1
|
Budd GE. The origin and evolution of the euarthropod labrum. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 62:101048. [PMID: 33862532 DOI: 10.1016/j.asd.2021.101048] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 05/16/2023]
Abstract
A widely (although not universally) accepted model of arthropod head evolution postulates that the labrum, a structure seen in almost all living euarthropods, evolved from an anterior pair of appendages homologous to the frontal appendages of onychophorans. However, the implications of this model for the interpretation of fossil arthropods have not been fully integrated into reconstructions of the euarthropod stem group, which remains in a state of some disorder. Here I review the evidence for the nature and evolution of the labrum from living taxa, and reconsider how fossils should be interpreted in the light of this. Identification of the segmental identity of head appendage in fossil arthropods remains problematic, and often rests ultimately on unproven assertions. New evidence from the Cambrian stem-group euarthropod Parapeytoia is presented to suggest that an originally protocerebral appendage persisted well up into the upper stem-group of the euarthropods, which prompts a re-evaluation of widely-accepted segmental homologies and the interpretation of fossil central nervous systems. Only a protocerebral brain was implicitly present in a large part of the euarthropod stem group, and the deutocerebrum must have been a relatively late addition.
Collapse
Affiliation(s)
- Graham E Budd
- Department of Earth Sciences, Palaeobiology Programme, Uppsala University, Villavägen 16, Uppsala, SE 752 36, Sweden.
| |
Collapse
|
2
|
Schomburg C, Turetzek N, Prpic NM. Candidate gene screen for potential interaction partners and regulatory targets of the Hox gene labial in the spider Parasteatoda tepidariorum. Dev Genes Evol 2020; 230:105-120. [PMID: 32036446 PMCID: PMC7128011 DOI: 10.1007/s00427-020-00656-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/31/2020] [Indexed: 12/21/2022]
Abstract
The Hox gene labial (lab) governs the formation of the tritocerebral head segment in insects and spiders. However, the morphology that results from lab action is very different in the two groups. In insects, the tritocerebral segment (intercalary segment) is reduced and lacks appendages, whereas in spiders the corresponding segment (pedipalpal segment) is a proper segment including a pair of appendages (pedipalps). It is likely that this difference between lab action in insects and spiders is mediated by regulatory targets or interacting partners of lab. However, only a few such genes are known in insects and none in spiders. We have conducted a candidate gene screen in the spider Parasteatoda tepidariorum using as candidates Drosophila melanogaster genes known to (potentially) interact with lab or to be expressed in the intercalary segment. We have studied 75 P. tepidariorum genes (including previously published and duplicated genes). Only 3 of these (proboscipedia-A (pb-A) and two paralogs of extradenticle (exd)) showed differential expression between leg and pedipalp. The low success rate points to a weakness of the candidate gene approach when it is applied to lineage specific organs. The spider pedipalp has no counterpart in insects, and therefore relying on insect data apparently cannot identify larger numbers of factors implicated in its specification and formation. We argue that in these cases a de novo approach to gene discovery might be superior to the candidate gene approach.
Collapse
Affiliation(s)
- Christoph Schomburg
- Institut für Allgemeine Zoologie und Entwicklungsbiologie, AG Zoologie mit dem Schwerpunkt Molekulare Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 38, 35392, Gießen, Germany
| | - Natascha Turetzek
- Ludwig-Maximilians-Universität München, Lehrstuhl für Evolutionäre Ökologie, Biozentrum II, Großhadernerstraße 2, 82152, Planegg-Martinsried, Germany
| | - Nikola-Michael Prpic
- Institut für Allgemeine Zoologie und Entwicklungsbiologie, AG Zoologie mit dem Schwerpunkt Molekulare Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 38, 35392, Gießen, Germany.
