe BPD neonates were randomly selected for clinical miR-342-5p analysis. KEY RESULTS Hyperoxia decreased miR-342-5p levels in primary T2AECs, MLE12 cells and neonatal mouse lungs. Transgenic miR-342 overexpression in neonatal mice ameliorated survival rates and improved the BPD phenotype and BPD-associated pulmonary arterial hypertension (PAH). T2AEC-specific miR-342 transgenic overexpression, as well as miR-342-5p mimic therapy, also ameliorated the BPD phenotype and associated PAH. miR-342-5p targets the 3'UTR of the Raf1 regulator Spred3, inhibiting Spred3 expression. Treatment with recombinant Spred3 exacerbated the BPD phenotype and associated PAH. Notably, miR-342-5p inhibition under room air conditions did not mimic the BPD phenotype. Moderate/severe BPD tracheal aspirate pellets exhibited decreased miR-342-5p levels relative to healthy control pellets. CONCLUSION AND IMPLICATIONS These findings suggest that miR-342-5p mimic therapy may show promise in the treatment or prevention of BPD.
Collapse
Affiliation(s)
- Xin Wen
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Zhang
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Xiang
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyu Zhang
- Department of Pediatrics, Chongqing Jiulongpo District Maternity Child Health Care Hospital, Chongqing, China
| | - Fang Gong
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Shiling Li
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyan Chen
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xuan Luo
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Deng
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yaoyao You
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Zhangxue Hu
- Department of Pediatrics, Army Medical Center, Army Medical University, Chongqing, China
| | - Changke Jiang
- Department of Pediatrics, Chongqing Yongchuan District Maternity Child Health Care Hospital, Chongqing, China.,Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Amarelle L, Quintela L, Hurtado J, Malacrida L. Hyperoxia and Lungs: What We Have Learned From Animal Models. Front Med (Lausanne) 2021; 8:606678. [PMID: 33768102 PMCID: PMC7985075 DOI: 10.3389/fmed.2021.606678] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Although oxygen (O2) is essential for aerobic life, it can also be an important source of cellular damage. Supra-physiological levels of O2 determine toxicity due to exacerbated reactive oxygen species (ROS) production, impairing the homeostatic balance of several cellular processes. Furthermore, injured cells activate inflammation cascades, amplifying the tissue damage. The lung is the first (but not the only) organ affected by this condition. Critically ill patients are often exposed to several insults, such as mechanical ventilation, infections, hypo-perfusion, systemic inflammation, and drug toxicity. In this scenario, it is not easy to dissect the effect of oxygen toxicity. Translational investigations with animal models are essential to explore injuring stimuli in controlled experimental conditions, and are milestones in understanding pathological mechanisms and developing therapeutic strategies. Animal models can resemble what happens in critical care or anesthesia patients under mechanical ventilation and hyperoxia, but are also critical to explore the effect of O2 on lung development and the role of hyperoxic damage on bronchopulmonary dysplasia. Here, we set out to review the hyperoxia effects on lung pathology, contributing to the field by describing and analyzing animal experimentation's main aspects and its implications on human lung diseases.
Collapse
Affiliation(s)
- Luciano Amarelle
- Department of Pathophysiology, Hospital de Clínicas, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Lucía Quintela
- Department of Pathophysiology, Hospital de Clínicas, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Javier Hurtado
- Department of Pathophysiology, Hospital de Clínicas, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Leonel Malacrida
- Department of Pathophysiology, Hospital de Clínicas, School of Medicine, Universidad de la República, Montevideo, Uruguay.,Advanced Bioimaging Unit, Institut Pasteur Montevideo and Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
7
|
ERK1/2 Signaling Pathway Activated by EGF Promotes Proliferation, Transdifferentiation, and Migration of Cultured Primary Newborn Rat Lung Fibroblasts. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7176169. [PMID: 33083482 PMCID: PMC7559493 DOI: 10.1155/2020/7176169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022]
Abstract
Background Bronchopulmonary dysplasia (BPD) is a common and serious complication in premature infants. Lung fibroblasts (LFs) are present in the extracellular matrix and participate in pulmonary development in response to BPD. The aim of this study was to investigate the effect of extracellular signal-regulated kinase (ERK) on LFs cultured from newborn rats. Material and Methods. Primary LFs were isolated and treated with epidermal growth factor (EGF, 20 ng/mL) in the presence or absence of an ERK inhibitor, PD98059 (10 μmol/L). Phosphorylated ERK1/2 (p-ERK1/2) protein levels were determined using immunocytochemistry, western blotting, and real-time reverse transcription quantitative (RT–q)PCR. LF proliferation was examined by flow cytometry and a cell counting kit-8 assay. LF transdifferentiation was examined by protein and mRNA expression of α-smooth muscle actin (α-SMA) by immunocytochemistry, western blotting, and RT–qPCR. LF migration was examined by the transwell method. Results Phosphorylated ERK1/2, which was activated by EGF, promoted LF proliferation by accelerating cell-cycle progression from the G1 to S phase. After treatment with PD98059, the expression of p-ERK1/2 in LFs, cellular proliferation, and the percentage of cells in S phase were significantly decreased. Phosphorylated ERK1/2 also promoted the differentiation of LFs into myofibroblasts through increased α-SMA synthesis and migration. Conclusion The activation of ERK promotes proliferation, transdifferentiation, and migration of lung fibroblasts from newborn rats.
Collapse
|
8
|
Gilfillan M, Das P, Shah D, Alam MA, Bhandari V. Inhibition of microRNA-451 is associated with increased expression of Macrophage Migration Inhibitory Factor and mitgation of the cardio-pulmonary phenotype in a murine model of Bronchopulmonary Dysplasia. Respir Res 2020; 21:92. [PMID: 32321512 PMCID: PMC7178994 DOI: 10.1186/s12931-020-01353-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Background Macrophage migration inhibitory factor (MIF) has been implicated as a protective factor in the development of bronchopulmonary dysplasia (BPD) and is known to be regulated by MicroRNA-451 (miR-451). The aim of this study was to evaluate the role of miR-451 and the MIF signaling pathway in in vitro and in vivo models of BPD. Methods Studies were conducted in mouse lung endothelial cells (MLECs) exposed to hyperoxia and in a newborn mouse model of hyperoxia-induced BPD. Lung and cardiac morphometry as well as vascular markers were evaluated. Results Increased expression of miR-451 was noted in MLECs exposed to hyperoxia and in lungs of BPD mice. Administration of a miR-451 inhibitor to MLECs exposed to hyperoxia was associated with increased expression of MIF and decreased expression of angiopoietin (Ang) 2. Treatment with the miR-451 inhibitor was associated with improved lung morphometry indices, significant reduction in right ventricular hypertrophy, decreased mean arterial wall thickness and improvement in vascular density in BPD mice. Western blot analysis demonstrated preservation of MIF expression in BPD animals treated with a miR-451 inhibitor and increased expression of vascular endothelial growth factor-A (VEGF-A), Ang1, Ang2 and the Ang receptor, Tie2. Conclusion We demonstrated that inhibition of miR-451 is associated with mitigation of the cardio-pulmonary phenotype, preservation of MIF expression and increased expression of several vascular growth factors.
