1
|
Xie L, Xie Z, Huang L, Fan Q, Luo S, Huang J, Deng X, Xie Z, Zeng T, Zhang Y, Wang S. Avian reovirus σA and σNS proteins activate the phosphatidylinositol 3-kinase-dependent Akt signalling pathway. Arch Virol 2016; 161:2243-8. [PMID: 27233800 DOI: 10.1007/s00705-016-2908-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/19/2016] [Indexed: 11/26/2022]
Abstract
The present study was conducted to identify avian reovirus (ARV) proteins that can activate the phosphatidylinositol 3-kinase (PI3K)-dependent Akt pathway. Based on ARV protein amino acid sequence analysis, σA, σNS, μA, μB and μNS were identified as putative proteins capable of mediating PI3K/Akt pathway activation. The recombinant plasmids σA-pcAGEN, σNS-pcAGEN, μA-pcAGEN, μB-pcAGEN and μNS-pcAGEN were constructed and used to transfect Vero cells, and the expression levels of the corresponding genes were quantified by immunofluorescence and Western blot analysis. Phosphorylated Akt (P-Akt) levels in the transfected cells were measured by flow cytometry and Western blot analysis. The results showed that the σA, σNS, μA, μB and μNS genes were expressed in Vero cells. σA-expressing and σNS-expressing cells had higher P-Akt levels than negative control cells, pcAGEN-expressing cells and cells designed to express other proteins (i.e., μA, μB and μNS). Pre-treatment with the PI3K inhibitor LY294002 inhibited Akt phosphorylation in σA- and σNS-expressing cells. These results indicate that the σA and σNS proteins can activate the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Liji Xie
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China
| | - Zhixun Xie
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China.
| | - Li Huang
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China
| | - Qing Fan
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China
| | - Sisi Luo
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China
| | - Jiaoling Huang
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China
| | - Xianwen Deng
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China
| | - Zhiqin Xie
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China
| | - Tingting Zeng
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China
| | - Yanfang Zhang
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China
| | - Sheng Wang
- Department of Biotechnology, Guangxi Key Laboratory of Animal Epidemic Etiology and Diagnostics, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning, 530001, China
| |
Collapse
|
2
|
Rad SMAH, Bamdad T, Sadeghizadeh M, Arefian E, Lotfinia M, Ghanipour M. Transcription factor decoy against stem cells master regulators, Nanog and Oct-4: a possible approach for differentiation therapy. Tumour Biol 2014; 36:2621-9. [PMID: 25464862 DOI: 10.1007/s13277-014-2884-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 11/21/2014] [Indexed: 01/31/2023] Open
Abstract
Transcription factor decoys (TFDs) are exogenous oligonucleotides which can compete by cis-elements in promoters or enhancers for binding to TFs and downregulating gene expression in a specific manner. It is believed that tumor mass originates from cancer stem cells (CSCs) which the same with embryonic stem cells (ESCs) have the properties of both pluripotency and self-renewal (stemness). Many transcription factors such as Nanog, Oct-4, Sox2, Klf4, and Sall4 act as master regulators in the maintenance of stemness in both cell types. Differentiation therapy is based on this theory that by differentiation of CSCs, tumor mass can be eliminated with common cancer therapy methods. To our knowledge, the present study is the first report of a TFD approach against master regulator of stemness, Nanog, Oct-4, and Klf4, for downregulation purposes in P19 embryonic carcinoma stem cell. Different simple and complex decoys against Nanog, OCT-4, Sox2, and Klf4 were designed and used for this purpose. The results showed that the applied decoys especially Nanog-specific decoy decreased the expression of downstream genes.