| |
Collapse
|
3
|
Treffkorn S, Mayer G. Expression of NK genes that are not part of the NK cluster in the onychophoran Euperipatoides rowelli (Peripatopsidae). BMC DEVELOPMENTAL BIOLOGY 2019; 19:7. [PMID: 30987579 PMCID: PMC6466738 DOI: 10.1186/s12861-019-0185-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/12/2019] [Indexed: 12/25/2022]
Abstract
Background NK genes are a group of homeobox transcription factors that are involved in various molecular pathways across bilaterians. They are typically divided into two subgroups, the NK cluster (NKC) and NK-linked genes (NKL). While the NKC genes have been studied in various bilaterians, corresponding data of many NKL genes are missing to date. To further investigate the ancestral roles of NK family genes, we analyzed the expression patterns of NKL genes in the onychophoran Euperipatoides rowelli. Results The NKL gene complement of E. rowelli comprises eight genes, including BarH, Bari, Emx, Hhex, Nedx, NK2.1, vax and NK2.2, of which only NK2.2 was studied previously. Our data for the remaining seven NKL genes revealed expression in different structures associated with the developing nervous system in embryos of E. rowelli. While NK2.1 and vax are expressed in distinct medial regions of the developing protocerebrum early in development, BarH, Bari, Emx, Hhex and Nedx are expressed in late developmental stages, after all major structures of the nervous system have been established. Furthermore, BarH and Nedx are expressed in distinct mesodermal domains in the developing limbs. Conclusions Comparison of our expression data to those of other bilaterians revealed similar patterns of NK2.1, vax, BarH and Emx in various aspects of neural development, such as the formation of anterior neurosecretory cells mediated by a conserved molecular mechanism including NK2.1 and vax, and the development of the central and peripheral nervous system involving BarH and Emx. A conserved role in neural development has also been reported from NK2.2, suggesting that the NKL genes might have been primarily involved in neural development in the last common ancestor of bilaterians or at least nephrozoans (all bilaterians excluding xenacoelomorphs). The lack of comparative data for many of the remaining NKL genes, including Bari, Hhex and Nedx currently hampers further evolutionary conclusions. Hence, future studies should focus on the expression of these genes in other bilaterians, which would provide a basis for comparative studies and might help to better understand the role of NK genes in the diversification of bilaterians. Electronic supplementary material The online version of this article (10.1186/s12861-019-0185-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandra Treffkorn
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany.
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
| |
Collapse
|
4
|
Treffkorn S, Kahnke L, Hering L, Mayer G. Expression of NK cluster genes in the onychophoran Euperipatoides rowelli: implications for the evolution of NK family genes in nephrozoans. EvoDevo 2018; 9:17. [PMID: 30026904 PMCID: PMC6050708 DOI: 10.1186/s13227-018-0105-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/06/2018] [Indexed: 02/05/2023] Open
Abstract
Background Understanding the evolution and development of morphological traits of the last common bilaterian ancestor is a major goal of the evo-devo discipline. The reconstruction of this "urbilaterian" is mainly based on comparative studies of common molecular patterning mechanisms in recent model organisms. The NK homeobox genes are key players in many of these molecular pathways, including processes regulating mesoderm, heart and neural development. Shared features seen in the expression patterns of NK genes have been used to determine the ancestral bilaterian characters. However, the commonly used model organisms provide only a limited view on the evolution of these molecular pathways. To further investigate the ancestral roles of NK cluster genes, we analyzed their expression patterns in the onychophoran Euperipatoides rowelli. Results We identified nine transcripts of NK cluster genes in E. rowelli, including single copies of NK1, NK3, NK4, NK5, Msx, Lbx and Tlx, and two copies of NK6. All of these genes except for NK6.1 and NK6.2 are expressed in different mesodermal organs and tissues in embryos of E. rowelli, including the anlagen of somatic musculature and the heart. Furthermore, we found distinct expression patterns of NK3, NK5, NK6, Lbx and Msx in the developing nervous system. The same holds true for the NKL gene NK2.2, which does not belong to the NK cluster but is a related gene playing a role in neural patterning. Surprisingly, NK1, Msx and Lbx are additionally expressed in a segment polarity-like pattern early in development-a feature that has been otherwise reported only from annelids. Conclusion Our results indicate that the NK cluster genes were involved in mesoderm and neural development in the last common ancestor of bilaterians or at least nephrozoans (i.e., bilaterians to the exclusion of xenacoelomorphs). By comparing our data from an onychophoran to those from other bilaterians, we critically review the hypothesis of a complex "urbilaterian" with a segmented body, a pulsatile organ or heart, and a condensed mediolaterally patterned nerve cord.