Collapse
Affiliation(s)
- Margaret Gilfillan
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, 19103, USA.,St Christopher's Hospital for Children, Philadelphia, PA, 19134, USA
| | - Pragnya Das
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, 19103, USA.,Neonatology Research Laboratory, Education and Research Building, Cooper University Hospital, (Room #206), Camden, NJ, 08103, USA
| | - Dilip Shah
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, 19103, USA.,Neonatology Research Laboratory, Education and Research Building, Cooper University Hospital, (Room #206), Camden, NJ, 08103, USA
| | - Mohammad Afaque Alam
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, 19103, USA.,Temple University, Philadelphia, PA, 19140, USA
| | - Vineet Bhandari
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, 19103, USA. .,St Christopher's Hospital for Children, Philadelphia, PA, 19134, USA. .,Neonatology Research Laboratory, Education and Research Building, Cooper University Hospital, (Room #206), Camden, NJ, 08103, USA. .,Temple University, Philadelphia, PA, 19140, USA. .,Pediatrics, Obstetrics and Gynecology and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, 08103, USA. .,Neonatology, The Children's Regional Hospital at Cooper, One Cooper Plaza, Camden, NJ, 08103, USA.
| |
Collapse
|
9
|
Zhong Q, Wang L, Qi Z, Cao J, Liang K, Zhang C, Duan J. Long Non-coding RNA TUG1 Modulates Expression of Elastin to Relieve Bronchopulmonary Dysplasia via Sponging miR-29a-3p. Front Pediatr 2020; 8:573099. [PMID: 33194901 PMCID: PMC7661792 DOI: 10.3389/fped.2020.573099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Objective: Multiple studies have highlighted that long non-coding RNAs (lncRNAs) may exert paramount roles in relieving bronchopulmonary dysplasia (BPD). The aim of our investigation is to probe the role and mechanism of lncRNA taurine upregulated gene 1 (TUG1) in BPD. Methods: The current mouse model of BPD was simulated by induction of hyperoxia, and hyperoxia-induced mouse type II alveolar epithelial (MLE-12) (MLE-12) cells were established as a cellular model. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to determine relative expressions of TUG1, miR-29a-3p, and elastin (ELN). We assessed cell apoptosis by TdT-mediated dUTP-biotin nick-end labeling (TUNEL) staining. Western blot was used for detection of apoptosis-related proteins. Moreover, cell viability was tested by cell counting kit-8 (CCK-8) assay. Inflammatory factors were measured by enzyme-linked immunosorbent assay (ELISA). Dual-luciferase reporter (DLR) assay was employed to confirm relationship between genes. Results: Upregulation of miR-29a-3p was found in lung tissues of BPD mice compared with lung tissues without BPD, while downregulations of TUG1 and ELN were discovered in BPD tissues in comparison with tissues without BPD. Increasing TUG1 was shown to alleviate lung injury of BPD mice and promote proliferation of hyperoxia-induced MLE-12 cells. Meanwhile, TUG1 inhibited inflammatory response and cell apoptosis in lung tissues of BPD mice and hyperoxia-induced MLE-12 cells. miR-29a-3p was targeted by TUG1 and negatively modulated by TUG1. ELN was inversely regulated by miR-29a-3p. Meantime, suppressive effects of TUG1 on apoptosis and inflammation were reversed by decreasing ELN or increasing miR-29a-3p in hyperoxia-induced MLE-12 cells. Conclusion: lncRNA TUG1 relieved BPD through regulating the miR-29a-3p/ELN axis, which provided a therapeutic option to prevent or ameliorate BPD.
Collapse
Affiliation(s)
- Qinghua Zhong
- Department of Pediatrics, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Wang
- Department of Emergency, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhiye Qi
- Department of Pediatrics, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jia Cao
- Department of Pediatrics, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kun Liang
- Department of Pediatrics, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Caiying Zhang
- Department of Pediatrics, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiang Duan
- Department of Pediatrics, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
10
|
Alam MA, Betal SGN, Aghai ZH, Bhandari V. Hyperoxia causes miR199a-5p-mediated injury in the developing lung. Pediatr Res 2019; 86:579-588. [PMID: 31390652 DOI: 10.1038/s41390-019-0524-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/20/2019] [Accepted: 07/20/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Hyperoxia-induced acute lung injury (HALI) is characterized by increased permeability and infiltration of inflammatory cells, impairment of alveolar development, and compromised lung function. Recent evidence has determined that microRNAs (miRs) are implicated in hyperoxia-induced lung injury, including bronchopulmonary dysplasia (BPD). However, the expression profile and functional role of miR199a-5p in developing lungs have not been reported. METHODS The present study was undertaken to explore the role of miR199a-5p in developing mice lungs and human neonates. We exposed neonatal mice for 7 days, mouse lung epithelial cells (MLE12), mouse lung endothelial cells (MLECs), and macrophages (RAW246.7), to hyperoxia at different time points. RESULTS Our results demonstrated enhanced miR199a-5p expression in hyperoxia-exposed mice lungs and cells, as well as in tracheal aspirates of infants developing BPD, with significant reduction in the expression of its target, caveolin-1. Next, we observed that miR199a-5p-mimic worsens HALI as evidenced by increased inflammatory cells, cytokines, and lung vascular markers. Conversely, miR199a-5p-inhibitor treatment attenuated HALI. CONCLUSION Thus, our findings suggest that miR199a-5p is a potential target for attenuating HALI pathophysiology in the developing lung. Moreover, miR199a-5p-inhibitor could be part of a novel therapeutic strategy for improving BPD in preterm neonates.
Collapse
Affiliation(s)
- Mohammad Afaque Alam
- Department of Pediatrics, Division of Neonatology, Drexel University College of Medicine, Philadelphia, PA, USA.,Department of Neurosciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Suhita Gayen Nee Betal
- Department of Pediatrics, Division of Neonatology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zubair H Aghai
- Department of Pediatrics, Division of Neonatology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Vineet Bhandari
- Department of Pediatrics, Division of Neonatology, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Hu Y, Fu J, Xue X. Association of the proliferation of lung fibroblasts with the ERK1/2 signaling pathway in neonatal rats with hyperoxia-induced lung fibrosis. Exp Ther Med 2018; 17:701-708. [PMID: 30651853 PMCID: PMC6307421 DOI: 10.3892/etm.2018.6999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/08/2018] [Indexed: 01/02/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common, serious complication occurring in premature infants. Although clinical characteristics and pathologic changes are well described, the pathogenesis of alveolar dysplasia and interstitial fibrosis is less clear. Lung fibroblasts (LFs) are present in the extracellular matrix and serve essential roles during pulmonary epithelial injury and in response to fibrosis development in BPD. The current study investigated hyperoxia-induced proliferation of primary LFs in vitro and mechanisms that may be involved. Newborn rats were exposed to 90% oxygen, while control rats were kept in normal atmosphere. Primary LFs were isolated on postnatal day 3, 7 and 14. Hyperoxia-induced proliferation of LFs isolated on day 7 and 14 by accelerating the cell cycle progression from G1 to S phase. Collagen type I protein secretion and mRNA expression on day 7 and 14 were increased by hyperoxia compared with the controls. Hyperoxia significantly increased the phosphorylation of extracellular signal-regulated kinase (ERK) and significantly increased collagen type I expression compared with the room air control group. The findings indicated that an increase in LF proliferation in response to hyperoxia was associated with ERK1/2 phosphorylation. This mechanism may contribute to over-proliferation of LFs leading to disturbed formation of normal alveoli.