Collapse
|
3
|
Favretto ME, Wallbrecher R, Schmidt S, van de Putte R, Brock R. Glycosaminoglycans in the cellular uptake of drug delivery vectors – Bystanders or active players? J Control Release 2014; 180:81-90. [DOI: 10.1016/j.jconrel.2014.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/07/2014] [Accepted: 02/09/2014] [Indexed: 12/30/2022]
|
4
|
Oral advanced glycation endproducts (AGEs) promote insulin resistance and diabetes by depleting the antioxidant defenses AGE receptor-1 and sirtuin 1. Proc Natl Acad Sci U S A 2012; 109:15888-93. [PMID: 22908267 DOI: 10.1073/pnas.1205847109] [Citation(s) in RCA: 244] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The epidemics of insulin resistance (IR) and type 2 diabetes (T2D) affect the first world as well as less-developed countries, and now affect children as well. Persistently elevated oxidative stress and inflammation (OS/Infl) precede these polygenic conditions. A hallmark of contemporary lifestyle is a preference for thermally processed nutrients, replete with pro-OS/Infl advanced glycation endproducts (AGEs), which enhance appetite and cause overnutrition. We propose that chronic ingestion of oral AGEs promotes IR and T2D. The mechanism(s) involved in these findings were assessed in four generations of C57BL6 mice fed isocaloric diets with or without AGEs [synthetic methyl-glyoxal-derivatives (MG(+))]. F3/MG(+) mice manifested increased adiposity and premature IR, marked by severe deficiency of anti-AGE advanced glycation receptor 1 (AGER1) and of survival factor sirtuin 1 (SIRT1) in white adipose tissue (WAT), skeletal muscle, and liver. Impaired 2-deoxy-glucose uptake was associated with marked changes in insulin receptor (InsR), IRS-1, IRS-2, Akt activation, and a macrophage and adipocyte shift to a pro-OS/inflammatory (M1) phenotype. These features were absent in F3/MG(-) mice. MG stimulation of 3T3-L1 adipocytes led to suppressed AGER1 and SIRT1, and altered InsR, IRS-1, IRS-2 phosphorylation, and nuclear factor kappa-light chain enhancer of activated B cells (Nf-κB) p65 acetylation. Gene modulation revealed these effects to be coregulated by AGER1 and SIRT1. Thus, prolonged oral exposure to MG-AGEs can deplete host-defenses AGER1 and SIRT1, raise basal OS/Infl, and increase susceptibility to dysmetabolic IR. Because exposure to AGEs can be decreased, these insights provide an important framework for alleviating a major lifestyle-linked disease epidemic.
Collapse
|
5
|
Rosario FJ, Sadovsky Y, Jansson T. Gene targeting in primary human trophoblasts. Placenta 2012; 33:754-62. [PMID: 22831880 DOI: 10.1016/j.placenta.2012.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/04/2012] [Accepted: 07/05/2012] [Indexed: 12/18/2022]
Abstract
Studies in primary human trophoblasts provide critical insights into placental function in normal and complicated pregnancies. Mechanistic studies in these cells require experimental tools to modulate gene expression. Lipid-based methods to transfect primary trophoblasts are fairly simple to use and allow for the efficient delivery of nucleic acids, but potential toxic effects limit these methods. Viral vectors are versatile transfection tools of native trophoblastic or foreign cDNAs, providing high transfection efficiency, low toxicity and stable DNA integration into the trophoblast genome. RNA interference (RNAi), using small interfering RNA (siRNA) or microRNA, constitutes a powerful approach to silence trophoblast genes. However, off-target effects, such as regulation of unintended complementary transcripts, inflammatory responses and saturation of the endogenous RNAi machinery, are significant concerns. Strategies to minimize off-target effects include using multiple individual siRNAs, elimination of pro-inflammatory sequences in the siRNA construct and chemical modification of a nucleotide in the guide strand or of the ribose moiety. Tools for efficient gene targeting in primary human trophoblasts are currently available, albeit not yet extensively validated. These methods are critical for exploring the function of human trophoblast genes and may provide a foundation for the future application of gene therapy that targets placental trophoblasts.
Collapse
Affiliation(s)
- F J Rosario
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center San Antonio, Mail Code 7836, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|
6
|
Du L, Zhang X, Liu J, Jiang S. Protocol for recombinant RBD-based SARS vaccines: protein preparation, animal vaccination and neutralization detection. J Vis Exp 2011:2444. [PMID: 21587153 DOI: 10.3791/2444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Based on their safety profile and ability to induce potent immune responses against infections, subunit vaccines have been used as candidates for a wide variety of pathogens. Since the mammalian cell system is capable of post-translational modification, thus forming properly folded and glycosylated proteins, recombinant proteins expressed in mammalian cells have shown the greatest potential to maintain high antigenicity and immunogenicity. Although no new cases of SARS have been reported since 2004, future outbreaks are a constant threat; therefore, the development of vaccines against SARS-CoV is a prudent preventive step and should be carried out. The RBD of SARS-CoV S protein plays important roles in receptor binding and induction of specific neutralizing antibodies against virus infection. Therefore, in this protocol, we describe novel methods for developing a RBD-based subunit vaccine against SARS. Briefly, the recombinant RBD protein (rRBD) was expressed in culture supernatant of mammalian 293T cells to obtain a correctly folded protein with proper conformation and high immunogenicity. The transfection of the recombinant plasmid encoding RBD to the cells was then performed using a calcium phosphate transfection method with some modifications. Compared with the lipid transfection method, this modified calcium phosphate transfection method is cheaper, easier to handle, and has the potential to reach high efficacy once a transfection complex with suitable size and shape is formed. Finally, a SARS pseudovirus neutralization assay was introduced in the protocol and used to detect the neutralizing activity of sera of mice vaccinated with rRBD protein. This assay is relatively safe, does not involve an infectious SARS-CoV, and can be performed without the requirement of a biosafety-3 laboratory. The protocol described here can also be used to design and study recombinant subunit vaccines against other viruses with class I fusion proteins, for example, HIV, respiratory syncytial virus (RSV), Ebola virus, influenza virus, as well as Nipah and Handra viruses. In addition, the methods for generating a pseudovirus and subsequently establishing a pseudovirus neutralization assay can be applied to all these viruses.