Collapse
Affiliation(s)
- Sandra Treffkorn
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Laura Kahnke
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Lars Hering
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| |
Collapse
|
5
|
Hunnekuhl VS, Akam M. Formation and subdivision of the head field in the centipede Strigamia maritima, as revealed by the expression of head gap gene orthologues and hedgehog dynamics. EvoDevo 2017; 8:18. [PMID: 29075435 PMCID: PMC5654096 DOI: 10.1186/s13227-017-0082-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/11/2017] [Indexed: 11/22/2022] Open
Abstract
Background There have been few studies of head patterning in non-insect arthropods, and even in the insects, much is not yet understood. In the fly Drosophila three head gap genes, orthodenticle (otd), buttonhead (btd) and empty spiracles (ems) are essential for patterning the head. However, they do not act through the same pair-rule genes that pattern the trunk from the mandibular segment backwards. Instead they act through the downstream factors collier (col) and cap‘n’collar (cnc), and presumably other unknown factors. In the beetle Tribolium, these same gap and downstream genes are also expressed during early head development, but in more restricted domains, and some of them have been shown to be of minor functional importance. In the spider Parasteatoda tepidariorum, hedgehog (hh) and otd have been shown to play an important role in head segmentation. Results We have investigated the expression dynamics of otx (otd), SP5/btd, ems, and the downstream factors col, cnc and hh during early head development of the centipede Strigamia maritima. Our results reveal the process of head condensation and show that the anteroposterior sequence of specific gene expression is conserved with that in insects. SP5/btd and otx genes are expressed prior to and during head field formation, whereas ems is not expressed until after the initial formation of the head field, in an emerging gap between SP5/btd and otx expression. Furthermore, we observe an early domain of Strigamia hh expression in the head field that splits to produce segmental stripes in the ocular, antennal and intercalary segments. Conclusions The dynamics of early gene expression in the centipede show considerable similarity with that in the beetle, both showing more localised expression of head gap genes than occurs in the fly. This suggests that the broad overlapping domains of head gap genes observed in Drosophila are derived in this lineage. We also suggest that the splitting of the early hh segmental stripes may reflect an ancestral and conserved process in arthropod head patterning. A remarkably similar stripe splitting process has been described in a spider, and in the Drosophila head hh expression starts from a broad domain that transforms into three stripes. Electronic supplementary material The online version of this article (doi:10.1186/s13227-017-0082-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vera S Hunnekuhl
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB23EJ UK.,Department of Evolutionary Developmental Genetics, Georg-August-Universität Göttingen, Caspari Haus, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Michael Akam
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB23EJ UK
| |
Collapse
|
6
|
Janssen R. A molecular view of onychophoran segmentation. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:341-353. [PMID: 27725255 DOI: 10.1016/j.asd.2016.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/22/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
This paper summarizes our current knowledge on the expression and assumed function of Drosophila and (other) arthropod segmentation gene orthologs in Onychophora, a closely related outgroup to Arthropoda. This includes orthologs of the so-called Drosophila segmentation gene cascade including the Hox genes, as well as other genetic factors and pathways involved in non-drosophilid arthropods. Open questions about and around the topic are addressed, such as the definition of segments in onychophorans, the unclear regulation of conserved expression patterns downstream of non-conserved factors, and the potential role of mesodermal patterning in onychophoran segmentation.