Collapse
Affiliation(s)
- Yu Hu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
12
|
Daghigh F, Alihemmati A, Karimi P, Habibi P, Ahmadiasl N. Fibrotic and apoptotic markers alteration in ovariectomised rats: addition of swimming training preserves lung architecture. Arch Physiol Biochem 2018; 124:286-291. [PMID: 29113500 DOI: 10.1080/13813455.2017.1396347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CONTEXT The important role of exercise in pulmonary function during menopause is not well known. Oestrogen deficiency in ageing female mice is accompanied by increase in apoptotic markers such as caspase3 in the lung. OBJECTIVE The present study was designed to investigate whether swimming training will ameliorate fibrosis and apoptosis resolution in the ovariectomy-induced lung injury rats. MATERIAL AND METHOD Thirty female rats were assigned to three groups (n = 10 in each group): sham; rats underwent bilateral laparotomy without ovariectomy, OVX; rats underwent bilateral ovariectomy, OVX.Exe; ovariectomised rats that underwent swimming training for eight weeks. At the end of eight weeks, the lungs were harvested and protein expressions in whole lung tissues were analysed by western blotting technique. RESULT Analysis of proteins expression in the lung showed significant differences between exercise and ovariectomised group (p < .05). CONCLUSION The present study indicates strong potential of exercise in experimental oestrogen deficiency-induced lung damage.
Collapse
Affiliation(s)
- Faeze Daghigh
- a Molecular Biology Department, Tuberculosis and Lung Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Alireza Alihemmati
- b Department of Histology and Embryology, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Pouran Karimi
- c Molecular Biology Department, Neurosciences Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Parisa Habibi
- a Molecular Biology Department, Tuberculosis and Lung Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Naser Ahmadiasl
- a Molecular Biology Department, Tuberculosis and Lung Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
13
|
Primary culture of lung fibroblasts from hyperoxia-exposed rats and a proliferative characteristics study. Cytotechnology 2018; 70:751-760. [PMID: 29340836 DOI: 10.1007/s10616-017-0179-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/02/2017] [Indexed: 10/18/2022] Open
Abstract
Lung fibrosis is an ultimate consequence of bronchopulmonary dysplasia (BPD) which shows the excessive proliferation of lung fibroblasts (LFs). To find a better model for studying the role of LFs in hyperoxia-induced lung fibrosis at the cellular level, we isolated LFs from the lung tissue of hyperoxia- and normoxia-exposed rat lungs on postnatal days 7, 14 and 21 for primary culture to study their proliferative behavior. In the present study, the LF predominance was > 95% in our culture method. The LFs isolated from rats exposed to hyperoxia in vivo showed significantly greater proliferation than that from normoxia-exposed rats. Flow cytometry revealed that percentage of LFs in S and G2/M stage increased, and proportion in the G0/G1 stage declined at the same time. A greater presence of myofibroblasts in LFs isolated from rats exposed to hyperoxia compared with those exposed to normoxia. In addition, elevated collagen level, transforming growth factor-β and connective tissue growth factor protein expression in conditioned medium were also found in hyperoxia LFs. These data demonstrate that hyperoxia promotes LFs proliferation, myofibroblast transdifferentiation and collagen synthesis in a time-dependent manner. The primary culture of LFs from hyperoxia-exposed rats is a feasible method for studying the pathogenesis and treatment of lung fibrosis caused by BPD at the cellular level.
Collapse
|
14
|
Dietz RM, Wright CJ. Oxidative stress diseases unique to the perinatal period: A window into the developing innate immune response. Am J Reprod Immunol 2017; 79:e12787. [PMID: 29194835 DOI: 10.1111/aji.12787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/31/2017] [Indexed: 12/15/2022] Open
Abstract
The innate immune system has evolved to play an integral role in the normally developing lung and brain. However, in response to oxidative stress, innate immunity, mediated by specific cellular and molecular programs and signaling, contributes to pathology in these same organ systems. Despite opposing drivers of oxidative stress, namely hyperoxia in neonatal lung injury and hypoxia/ischemia in neonatal brain injury, similar pathways-including toll-like receptors, NFκB and MAPK cascades-have been implicated in tissue damage. In this review, we consider recent insights into the innate immune response to oxidative stress in both neonatal and adult models to better understand hyperoxic lung injury and hypoxic-ischemic brain injury across development and aging. These insights support the development of targeted immunotherapeutic strategies to address the challenge of harnessing the innate immune system in oxidative stress diseases of the neonate.
Collapse
Affiliation(s)
- Robert M Dietz
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
15
|
Zhao M, Tang S, Xin J, Liu D. Influence of reactive oxygen species on secretory component in the intestinal epithelium during hyperoxia. Exp Ther Med 2017; 14:4033-4040. [PMID: 29075338 PMCID: PMC5648505 DOI: 10.3892/etm.2017.5027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 05/19/2017] [Indexed: 01/23/2023] Open
Abstract
Redox imbalance is established in various human diseases. Treatment of intestinal epithelial cells with hyperoxia for a prolonged period of time may cause serious effects on redox balance. Secretory component (SC) protein is secreted by intestinal epithelial cells, and has a vital role in mucosal immune systems and intestinal defense. The present study aimed to investigate the influence of reactive oxygen species (ROS) on intestinal epithelial cells and intestinal epithelial SC protein under hyperoxic conditions. Caco-2 cells were treated with increasing concentrations of hydrogen peroxide (H2O2) or 85% O2 (hyperoxia) for 24 h. Flow cytometry, immunohistochemistry staining, western blot analysis and reverse transcription-quantitative polymerase chain reaction were performed to detect the expression levels of SC protein. Significantly increased apoptosis and mortality rates were observed in hyperoxia- and H2O2-treated Caco-2 cells, as compared with the untreated control cells (P<0.05). Protein and mRNA expression levels of SC were significantly increased in hyperoxia- and H2O2-treated groups, as compared with the control group (P<0.05). During hyperoxia, intestinal epithelial cells were destroyed and ROS levels increased. Therefore, the results of the present study suggested that ROS might have an important role in intestinal injury in hyperoxic environments.