Collapse
Affiliation(s)
- Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, USA
| | | | | | | |
Collapse
|
7
|
Desforges M, Westwood M. A limitation of the method for siRNA delivery into primary human cytotrophoblast cells. Placenta 2011; 32:192-4. [DOI: 10.1016/j.placenta.2010.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 10/25/2010] [Accepted: 11/15/2010] [Indexed: 11/28/2022]
|
8
|
Mechanism of lipid induced insulin resistance: activated PKCε is a key regulator. Biochim Biophys Acta Mol Basis Dis 2011; 1812:495-506. [PMID: 21236337 DOI: 10.1016/j.bbadis.2011.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 12/21/2010] [Accepted: 01/03/2011] [Indexed: 11/20/2022]
Abstract
Fatty acids (FAs) are known to impair insulin signaling in target cells. Accumulating evidences suggest that one of the major sites of FAs adverse effect is insulin receptor (IR). However, the underlying mechanism is yet unclear. An important clue was indicated in leptin receptor deficient (db/db) diabetic mice where increased circulatory FAs was coincided with phosphorylated PKCε and reduced IR expression. We report here that central to this mechanism is the phosphorylation of PKCε by FAs. Kinase dead mutant of PKCε did not augment FA induced IRβ downregulation indicating phosphorylation of PKCε is crucial for FA induced IRβ reduction. Investigation with insulin target cells showed that kinase independent phosphorylation of PKCε by FA occurred through palmitoylation. Mutation at cysteine 276 and 474 residues in PKCε suppressed this process indicating participation of these two residues in palmitoylation. Phosphorylation of PKCε endowed it the ability to migrate to the nuclear region of insulin target cells. It was intriguing to search about how translocation of phosphorylated PKCε occurred without having canonical nuclear localization signal (NLS). We found that F-actin recognized phospho-form of PKCε and chaperoned it to the nuclear region where it interact with HMGA1 and Sp1, the transcription regulator of IR and HMGA1 gene respectively and impaired HMGA1 function. This resulted in the attenuation of HMGA1 driven IR transcription that compromised insulin signaling and sensitivity.
Collapse
|
9
|
Verdurmen WPR, Brock R. Biological responses towards cationic peptides and drug carriers. Trends Pharmacol Sci 2010; 32:116-24. [PMID: 21167610 DOI: 10.1016/j.tips.2010.11.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/09/2010] [Accepted: 11/15/2010] [Indexed: 12/19/2022]
Abstract
In drug development, major resources are invested into the development of cellular delivery systems to increase the effectiveness of a large array of potential therapeutics, such as proteins and oligonucleotides. These carriers comprise cell-penetrating peptides (CPPs), cationic lipids and cationic polymers. In recent years, evidence has been accumulating that these carriers not only act as mere pharmacokinetic modifiers but also interfere with cellular processes in various ways. In this review, we present an overview of the biological side effects associated with carrier systems. The focus will be on CPPs, which have been explored for a diverse set of cargos. Reported activities range from an induction of receptor internalization to the generation of reactive oxygen species. Ultimately, cell-penetrating molecules with such biological side effects might evolve into new bioactive agents that combine delivery capacity and pharmacophore in a single molecular entity. First examples for such molecules will be presented.