Collapse
Affiliation(s)
- Ralf Janssen
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden.
| |
Collapse
|
7
|
Janssen R. Gene expression reveals evidence for EGFR-dependent proximal-distal limb patterning in a myriapod. Evol Dev 2017; 19:124-135. [PMID: 28444830 DOI: 10.1111/ede.12222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Evolution of segmented limbs is one of the key innovations of Arthropoda, allowing development of functionally specific specialized head and trunk appendages, a major factor behind their unmatched evolutionary success. Proximodistal limb patterning is controlled by two regulatory networks in the vinegar fly Drosophila melanogaster, and other insects. The first is represented by the function of the morphogens Wingless (Wg) and Decapentaplegic (Dpp); the second by the EGFR-signaling cascade. While the role of Wg and Dpp has been studied in a wide range of arthropods representing all main branches, that is, Pancrustacea (= Hexapoda + Crustacea), Myriapoda and Chelicerata, investigation of the potential role of EGFR-signaling is restricted to insects (Hexapoda). Gene expression analysis of Egfr, its potential ligands, and putative downstream factors in the pill millipede Glomeris marginata (Myriapoda: Diplopoda), reveals that-in at least mandibulate arthropods-EGFR-signaling is likely a conserved regulatory mechanism in proximodistal limb patterning.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Abstract
Opiliones are one of the largest arachnid orders, with more than 6,500 species in 50 families. Many of these families have been erected or reorganized in the last few years since the publication of The Biology of Opiliones. Recent years have also seen an explosion in phylogenetic work on Opiliones, as well as in studies using Opiliones as test cases to address biogeographic and evolutionary questions more broadly. Accelerated activity in the study of Opiliones evolution has been facilitated by the discovery of several key fossils, including the oldest known Opiliones fossil, which represents a new, extinct suborder. Study of the group's biology has also benefited from rapid accrual of genomic resources, particularly with respect to transcriptomes and functional genetic tools. The rapid emergence and utility of Phalangium opilio as a model for evolutionary developmental biology of arthropods serve as demonstrative evidence of a new area of study in Opiliones biology, made possible through transcriptomic data.
Collapse
Affiliation(s)
- Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138;
| | | |
Collapse
|
9
|
Domínguez-Cejudo MA, Casares F. Antero-posterior patterning of Drosophila ocelli requires an anti-repressor mechanism within the hh-pathway mediated by the Six3 gene Optix. Development 2015; 142:2801-9. [DOI: 10.1242/dev.125179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/29/2015] [Indexed: 12/23/2022]
Abstract
In addition to the compound eyes, most insects possess a set of three dorsal ocelli that develop at the vertices of a triangular cuticle patch, forming the ocellar complex. The wingless and hedgehog signaling pathways, together with the transcription factor encoded by orthodenticle, are known to play major roles in the specification and patterning of the ocellar complex. Specifically, hedgehog is responsible for the choice between ocellus and cuticle fates within the ocellar complex primordium. However, the interaction between signals and transcription factors known to date do not fully explain how this choice is controlled. We show that this binary choice depends on dynamic changes in the domains of hedgehog signaling. In this dynamics, the restricted expression of engrailed, a hedgehog-signaling target, is key because it defines a domain within the complex where hh transcription is maintained while the pathway activity is blocked. We show that the Drosophila Six3, Optix, is expressed in and required for the development of the anterior ocellus specifically. Optix would not act as an ocellar selector, but rather as a patterning gene, limiting the en expression domain. Our results indicate that, despite their genetic and structural similarity, anterior and posterior ocelli are under different genetic control.