Collapse
Affiliation(s)
- Min Zhao
- Medical Research Center, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Shimiao Tang
- Medical Research Center, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Junchi Xin
- Medical Research Center, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Dongyan Liu
- Medical Research Center, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
16
|
Hyperoxia causes miR-34a-mediated injury via angiopoietin-1 in neonatal lungs. Nat Commun 2017; 8:1173. [PMID: 29079808 PMCID: PMC5660088 DOI: 10.1038/s41467-017-01349-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/11/2017] [Indexed: 01/07/2023] Open
Abstract
Hyperoxia-induced acute lung injury (HALI) is a key contributor to the pathogenesis of bronchopulmonary dysplasia (BPD) in neonates, for which no specific preventive or therapeutic agent is available. Here we show that lung micro-RNA (miR)-34a levels are significantly increased in lungs of neonatal mice exposed to hyperoxia. Deletion or inhibition of miR-34a improves the pulmonary phenotype and BPD-associated pulmonary arterial hypertension (PAH) in BPD mouse models, which, conversely, is worsened by miR-34a overexpression. Administration of angiopoietin-1, which is one of the downstream targets of miR34a, is able to ameliorate the BPD pulmonary and PAH phenotypes. Using three independent cohorts of human samples, we show that miR-34a expression is increased in type 2 alveolar epithelial cells in neonates with respiratory distress syndrome and BPD. Our data suggest that pharmacologic miR-34a inhibition may be a therapeutic option to prevent or ameliorate HALI/BPD in neonates.
Collapse
|
17
|
Forred BJ, Daugaard DR, Titus BK, Wood RR, Floen MJ, Booze ML, Vitiello PF. Detoxification of Mitochondrial Oxidants and Apoptotic Signaling Are Facilitated by Thioredoxin-2 and Peroxiredoxin-3 during Hyperoxic Injury. PLoS One 2017; 12:e0168777. [PMID: 28045936 PMCID: PMC5207683 DOI: 10.1371/journal.pone.0168777] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 12/06/2016] [Indexed: 01/22/2023] Open
Abstract
Mitochondria play a fundamental role in the regulation of cell death during accumulation of oxidants. High concentrations of atmospheric oxygen (hyperoxia), used clinically to treat tissue hypoxia in premature newborns, is known to elicit oxidative stress and mitochondrial injury to pulmonary epithelial cells. A consequence of oxidative stress in mitochondria is the accumulation of peroxides which are detoxified by the dedicated mitochondrial thioredoxin system. This system is comprised of the oxidoreductase activities of peroxiredoxin-3 (Prx3), thioredoxin-2 (Trx2), and thioredoxin reductase-2 (TrxR2). The goal of this study was to understand the role of the mitochondrial thioredoxin system and mitochondrial injuries during hyperoxic exposure. Flow analysis of the redox-sensitive, mitochondrial-specific fluorophore, MitoSOX, indicated increased levels of mitochondrial oxidant formation in human adenocarcinoma cells cultured in 95% oxygen. Increased expression of Trx2 and TrxR2 in response to hyperoxia were not attributable to changes in mitochondrial mass, suggesting that hyperoxic upregulation of mitochondrial thioredoxins prevents accumulation of oxidized Prx3. Mitochondrial oxidoreductase activities were modulated through pharmacological inhibition of TrxR2 with auranofin and genetically through shRNA knockdown of Trx2 and Prx3. Diminished Trx2 and Prx3 expression was associated with accumulation of mitochondrial superoxide; however, only shRNA knockdown of Trx2 increased susceptibility to hyperoxic cell death and increased phosphorylation of apoptosis signal-regulating kinase-1 (ASK1). In conclusion, the mitochondrial thioredoxin system regulates hyperoxic-mediated death of pulmonary epithelial cells through detoxification of oxidants and regulation of redox-dependent apoptotic signaling.
Collapse
Affiliation(s)
- Benjamin J. Forred
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Darwin R. Daugaard
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Brianna K. Titus
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Ryan R. Wood
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Miranda J. Floen
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Michelle L. Booze
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Peter F. Vitiello
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, South Dakota, United States of America
| |
Collapse
|
18
|
Sureshbabu A, Syed M, Das P, Janér C, Pryhuber G, Rahman A, Andersson S, Homer RJ, Bhandari V. Inhibition of Regulatory-Associated Protein of Mechanistic Target of Rapamycin Prevents Hyperoxia-Induced Lung Injury by Enhancing Autophagy and Reducing Apoptosis in Neonatal Mice. Am J Respir Cell Mol Biol 2016; 55:722-735. [PMID: 27374190 PMCID: PMC5105179 DOI: 10.1165/rcmb.2015-0349oc] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 06/17/2016] [Indexed: 12/13/2022] Open
Abstract
Administration of supplemental oxygen remains a critical clinical intervention for survival of preterm infants with respiratory failure. However, prolonged exposure to hyperoxia can augment pulmonary damage, resulting in developmental lung diseases embodied as hyperoxia-induced acute lung injury and bronchopulmonary dysplasia (BPD). We sought to investigate the role of autophagy in hyperoxia-induced apoptotic cell death in developing lungs. We identified increased autophagy signaling in hyperoxia-exposed mouse lung epithelial-12 cells, freshly isolated fetal type II alveolar epithelial cells, lungs of newborn wild-type mice, and human newborns with respiratory distress syndrome and evolving and established BPD. We found that hyperoxia exposure induces autophagy in a Trp53-dependent manner in mouse lung epithelial-12 cells and in neonatal mouse lungs. Using pharmacological inhibitors and gene silencing techniques, we found that the activation of autophagy, upon hyperoxia exposure, demonstrated a protective role with an antiapoptotic response. Specifically, inhibiting regulatory-associated protein of mechanistic target of rapamycin (RPTOR) in hyperoxia settings, as evidenced by wild-type mice treated with torin2 or mice administered (Rptor) silencing RNA via intranasal delivery or Rptor+/-, limited lung injury by increased autophagy, decreased apoptosis, improved lung architecture, and increased survival. Furthermore, we identified increased protein expression of phospho-beclin1, light chain-3-II and lysosomal-associated membrane protein 1, suggesting altered autophagic flux in the lungs of human neonates with established BPD. Collectively, our study unveils a novel demonstration of enhancing autophagy and antiapoptotic effects, specifically through the inhibition of RPTOR as a potentially useful therapeutic target for the treatment of hyperoxia-induced acute lung injury and BPD in developing lungs.