Collapse
Affiliation(s)
- Wouter P R Verdurmen
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | | |
Collapse
|
10
|
Lanner JT, Bruton JD, Assefaw-Redda Y, Andronache Z, Zhang SJ, Severa D, Zhang ZB, Melzer W, Zhang SL, Katz A, Westerblad H. Knockdown of TRPC3 with siRNA coupled to carbon nanotubes results in decreased insulin‐mediated glucose uptake in adult skeletal muscle cells. FASEB J 2009; 23:1728-38. [DOI: 10.1096/fj.08-116814] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Johanna T. Lanner
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Joseph D. Bruton
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Yohannes Assefaw-Redda
- School of Information and Communication TechnologyRoyal Institute of TechnologyStockholmSweden
| | | | - Shi-Jin Zhang
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Denise Severa
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Zhi-Bin Zhang
- School of Information and Communication TechnologyRoyal Institute of TechnologyStockholmSweden
| | - Werner Melzer
- Institut fÜr Angewandte PhysiologieUniversität UlmUlmGermany
| | - Shi-Li Zhang
- Institut fÜr Angewandte PhysiologieUniversität UlmUlmGermany
| | - Abram Katz
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Håkan Westerblad
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
11
|
Harmancey R, Smih F. Response to Comment on: Harmancey et al. (2007) Adrenomedullin Inhibits Adipogenesis Under Transcriptional Control of Insulin: Diabetes 56:553 563. Diabetes 2007; 56:e18. [PMID: 17901220 DOI: 10.2337/db07-1003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Gourbatsi E, Al-Fageeh MB, Marchant RJ, Scott SJ, Underhill MF, Smales CM. Noncovalently linked nuclear localization peptides for enhanced calcium phosphate transfection. Mol Biotechnol 2007; 33:1-11. [PMID: 16691001 DOI: 10.1385/mb:33:1:1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
The generation of cell lines stably expressing recombinant material is a lengthy process and there has thus been much interest in the use of transient expression systems to rapidly produce recombinant material. To achieve this, the DNA of interest must be delivered into the nucleus of the target cell. The mechanisms by which this process occurs are poorly understood and the efficiency of various methods differs widely. Recently, nuclear localization signals (NLSs) have been investigated to target entry of DNA into the nucleus of mammalian cells. We have used NLSs from the SV40 and Tat antigens mixed with our model luciferase reporter gene plasmid for the transfection of Chinese hamster ovary (CHO) cells using calcium phosphate and FuGENE 6 transfection technology. The noncovalent complexation of NLSs with plasmid DNA before calcium phosphate-mediated transfection resulted in enhanced reporter gene expression with increasing ratios of NLS to plasmid until reaching a maximum. At higher ratios than maximum expression, the expression levels decreased. On the other hand, when using FuGENE 6 reagent NLSs did not enhance reporter gene expression. Cell cycle arrest in G(2)/M phase obliterated the effect of the NLS on reporter gene expression when using the calcium phosphate transfection method.
Collapse
Affiliation(s)
- Evdoxia Gourbatsi
- Protein Science Group, Department of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Baculovirus-mediated gene transfer and recombinant protein expression do not interfere with insulin dependent phosphorylation of PKB/Akt in human SHSY-5Y and C3A cells. BMC Cell Biol 2007; 8:6. [PMID: 17309805 PMCID: PMC1808450 DOI: 10.1186/1471-2121-8-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 02/19/2007] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Recombinant adenovirus vectors and transfection agents comprising cationic lipids are widely used as gene delivery vehicles for functional expression in cultured cells. Consequently, these tools are utilized to investigate the effects of functional over-expression of proteins on insulin mediated events. However, we have previously reported that cationic lipid reagents cause a state of insulin unresponsiveness in cell cultures. In addition, we have found that cultured cells often do not respond to insulin stimulation following adenovirus treatment. Infection with adenovirus compromises vital functions of the host cell leading to the activation of protein kinases central to insulin signalling, such as protein kinase B/Akt. Therefore, we investigated the effect of adenovirus infection on insulin unresponsiveness by means of Akt activation in cultured cells. Moreover, we investigated the use of baculovirus as a heterologous viral gene delivery vehicle to circumvent these phenomena. Since the finding that baculovirus can efficiently transduce mammalian cells, the applications of this viral system in gene delivery has greatly expanded and one advantage is the virtual absence of cytotoxicity in mammalian cells. RESULTS We show that infection of human neuroblastoma SHSY-5Y and liver C3A cells with recombinant adenovirus results in the activation of Akt in a dose dependent manner. In addition, this activation makes treated cells unresponsive to insulin stimulation as determined by an apparent lack of differential phosphorylation of Akt on serine-473. Our data further indicate that the use of recombinant baculovirus does not increase the phosphorylation of Akt in SHSY-5Y and C3A cells. Moreover, following infection with baculovirus, SHSY-5Y and C3A cells respond to insulin by means of phosphorylation of Akt on serine-473 in the same manner as uninfected cells. CONCLUSION Widely-used adenovirus vectors for gene delivery cause a state of insulin unresponsiveness in human SHSY-5Y and C3A cells in culture due to the activation of central protein kinases of the insulin signalling pathway. This phenomenon can be avoided when studying insulin signalling by using recombinant baculovirus as a heterologous viral expression system. In addition, our data may contribute to an understanding of the molecular mechanisms underlying baculovirus infection of human cells.