Collapse
Affiliation(s)
- M. A. Domínguez-Cejudo
- CABD (Andalusian Centre for Developmental Biology), CSIC-Universidad Pablo de Olavide-Junta de Andalucía. Campus UPO, Ctra. Utrera km1, 41013, Sevilla, SPAIN
| | - F. Casares
- CABD (Andalusian Centre for Developmental Biology), CSIC-Universidad Pablo de Olavide-Junta de Andalucía. Campus UPO, Ctra. Utrera km1, 41013, Sevilla, SPAIN
| |
Collapse
|
10
|
Identification and embryonic expression of Wnt2, Wnt4, Wnt5 and Wnt9 in the millipede Glomeris marginata (Myriapoda: Diplopoda). Gene Expr Patterns 2014; 14:55-61. [DOI: 10.1016/j.gep.2013.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/26/2013] [Accepted: 12/29/2013] [Indexed: 11/23/2022]
|
11
|
Sharma PP, Gupta T, Schwager EE, Wheeler WC, Extavour CG. Subdivision of arthropod cap-n-collar expression domains is restricted to Mandibulata. EvoDevo 2014; 5:3. [PMID: 24405788 PMCID: PMC3897911 DOI: 10.1186/2041-9139-5-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/14/2013] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The monophyly of Mandibulata - the division of arthropods uniting pancrustaceans and myriapods - is consistent with several morphological characters, such as the presence of sensory appendages called antennae and the eponymous biting appendage, the mandible. Functional studies have demonstrated that the patterning of the mandible requires the activity of the Hox gene Deformed and the transcription factor cap-n-collar (cnc) in at least two holometabolous insects: the fruit fly Drosophila melanogaster and the beetle Tribolium castaneum. Expression patterns of cnc from two non-holometabolous insects and a millipede have suggested conservation of the labral and mandibular domains within Mandibulata. However, the activity of cnc is unknown in crustaceans and chelicerates, precluding understanding of a complete scenario for the evolution of patterning of this appendage within arthropods. To redress these lacunae, here we investigate the gene expression of the ortholog of cnc in Parhyale hawaiensis, a malacostracan crustacean, and two chelicerates: the harvestman Phalangium opilio, and the scorpion Centruroides sculpturatus. RESULTS In the crustacean P. hawaiensis, the segmental expression of Ph-cnc is the same as that reported previously in hexapods and myriapods, with two distinct head domains in the labrum and the mandibular segment. In contrast, Po-cnc and Cs-cnc expression is not enriched in the labrum of either chelicerate, but instead is expressed at comparable levels in all appendages. In further contrast to mandibulate orthologs, the expression domain of Po-cnc posterior to the labrum is not confined within the expression domain of Po-Dfd. CONCLUSIONS Expression data from two chelicerate outgroup taxa suggest that the signature two-domain head expression pattern of cnc evolved at the base of Mandibulata. The observation of the archetypal labral and mandibular segment domains in a crustacean exemplar supports the synapomorphic nature of mandibulate cnc expression. The broader expression of Po-cnc with respect to Po-Dfd in chelicerates further suggests that the regulation of cnc by Dfd was also acquired at the base of Mandibulata. To test this hypothesis, future studies examining panarthropod cnc evolution should investigate expression of the cnc ortholog in arthropod outgroups, such as Onychophora and Tardigrada.
Collapse
Affiliation(s)
- Prashant P Sharma
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA.