Collapse
Affiliation(s)
- Angara Sureshbabu
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
| | - Mansoor Syed
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
- Section of Neonatal–Perinatal Medicine, Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Pragnya Das
- Section of Neonatal–Perinatal Medicine, Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Cecilia Janér
- Children’s Hospital, University of Helsinki, Helsinki, Finland
| | - Gloria Pryhuber
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York; and
| | - Arshad Rahman
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York; and
| | - Sture Andersson
- Children’s Hospital, University of Helsinki, Helsinki, Finland
| | - Robert J. Homer
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Vineet Bhandari
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
- Section of Neonatal–Perinatal Medicine, Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Ahlfeld SK, Wang J, Gao Y, Snider P, Conway SJ. Initial Suppression of Transforming Growth Factor-β Signaling and Loss of TGFBI Causes Early Alveolar Structural Defects Resulting in Bronchopulmonary Dysplasia. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:777-93. [PMID: 26878215 DOI: 10.1016/j.ajpath.2015.11.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/02/2015] [Accepted: 11/18/2015] [Indexed: 12/22/2022]
Abstract
Septation of the gas-exchange saccules of the morphologically immature mouse lung requires regulated timing, spatial direction, and dosage of transforming growth factor (TGF)-β signaling. We found that neonatal hyperoxia acutely initially diminished saccular TGF-β signaling coincident with alveolar simplification. However, sustained hyperoxia resulted in a biphasic response and subsequent up-regulation of TGF-β signaling, ultimately resulting in bronchopulmonary dysplasia. Significantly, we found that the TGF-β-induced matricellular protein (TGFBI) was similarly biphasically altered in response to hyperoxia. Moreover, genetic ablation revealed that TGFBI was required for normal alveolar structure and function. Although the phenotype was not neonatal lethal, Tgfbi-deficient lungs were morphologically abnormal. Mutant septal tips were stunted, lacked elastin-positive tips, exhibited reduced proliferation, and contained abnormally persistent alveolar α-smooth muscle actin myofibroblasts. In addition, Tgfbi-deficient lungs misexpressed TGF-β-responsive follistatin and serpine 1, and transiently suppressed myofibroblast platelet-derived growth factor α differentiation marker. Finally, despite normal lung volume, Tgfbi-null lungs displayed diminished elastic recoil and gas exchange efficiency. Combined, these data demonstrate that initial suppression of the TGF-β signaling apparatus, as well as loss of key TGF-β effectors (like TGFBI), underlies early alveolar structural defects, as well as long-lasting functional deficits routinely observed in chronic lung disease of infancy patients. These studies underline the complex (and often contradictory) role of TGF-β and indicate a need to design studies to associate alterations with initial appearance of phenotypical changes suggestive of bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Shawn K Ahlfeld
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jian Wang
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yong Gao
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Paige Snider
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Simon J Conway
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
20
|
Syed MA, Choo-Wing R, Homer RJ, Bhandari V. Role of Nitric Oxide Isoforms in Vascular and Alveolar Development and Lung Injury in Vascular Endothelial Growth Factor Overexpressing Neonatal Mice Lungs. PLoS One 2016; 11:e0147588. [PMID: 26799210 PMCID: PMC4723240 DOI: 10.1371/journal.pone.0147588] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 01/06/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The role of vascular endothelial growth factor (VEGF)-induced 3 different nitric oxide synthase (NOS) isoforms in lung development and injury in the newborn (NB) lung are not known. We hypothesized that VEGF-induced specific NOS pathways are critical regulators of lung development and injury. METHODOLOGY We studied NB wild type (WT), lung epithelial cell-targeted VEGF165 doxycycline-inducible overexpressing transgenic (VEGFTG), VEGFTG treated with a NOS1 inhibitor (L-NIO), VEGFTG x NOS2-/- and VEGFTG x NOS3+/- mice in room air (RA) for 7 postnatal (PN) days. Lung morphometry (chord length), vascular markers (Ang1, Ang2, Notch2, vWF, CD31 and VE-cadherin), cell proliferation (Ki67), vascular permeability, injury and oxidative stress markers (hemosiderin, nitrotyrosine and 8-OHdG) were evaluated. RESULTS VEGF overexpression in RA led to increased chord length and vascular markers at PN7, which were significantly decreased to control values in VEGFTG x NOS2-/- and VEGFTG x NOS3+/- lungs. However, we found no noticeable effect on chord length and vascular markers in the VEGFTG / NOS1 inhibited group. In the NB VEGFTG mouse model, we found VEGF-induced vascular permeability in the NB murine lung was partially dependent on NOS2 and NOS3-signaling pathways. In addition, the inhibition of NOS2 and NOS3 resulted in a significant decrease in VEGF-induced hemosiderin, nitrotyrosine- and 8-OHdG positive cells at PN7. NOS1 inhibition had no significant effect. CONCLUSION Our data showed that the complete absence of NOS2 and partial deficiency of NOS3 confers protection against VEGF-induced pathologic lung vascular and alveolar developmental changes, as well as injury markers. Inhibition of NOS1 does not have any modulating role on VEGF-induced changes in the NB lung. Overall, our data suggests that there is a significant differential regulation in the NOS-mediated effects of VEGF overexpression in the developing mouse lung.
Collapse
Affiliation(s)
- Mansoor A. Syed
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520–8064, United States of America
| | - Rayman Choo-Wing
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520–8064, United States of America
| | - Robert J. Homer
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06520, United States of America
| | - Vineet Bhandari
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520–8064, United States of America
| |
Collapse
|
21
|
Balany J, Bhandari V. Understanding the Impact of Infection, Inflammation, and Their Persistence in the Pathogenesis of Bronchopulmonary Dysplasia. Front Med (Lausanne) 2015; 2:90. [PMID: 26734611 PMCID: PMC4685088 DOI: 10.3389/fmed.2015.00090] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/03/2015] [Indexed: 12/11/2022] Open
Abstract
The concerted interaction of genetic and environmental factors acts on the preterm human immature lung with inflammation being the common denominator leading to the multifactorial origin of the most common chronic lung disease in infants - -bronchopulmonary dysplasia (BPD). Adverse perinatal exposure to infection/inflammation with added insults like invasive mecha nical ventilation, exposure to hyperoxia, and sepsis causes persistent immune dysregulation. In this review article, we have attempted to analyze and consolidate current knowledge about the role played by persistent prenatal and postnatal inflammation in the pathogenesis of BPD. While some parameters of the early inflammatory response (neutrophils, cytokines, etc.) may not be detectable after days to weeks of exposure to noxious stimuli, they have already initiated the signaling pathways of the inflammatory process/immune cascade and have affected permanent defects structurally and functionally in the BPD lungs. Hence, translational research aimed at prevention/amelioration of BPD needs to focus on dampening the inflammatory response at an early stage to prevent the cascade of events leading to lung injury with impaired healing resulting in the pathologic pulmonary phenotype of alveolar simplification and dysregulated vascularization characteristic of BPD.