Collapse
|
15
|
Shin YK, Liu Q, Tikoo SK, Babiuk LA, Zhou Y. Influenza A virus NS1 protein activates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway by direct interaction with the p85 subunit of PI3K. J Gen Virol 2007; 88:13-18. [PMID: 17170431 DOI: 10.1099/vir.0.82419-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Influenza A virus infection activates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, but the mechanism is not clear. Here, it is reported that influenza A virus NS1 protein is responsible for PI3K/Akt pathway activation. It was demonstrated that the NS1 protein interacts with the p85 regulatory subunit of PI3K via direct binding to the SH3 and C-terminal SH2 domains of p85. Consensus binding motifs for SH3 and SH2 domains were found in influenza A virus NS1, namely an SH2-binding motif (YXXXM) at aa 89, SH3-binding motif 1 (PXXP) around aa 164 and SH3-binding motif 2 around aa 212. Mutant virus encoding NS1 protein with mutations in the SH-binding motifs failed to interact with SH domains of p85 and did not activate the PI3K/Akt pathway. The mutant virus is attenuated in Madin-Darby canine kidney cells. Our study has established a novel function of NS1: by interacting with p85 via the SH-binding motifs, NS1 can activate the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yeun-Kyung Shin
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Qiang Liu
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Suresh K Tikoo
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Lorne A Babiuk
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Yan Zhou
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| |
Collapse
|
16
|
Kaiser C, James SR. Acetylation of insulin receptor substrate-1 is permissive for tyrosine phosphorylation. BMC Biol 2004; 2:23. [PMID: 15522123 PMCID: PMC529456 DOI: 10.1186/1741-7007-2-23] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 11/02/2004] [Indexed: 12/21/2022] Open
Abstract
Background Insulin receptor substrate (IRS) proteins are key moderators of insulin action. Their specific regulation determines downstream protein-protein interactions and confers specificity on growth factor signalling. Regulatory mechanisms that have been identified include phosphorylation of IRS proteins on tyrosine and serine residues and ubiquitination of lysine residues. This study investigated other potential molecular mechanisms of IRS-1 regulation. Results Using the sos recruitment yeast two-hybrid system we found that IRS-1 and histone deacetylase 2 (HDAC2) interact in the cytoplasmic compartment of yeast cells. The interaction mapped to the C-terminus of IRS-1 and was confirmed through co-immunoprecipitation in vitro of recombinant IRS-1 and HDAC2. HDAC2 bound to IRS-1 in mammalian cells treated with phorbol ester or after prolonged treatment with insulin/IGF-1 and also in the livers of ob/ob mice but not PTP1B knockout mice. Thus, the association occurs under conditions of compromised insulin signalling. We found that IRS-1 is an acetylated protein, of which the acetylation is increased by treatment of cells with Trichostatin A (TSA), an inhibitor of HDAC activity. TSA-induced increases in acetylation of IRS-1 were concomitant with increases in tyrosine phosphorylation in response to insulin. These effects were confirmed using RNA interference against HDAC2, indicating that HDAC2 specifically prevents phosphorylation of IRS-1 by the insulin receptor. Conclusions Our results show that IRS-1 is an acetylated protein, a post-translational modification that has not been previously described. Acetylation of IRS-1 is permissive for tyrosine phosphorylation and facilitates insulin-stimulated signal transduction. Specific inhibition of HDAC2 may increase insulin sensitivity in otherwise insulin resistant conditions.
Collapse
Affiliation(s)
- Christina Kaiser
- Section of Cell Biology, Department of Biology, Biovitrum AB, SE-112 76, Stockholm, Sweden
| | - Stephen R James
- Section of Cell Biology, Department of Biology, Biovitrum AB, SE-112 76, Stockholm, Sweden
| |
Collapse
|