| | | | | | | | | |
Collapse
|
12
|
Higham TE, Russell AP, Zani PA. Integrative Biology of Tail Autotomy in Lizards. Physiol Biochem Zool 2013; 86:603-10. [DOI: 10.1086/673875] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Peel AD, Schanda J, Grossmann D, Ruge F, Oberhofer G, Gilles AF, Schinko JB, Klingler M, Bucher G. Tc-knirps plays different roles in the specification of antennal and mandibular parasegment boundaries and is regulated by a pair-rule gene in the beetle Tribolium castaneum. BMC DEVELOPMENTAL BIOLOGY 2013; 13:25. [PMID: 23777260 PMCID: PMC3698154 DOI: 10.1186/1471-213x-13-25] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/12/2013] [Indexed: 01/03/2023]
Abstract
Background The Drosophila larval head is evolutionarily derived at the genetic and morphological level. In the beetle Tribolium castaneum, development of the larval head more closely resembles the ancestral arthropod condition. Unlike in Drosophila, a knirps homologue (Tc-kni) is required for development of the antennae and mandibles. However, published Tc-kni data are restricted to cuticle phenotypes and Tc-even-skipped and Tc-wingless stainings in knockdown embryos. Hence, it has remained unclear whether the entire antennal and mandibular segments depend on Tc-kni function, and whether the intervening intercalary segment is formed completely. We address these questions with a detailed examination of Tc-kni function. Results By examining the expression of marker genes in RNAi embryos, we show that Tc-kni is required only for the formation of the posterior parts of the antennal and mandibular segments (i.e. the parasegmental boundaries). Moreover, we find that the role of Tc-kni is distinct in these segments: Tc-kni is required for the initiation of the antennal parasegment boundary, but only for the maintenance of the mandibular parasegmental boundary. Surprisingly, Tc-kni controls the timing of expression of the Hox gene Tc-labial in the intercalary segment, although this segment does form in the absence of Tc-kni function. Unexpectedly, we find that the pair-rule gene Tc-even-skipped helps set the posterior boundary of Tc-kni expression in the mandible. Using the mutant antennaless, a likely regulatory Null mutation at the Tc-kni locus, we provide evidence that our RNAi studies represent a Null situation. Conclusions Tc-kni is required for the initiation of the antennal and the maintenance of the mandibular parasegmental boundaries. Tc-kni is not required for specification of the anterior regions of these segments, nor the intervening intercalary segment, confirming that Tc-kni is not a canonical ‘gap-gene’. Our finding that a gap gene orthologue is regulated by a pair rule gene adds to the view that the segmentation gene hierarchies differ between Tribolium and Drosophila upstream of the pair rule gene level. In Tribolium, as in Drosophila, head and trunk segmentation gene networks cooperate to pattern the mandibular segment, albeit involving Tc-kni as novel component.
Collapse
Affiliation(s)
- Andrew D Peel
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FoRTH), Nikolaou Plastira 100, GR-70013, Heraklion, Crete, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Janssen R. Segment polarity gene expression in a myriapod reveals conserved and diverged aspects of early head patterning in arthropods. Dev Genes Evol 2012; 222:299-309. [PMID: 22903234 DOI: 10.1007/s00427-012-0413-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 08/02/2012] [Indexed: 12/16/2022]
Abstract
Arthropods show two kinds of developmental mode. In the so-called long germ developmental mode (as exemplified by the fly Drosophila), all segments are formed almost simultaneously from a preexisting field of cells. In contrast, in the so-called short germ developmental mode (as exemplified by the vast majority of arthropods), only the anterior segments are patterned similarly as in Drosophila, and posterior segments are added in a single or double segmental periodicity from a posterior segment addition zone (SAZ). The addition of segments from the SAZ is controlled by dynamic waves of gene activity. Recent studies on a spider have revealed that a similar dynamic process, involving expression of the segment polarity gene (SPG) hedgehog (hh), is involved in the formation of the anterior head segments. The present study shows that in the myriapod Glomeris marginata the early expression of hh is also in a broad anterior domain, but this domain corresponds only to the ocular and antennal segment. It does not, like in spiders, represent expression in the posterior adjacent segment. In contrast, the anterior hh pattern is conserved in Glomeris and insects. All investigated myriapod SPGs and associated factors are expressed with delay in the premandibular (tritocerebral) segment. This delay is exclusively found in insects and myriapods, but not in chelicerates, crustaceans and onychophorans. Therefore, it may represent a synapomorphy uniting insects and myriapods (Atelocerata hypothesis), contradicting the leading opinion that suggests a sister relationship of crustaceans and insects (Pancrustacea hypothesis). In Glomeris embryos, the SPG engrailed is first expressed in the mandibular segment. This feature is conserved in representatives of all arthropod classes suggesting that the mandibular segment may have a special function in anterior patterning.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Uppsala University, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden.