Collapse
Affiliation(s)
- Jherna Balany
- Section of Neonatology, Department of Pediatrics, St. Christopher’s Hospital for Children, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Vineet Bhandari
- Section of Neonatology, Department of Pediatrics, St. Christopher’s Hospital for Children, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
22
|
Nagato AC, Bezerra FS, Talvani A, Aarestrup BJ, Aarestrup FM. Hyperoxia promotes polarization of the immune response in ovalbumin-induced airway inflammation, leading to a TH17 cell phenotype. Immun Inflamm Dis 2015; 3:321-37. [PMID: 26417446 PMCID: PMC4578530 DOI: 10.1002/iid3.71] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/16/2015] [Accepted: 05/19/2015] [Indexed: 12/15/2022] Open
Abstract
Previous studies have demonstrated that hyperoxia-induced stress and oxidative damage to the lungs of mice lead to an increase in IL-6, TNF-α, and TGF-β expression. Together, IL-6 and TGF-β have been known to direct T cell differentiation toward the TH17 phenotype. In the current study, we tested the hypothesis that hyperoxia promotes the polarization of T cells to the TH17 cell phenotype in response to ovalbumin-induced acute airway inflammation. Airway inflammation was induced in female BALB/c mice by intraperitoneal sensitization and intranasal introduction of ovalbumin, followed by challenge methacholine. After the methacholine challenge, animals were exposed to hyperoxic conditions in an inhalation chamber for 24 h. The controls were subjected to normoxia or aluminum hydroxide dissolved in phosphate buffered saline. After 24 h of hyperoxia, the number of macrophages and lymphocytes decreased in animals with ovalbumin-induced airway inflammation, whereas the number of neutrophils increased after ovalbumin-induced airway inflammation. The results showed that expression of Nrf2, iNOS, T-bet and IL-17 increased after 24 of hyperoxia in both alveolar macrophages and in lung epithelial cells, compared with both animals that remained in room air, and animals with ovalbumin-induced airway inflammation. Hyperoxia alone without the induction of airway inflammation lead to increased levels of TNF-α and CCL5, whereas hyperoxia after inflammation lead to decreased CCL2 levels. Histological evidence of extravasation of inflammatory cells into the perivascular and peribronchial regions of the lungs was observed after pulmonary inflammation and hyperoxia. Hyperoxia promotes polarization of the immune response toward the TH17 phenotype, resulting in tissue damage associated with oxidative stress, and the migration of neutrophils to the lung and airways. Elucidating the effect of hyperoxia on ovalbumin-induced acute airway inflammation is relevant to preventing or treating asthmatic patients that require oxygen supplementation to reverse the hypoxemia.
Collapse
Affiliation(s)
- Akinori C Nagato
- Laboratory of Immunopathology and Experimental Pathology, Center for Reproductive Biology-CRB, Federal University of Juiz de Fora Juiz de Fora, Minas Gerais, Brazil
| | | | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP) Ouro Preto, Minas Gerais, Brazil
| | - Beatriz J Aarestrup
- Laboratory of Immunopathology and Experimental Pathology, Center for Reproductive Biology-CRB, Federal University of Juiz de Fora Juiz de Fora, Minas Gerais, Brazil
| | - Fernando M Aarestrup
- Laboratory of Immunopathology and Experimental Pathology, Center for Reproductive Biology-CRB, Federal University of Juiz de Fora Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
23
|
Sureshbabu A, Syed MA, Boddupalli CS, Dhodapkar MV, Homer RJ, Minoo P, Bhandari V. Conditional overexpression of TGFβ1 promotes pulmonary inflammation, apoptosis and mortality via TGFβR2 in the developing mouse lung. Respir Res 2015; 16:4. [PMID: 25591994 PMCID: PMC4307226 DOI: 10.1186/s12931-014-0162-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/19/2014] [Indexed: 12/21/2022] Open
Abstract
Background Earlier studies have reported that transforming growth factor beta 1(TGFβ1) is a critical mediator of hyperoxia-induced acute lung injury (HALI) in developing lungs, leading to impaired alveolarization and a pulmonary phenotype of bronchopulmonary dysplasia (BPD). However, the mechanisms responsible for the TGFβ1-induced inflammatory signals that lead to cell death and abnormal alveolarization are poorly understood. We hypothesized that TGFβ1 signaling via TGFβR2 is necessary for the pathogenesis of the BPD pulmonary phenotype resulting from HALI. Methods We utilized lung epithelial cell-specific TGFβ1 overexpressing transgenic and TGFβR2 null mutant mice to evaluate the effects on neonatal mortality as well as pulmonary inflammation and apoptosis in developing lungs. Lung morphometry was performed to determine the impaired alveolarization and multicolor flow cytometry studies were performed to detect inflammatory macrophages and monocytes in lungs. Apoptotic cell death was measured with TUNEL assay, immunohistochemistry and western blotting and protein expression of angiogenic mediators were also analyzed. Results Our data reveals that increased TGFβ1 expression in newborn mice lungs leads to increased mortality, macrophage and immature monocyte infiltration, apoptotic cell death specifically in Type II alveolar epithelial cells (AECs), impaired alveolarization, and dysregulated angiogenic molecular markers. Conclusions Our study has demonstrated the potential role of inhibition of TGFβ1 signaling via TGFβR2 for improved survival, reduced inflammation and apoptosis that may provide insights for the development of potential therapeutic strategies targeted against HALI and BPD.
Collapse
Affiliation(s)
- Angara Sureshbabu
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| | - Mansoor A Syed
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| | - Chandra Sekhar Boddupalli
- Department of Medicine and Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| | - Madhav V Dhodapkar
- Department of Medicine and Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| | - Robert J Homer
- Department of Pathology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
| | - Parviz Minoo
- Department of Pediatrics, University of Southern California, 1200 North State Street, Los Angeles, CA, 90033, USA.
| | - Vineet Bhandari
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| |
Collapse
|
24
|
Poonyagariyagorn HK, Metzger S, Dikeman D, Mercado AL, Malinina A, Calvi C, McGrath-Morrow S, Neptune ER. Superoxide dismutase 3 dysregulation in a murine model of neonatal lung injury. Am J Respir Cell Mol Biol 2014; 51:380-90. [PMID: 24673633 DOI: 10.1165/rcmb.2013-0043oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD), a common chronic respiratory disease that occurs after premature birth, is believed to be secondary to oxidative damage from hyperoxia and inflammation, which leads to impaired alveolar formation and chronic lung dysfunction. We hypothesized that extracellular superoxide dismutase (SOD)3, an antioxidant uniquely targeted to the extracellular matrix (ECM) and alveolar fluid, might have a different response (down-regulation) to hyperoxic injury and recovery in room air (RA), thereby contributing to the persistent airspace injury and inflammation. We used a murine BPD model using postnatal hyperoxia (O2) (4 or 5 d) followed by short-term recovery (14 d) in RA, which mimics the durable effects after injury during alveolar development. This was associated with significantly increased mRNA expression for antioxidant genes mediated by nuclear factor erythroid 2-related factor (Nrf2) in the O2 (n = 4) versus RA group (n = 5). SOD3, an Nrf2-independent antioxidant, was significantly reduced in the O2-exposed mice compared with RA. Immunohistochemistry revealed decreased and disrupted SOD3 deposition in the alveolar ECM of O2-exposed mice. Furthermore, this distinct hyperoxic antioxidant and injury profile was reproducible in murine lung epithelial 12 cells exposed to O2. Overexpression of SOD3 rescued the injury measures in the O2-exposed cells. We establish that reduced SOD3 expression correlates with alveolar injury measures in the recovered neonatal hyperoxic lung, and SOD3 overexpression attenuates hyperoxic injury in an alveolar epithelial cell line. Such findings suggest a candidate mechanism for the pathogenesis of BPD that may lead to targeted interventions.