| |
Collapse
|
15
|
Expression of pair rule gene orthologs in the blastoderm of a myriapod: evidence for pair rule-like mechanisms? BMC DEVELOPMENTAL BIOLOGY 2012; 12:15. [PMID: 22595029 PMCID: PMC3477074 DOI: 10.1186/1471-213x-12-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 04/11/2012] [Indexed: 01/14/2023]
Abstract
Background A hallmark of Drosophila segmentation is the stepwise subdivision of the body into smaller and smaller units, and finally into the segments. This is achieved by the function of the well-understood segmentation gene cascade. The first molecular sign of a segmented body appears with the action of the pair rule genes, which are expressed as transversal stripes in alternating segments. Drosophila development, however, is derived, and in most other arthropods only the anterior body is patterned (almost) simultaneously from a pre-existing field of cells; posterior segments are added sequentially from a posterior segment addition zone. A long-standing question is to what extent segmentation mechanisms known from Drosophila may be conserved in short-germ arthropods. Despite the derived developmental modes, it appears more likely that conserved mechanisms can be found in anterior patterning. Results Expression analysis of pair rule gene orthologs in the blastoderm of the pill millipede Glomeris marginata (Myriapoda: Diplopoda) suggests that these genes are generally involved in segmenting the anterior embryo. We find that the Glomeris pairberry-1 ( pby-1) gene is expressed in a pair rule pattern that is also found in insects and a chelicerate, the mite Tetraynchus urticae. Other Glomeris pair rule gene orthologs are expressed in double segment wide domains in the blastoderm, which at subsequent stages split into two stripes in adjacent segments. Conclusions The expression patterns of the millipede pair rule gene orthologs resemble pair rule patterning in Drosophila and other insects, and thus represent evidence for the presence of an ancestral pair rule-like mechanism in myriapods. We discuss the possibilities that blastoderm patterning may be conserved in long-germ and short-germ arthropods, and that a posterior double segmental mechanism may be present in short-germ arthropods.
Collapse
|
16
|
Abstract
Arthropods are the most diverse group of animals and have been so since the Cambrian radiation. They belong to the protostome clade Ecdysozoa, with Onychophora (velvet worms) as their most likely sister group and tardigrades (water bears) the next closest relative. The arthropod tree of life can be interpreted as a five-taxon network, containing Pycnogonida, Euchelicerata, Myriapoda, Crustacea, and Hexapoda, the last two forming the clade Tetraconata or Pancrustacea. The unrooted relationship of Tetraconata to the three other lineages is well established, but of three possible rooting positions the Mandibulata hypothesis receives the most support. Novel approaches to studying anatomy with noninvasive three-dimensional reconstruction techniques, the application of these techniques to new and old fossils, and the so-called next-generation sequencing techniques are at the forefront of understanding arthropod relationships. Cambrian fossils assigned to the arthropod stem group inform on the origin of arthropod characters from a lobopodian ancestry. Monophyly of Pycnogonida, Euchelicerata, Myriapoda, Tetraconata, and Hexapoda is well supported, but the interrelationships of arachnid orders and the details of crustacean paraphyly with respect to Hexapoda remain the major unsolved phylogenetic problems.
Collapse
Affiliation(s)
- Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
17
|
Janssen R, Budd GE, Damen WG. Gene expression suggests conserved mechanisms patterning the heads of insects and myriapods. Dev Biol 2011; 357:64-72. [DOI: 10.1016/j.ydbio.2011.05.670] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/20/2011] [Accepted: 05/25/2011] [Indexed: 01/31/2023]
|