Collapse
|
25
|
Berger J, Bhandari V. Animal models of bronchopulmonary dysplasia. The term mouse models. Am J Physiol Lung Cell Mol Physiol 2014; 307:L936-47. [PMID: 25305249 DOI: 10.1152/ajplung.00159.2014] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The etiology of bronchopulmonary dysplasia (BPD) is multifactorial, with genetics, ante- and postnatal sepsis, invasive mechanical ventilation, and exposure to hyperoxia being well described as contributing factors. Much of what is known about the pathogenesis of BPD is derived from animal models being exposed to the environmental factors noted above. This review will briefly cover the various mouse models of BPD, focusing mainly on the hyperoxia-induced lung injury models. We will also include hypoxia, hypoxia/hyperoxia, inflammation-induced, and transgenic models in room air. Attention to the stage of lung development at the timing of the initiation of the environmental insult and the duration of lung injury is critical to attempt to mimic the human disease pulmonary phenotype, both in the short term and in outcomes extending into childhood, adolescence, and adulthood. The various indexes of alveolar and vascular development as well as pulmonary function including pulmonary hypertension will be highlighted. The advantages (and limitations) of using such approaches will be discussed in the context of understanding the pathogenesis of and targeting therapeutic interventions to ameliorate human BPD.
Collapse
Affiliation(s)
- Jessica Berger
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
| | - Vineet Bhandari
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
26
|
Ebelt ND, Cantrell MA, Van Den Berg CL. c-Jun N-Terminal Kinases Mediate a Wide Range of Targets in the Metastatic Cascade. Genes Cancer 2014; 4:378-87. [PMID: 24349635 DOI: 10.1177/1947601913485413] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Disseminated cancer cells rely on intricate interactions among diverse cell types in the tumor-associated stroma, vasculature, and immune system for survival and growth. Ubiquitous expression of c-Jun N-terminal kinase (jnk) genes in various cell types permits their control of metastasis. In early stages of metastasis, JNKs affect tumor-associated inflammation and angiogenesis as well as tumor cell migration and intravasation. Within the tumor stroma, JNKs are essential for the release of growth factors that promote epithelial-to-mesenchymal transition (EMT) in tumor cells. JNK3, the least ubiquitous isoform, facilitates angiogenesis by increasing endothelial cell migration. Importantly, JNK expression in tumor cells integrates stromal signals to promote tumor cell invasion. However, JNK isoforms differentially regulate migration toward the endothelial barrier. Once tumor cells enter the bloodstream, JNKs increase circulating tumor cell (CTC) survival and homing to tissues. By promoting fibrosis, JNKs improve CTC attachment to the endothelium. Once anchored, JNKs stimulate EMT to facilitate tumor cell extravasation and enhance the secretion of endothelial barrier disrupters. Tumor cells attract barrier-disrupting macrophages by JNK-dependent transcription of macrophage chemoattractant molecules. In the secondary tissue, JNKs are instrumental in the premetastatic niche and stimulate tumor cell proliferation. JNK expression in cancer cells stimulates tissue-remodeling macrophages to improve tumor colonization. However, in T-cells, JNKs alter cytokine production that increases tumor surveillance and inhibits the recruitment of tissue-remodeling macrophages. Therapeutically targeting JNKs for metastatic disease is attractive considering their promotion of metastasis; however, specific JNK tools are needed to determine their definitive actions within the context of the entire metastatic cascade.
Collapse
Affiliation(s)
- Nancy D Ebelt
- Institute of Cellular & Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Michael A Cantrell
- Institute of Cellular & Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Carla L Van Den Berg
- Institute of Cellular & Molecular Biology, The University of Texas at Austin, Austin, TX, USA ; Division of Pharmacology & Toxicology, Dell Pediatric Research Institute, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
27
|
Bhandari V. Postnatal inflammation in the pathogenesis of bronchopulmonary dysplasia. ACTA ACUST UNITED AC 2014; 100:189-201. [PMID: 24578018 DOI: 10.1002/bdra.23220] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/02/2014] [Accepted: 01/05/2014] [Indexed: 12/18/2022]
Abstract
Exposure to hyperoxia, invasive mechanical ventilation, and systemic/local sepsis are important antecedents of postnatal inflammation in the pathogenesis of bronchopulmonary dysplasia (BPD). This review will summarize information obtained from animal (baboon, lamb/sheep, rat and mouse) models that pertain to the specific inflammatory agents and signaling molecules that predispose a premature infant to BPD.
Collapse
Affiliation(s)
- Vineet Bhandari
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
28
|
Combined effects of maternal inflammation and neonatal hyperoxia on lung fibrosis and RAGE expression in newborn rats. Pediatr Res 2014; 75:273-80. [PMID: 24226635 DOI: 10.1038/pr.2013.222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 07/10/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND Receptors for advanced glycation end products (RAGE) have been implicated in fibrotic processes. We hypothesized that lung fibrosis induced by maternal lipopolysaccharide (LPS)-mediated inflammation and neonatal hyperoxia involves RAGE in newborn rats. METHODS Pregnant Sprague-Dawley rats received intraperitoneal injections of LPS or normal saline (NS) on 20 and 21 d of gestation. The pups were reared in room air (RA) or an O2-enrich atmosphere (O2), creating the four study groups, NS + RA, NS + O2, LPS + RA, and LPS + O2. The O2 treatment was >95% O2 for 7 d, followed by 60% O2 for 14 d. RESULTS Rat pups born to LPS-injected dams exhibited significantly higher lung interferon-γ and interleukin-1β (IL-1β) on postnatal day 7 than the pups born to NS-injected dams. Rat pups reared in hyperoxia expressed higher lung IL-10 on postnatal day 7, compared with the RA-reared pups. The LPS + O2 group had significantly higher total collagen and transforming growth factor-β1 on postnatal days 7 and 21 than the NS+RA group. RAGE mRNA and sRAGE protein expression were significantly lower in the LPS + O2 group on postnatal day 7 than the NS+RA group. CONCLUSION RAGE may be involved in the pathogenesis of lung fibrosis induced by maternal systemic inflammation and postnatal hyperoxia in rat neonates.
Collapse
|
29
|
Bhandari V. Drug therapy trials for the prevention of bronchopulmonary dysplasia: current and future targets. Front Pediatr 2014; 2:76. [PMID: 25121076 PMCID: PMC4110623 DOI: 10.3389/fped.2014.00076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/06/2014] [Indexed: 12/31/2022] Open
Affiliation(s)
- Vineet Bhandari
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine , New Haven, CT , USA
| |
Collapse
|
30
|
Bhargava M, Dey S, Becker T, Steinbach M, Wu B, Lee SM, Higgins L, Kumar V, Bitterman PB, Ingbar DH, Wendt CH. Protein expression profile of rat type two alveolar epithelial cells during hyperoxic stress and recovery. Am J Physiol Lung Cell Mol Physiol 2013; 305:L604-14. [PMID: 24014686 PMCID: PMC3840279 DOI: 10.1152/ajplung.00079.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 09/03/2013] [Indexed: 01/03/2023] Open
Abstract
In rodent model systems, the sequential changes in lung morphology resulting from hyperoxic injury are well characterized and are similar to changes in human acute respiratory distress syndrome. In the injured lung, alveolar type two (AT2) epithelial cells play a critical role in restoring the normal alveolar structure. Thus characterizing the changes in AT2 cells will provide insights into the mechanisms underpinning the recovery from lung injury. We applied an unbiased systems-level proteomics approach to elucidate molecular mechanisms contributing to lung repair in a rat hyperoxic lung injury model. AT2 cells were isolated from rat lungs at predetermined intervals during hyperoxic injury and recovery. Protein expression profiles were determined by using iTRAQ with tandem mass spectrometry. Of the 959 distinct proteins identified, 183 significantly changed in abundance during the injury-recovery cycle. Gene ontology enrichment analysis identified cell cycle, cell differentiation, cell metabolism, ion homeostasis, programmed cell death, ubiquitination, and cell migration to be significantly enriched by these proteins. Gene set enrichment analysis of data acquired during lung repair revealed differential expression of gene sets that control multicellular organismal development, systems development, organ development, and chemical homeostasis. More detailed analysis identified activity in two regulatory pathways, JNK and miR 374. A novel short time-series expression miner algorithm identified protein clusters with coherent changes during injury and repair. We concluded that coherent changes occur in the AT2 cell proteome in response to hyperoxic stress. These findings offer guidance regarding the specific molecular mechanisms governing repair of the injured lung.
Collapse
|
31
|
Abstract
Bronchopulmonary dysplasia (BPD) is a complex disorder secondary to gene-environment interactions, and is the commonest chronic lung disease in infancy. There is no specific or effective treatment available to date for BPD. Since the aetiopathogenesis of BPD is multifactorial, involving diverse molecular signaling pathways, a variety of biomarkers detected in biological fluids have been proposed for early identification of infants predisposed to BPD. This review will be restricted to biomarker studies in human infants, conducted mostly in the last decade. The majority of the studies have been conducted using blood, urine or tracheal aspirate samples. Despite the multitude of biomarkers proposed, most studies have been conducted in small numbers of infants, with few being replicated by independent investigators. Confirmatory studies with adequate sample sizes and assessment of the role of putative biomarkers in the aetiology of BPD in developmentally appropriate animal models and human lungs with BPD will enhance the potential for therapeutic interventions. Genomic and proteomic approaches have the greatest potential to significantly advance the field of biomarkers in BPD.
Collapse
Affiliation(s)
- Anita Bhandari
- Division of Pediatric Pulmonology, Connecticut Children's Medical Center, Hartford, CT, USA.
| | | |
Collapse
|
32
|
Choo-Wing R, Syed MA, Harijith A, Bowen B, Pryhuber G, Janér C, Andersson S, Homer RJ, Bhandari V. Hyperoxia and interferon-γ-induced injury in developing lungs occur via cyclooxygenase-2 and the endoplasmic reticulum stress-dependent pathway. Am J Respir Cell Mol Biol 2013; 48:749-57. [PMID: 23470621 DOI: 10.1165/rcmb.2012-0381oc] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We noted a marked increase in cyclooxygenase-2 (Cox2) and the activation of the endoplasmic reticulum (ER) stress pathway in newborn murine lung on exposure to hyperoxia and IFN-γ. We sought to evaluate Cox2-mediated ER stress pathway activation in hyperoxia-induced and IFN-γ-mediated injury in developing lungs. We applied in vivo genetic gain-of-function and genetic/chemical inhibition, as well as in vitro loss-of-function genetic strategies. Hyperoxia-induced and IFN-γ-mediated impaired alveolarization was rescued by Cox2 inhibition, using celecoxib. The use of small interfering RNA against the ER stress pathway mediator, the C/EBP homologous protein (CHOP; also known as growth arrest and DNA damage-inducible gene 153/GADD153), alleviated cell death in alveolar epithelial cells as well as in hyperoxia-induced and IFN-γ-mediated murine models of bronchopulmonary dysplasia (BPD). In addition, CHOP siRNA also restored alveolarization in the in vivo models. Furthermore, as evidence of clinical relevance, we show increased concentrations of Cox2 and ER stress pathway mediators in human lungs with BPD. Cox2, via CHOP, may significantly contribute to the final common pathway of hyperoxia-induced and IFN-γ-mediated injury in developing lungs and human BPD.
Collapse
Affiliation(s)
- Rayman Choo-Wing
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sun H, Choo-Wing R, Fan J, Leng L, Syed MA, Hare AA, Jorgensen WL, Bucala R, Bhandari V. Small molecular modulation of macrophage migration inhibitory factor in the hyperoxia-induced mouse model of bronchopulmonary dysplasia. Respir Res 2013; 14:27. [PMID: 23448134 PMCID: PMC3637059 DOI: 10.1186/1465-9921-14-27] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/19/2013] [Indexed: 01/11/2023] Open
Abstract
Background The role and mechanism of action of MIF in bronchopulmonary dysplasia (BPD) are not known. We hypothesized that increased MIF signaling would ameliorate the pulmonary phenotype of BPD in the mouse lung. Methods We studied newborn wild type (WT), MIF knockout (MIFKO), and lung MIF transgenic (MIFTG) mice in room air and a BPD model, and examined the effects of administering a small molecule MIF agonist and antagonist. Lung morphometry was performed and mRNA and protein expression of vascular mediators were analyzed. Results The pulmonary phenotype of MIFKO and MIFTG mice lungs in room air (RA) and BPD model were comparable to the WT-BPD mice at postnatal (PN) day 14. Vascular endothelial growth factor (VEGF)-A, -R1 and Angiopoietin (Ang)1 mRNA were decreased, and Ang2 increased in the WT-BPD, MIFKO-RA, MIFKO-BPD, MIFTG-RA and MIFTG-BPD mice lungs, compared to appropriate controls. The protein expression of Ang1 in the MIFKO-RA was similar to WT-RA, but decreased in MIFTG-RA, and decreased in all the BPD groups. Ang2 was increased in MIFKO-RA, MIFTG-RA and in all 3 BPD groups. Tie2 was increased in WT-BPD compared to WT-RA, but decreased in MIFKO- and MIFTG- RA and BPD groups. VEGFR1 was uniformly decreased in MIFKO-RA, MIFTG-RA and in all 3 BPD groups. VEGF-A had a similar expression across all RA and BPD groups. There was partial recovery of the pulmonary phenotype in the WT-BPD model treated with the MIF agonist, and in the MIFTG mice treated with the MIF antagonist. Conclusions These data point to the careful regulatory balance exerted by MIF in the developing lung and response to hyperoxia and support the potential therapeutic value of small molecule MIF modulation in BPD.
Collapse
Affiliation(s)
- Huanxing Sun
- Department of Pediatrics, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|