1
|
Li Y, Huang X, Qing L, Zeng W, Zeng X, Meng F, Wang G, Chen Y. Geographical origin of Plasmodium vivax in the Hainan Island, China: insights from mitochondrial genome. Malar J 2023; 22:84. [PMID: 36890523 PMCID: PMC9993381 DOI: 10.1186/s12936-023-04520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/28/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Hainan Province, China, has been an endemic region with high transmission of Plasmodium falciparum and Plasmodium vivax. Indigenous malaria caused by P. vivax was eliminated in Hainan in 2011, while imported vivax malaria remains. However, the geographical origin of P. vivax cases in Hainan remains unclear. METHODS Indigenous and imported P. vivax isolates (n = 45) were collected from Hainan Province, and the 6 kb mitochondrial genome was obtained. Nucleotide (π) and haplotype (h) diversity were estimated using DnaSP. The numbers of synonymous nucleotide substitutions per synonymous site (dS) and nonsynonymous nucleotide substitutions per nonsynonymous site (dN) were calculated using the SNAP program. Arlequin software was used to estimate the genetic diversity index and assess population differentiation. Bayesian phylogenetic analysis of P. vivax was performed using MrBayes. A haplotype network was generated using the NETWORK program. RESULTS In total, 983 complete mitochondrial genome sequences were collected, including 45 from this study and 938 publicly available from the NCBI. Thirty-three SNPs were identified, and 18 haplotypes were defined. The haplotype (0.834) and nucleotide (0.00061) diversity in the Hainan populations were higher than China's Anhui and Guizhou population, and the majority of pairwise FST values in Hainan exceeded 0.25, suggesting strong differentiation among most populations except in Southeast Asia. Most Hainan haplotypes were connected to South/East Asian and China's others haplotypes, but less connected with populations from China's Anhui and Guizhou provinces. Mitochondrial lineages of Hainan P. vivax belonged to clade 1 of four well-supported clades in a phylogenetic tree, most haplotypes of indigenous cases formed a subclade of clade 1, and the origin of seven imported cases (50%) could be inferred from the phylogenetic tree, but five imported cases (42.8%) could not be traced using the phylogenetic tree alone, necessitating epidemiological investigation. CONCLUSIONS Indigenous cases in Hainan display high genetic (haplotype and nucleotide) diversity. Haplotype network analysis also revealed most haplotypes in Hainan were connected to the Southeast Asian populations and divergence to a cluster of China's other populations. According to the mtDNA phylogenetic tree, some haplotypes were shared between geographic populations, and some haplotypes have formed lineages. Multiple tests are needed to further explore the origin and expansion of P. vivax populations.
Collapse
Affiliation(s)
- Yuchun Li
- Hainan Provincial Centre for Disease Control and Prevention, Haikou, 570203, China.
| | - Xiaomin Huang
- Hainan Provincial Centre for Disease Control and Prevention, Haikou, 570203, China
| | - Ling Qing
- Hainan Provincial Centre for Disease Control and Prevention, Haikou, 570203, China
| | - Wen Zeng
- Hainan Provincial Centre for Disease Control and Prevention, Haikou, 570203, China
| | - Xiangjie Zeng
- Hainan Provincial Centre for Disease Control and Prevention, Haikou, 570203, China
| | - Feng Meng
- Hainan Provincial Centre for Disease Control and Prevention, Haikou, 570203, China
| | - GuangZe Wang
- Hainan Provincial Centre for Disease Control and Prevention, Haikou, 570203, China.
| | - Yan Chen
- Hainan Provincial Centre for Disease Control and Prevention, Haikou, 570203, China.
| |
Collapse
|
2
|
Hellgren O, Kelbskopf V, Ellis VA, Ciloglu A, Duc M, Huang X, Lopes RJ, Mata VA, Aghayan SA, Inci A, Drovetski SV. Low MSP-1 haplotype diversity in the West Palearctic population of the avian malaria parasite Plasmodium relictum. Malar J 2021; 20:265. [PMID: 34118950 PMCID: PMC8199812 DOI: 10.1186/s12936-021-03799-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/01/2021] [Indexed: 11/20/2022] Open
Abstract
Background Although avian Plasmodium species are widespread and common across the globe, limited data exist on how genetically variable their populations are. Here, the hypothesis that the avian blood parasite Plasmodium relictum exhibits very low genetic diversity in its Western Palearctic transmission area (from Morocco to Sweden in the north and Transcaucasia in the east) was tested. Methods The genetic diversity of Plasmodium relictum was investigated by sequencing a portion (block 14) of the fast-evolving merozoite surface protein 1 (MSP1) gene in 75 different P. relictum infections from 36 host species. Furthermore, the full-length MSP1 sequences representing the common block 14 allele was sequenced in order to investigate if additional variation could be found outside block 14. Results The majority (72 of 75) of the sequenced infections shared the same MSP1 allele. This common allele has previously been found to be the dominant allele transmitted in Europe. Conclusion The results corroborate earlier findings derived from a limited dataset that the globally transmitted malaria parasite P. relictum exhibits very low genetic diversity in its Western Palearctic transmission area. This is likely the result of a recent introduction event or a selective sweep.
Collapse
Affiliation(s)
- Olof Hellgren
- Department of Biology, Lund University, Lund, Sweden.
| | | | - Vincenzo A Ellis
- Department of Biology, Lund University, Lund, Sweden.,Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE, USA
| | - Arif Ciloglu
- Department of Biology, Lund University, Lund, Sweden.,Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey.,Vectors and Vector-Borne Diseases Implementation and Research Center, Erciyes University, Kayseri, Turkey
| | - Mélanie Duc
- Department of Biology, Lund University, Lund, Sweden.,Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| | - Xi Huang
- Department of Biology, Lund University, Lund, Sweden.,MOE Key Laboratory for Biodiversity Sciences and Ecological Engineering, Beijing Normal University, Beijing, China
| | - Ricardo J Lopes
- CIBIO, Centro de Investigação Em Biodiversidade E Recursos Genéticos, InBIO Laboratório Associado, Universidade Do Porto, Vairão, Portugal
| | - Vanessa A Mata
- CIBIO, Centro de Investigação Em Biodiversidade E Recursos Genéticos, InBIO Laboratório Associado, Universidade Do Porto, Vairão, Portugal
| | - Sargis A Aghayan
- Yerevan State University, 1 Alex Manoogian, Yerevan, 0025, Republic of Armenia
| | - Abdullah Inci
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey.,Vectors and Vector-Borne Diseases Implementation and Research Center, Erciyes University, Kayseri, Turkey
| | - Sergei V Drovetski
- US Geological Survey, Eastern Ecological Research Center at Patuxent Research Refuge, Beltsville, MD, 20705, USA
| |
Collapse
|
3
|
Daron J, Boissière A, Boundenga L, Ngoubangoye B, Houze S, Arnathau C, Sidobre C, Trape JF, Durand P, Renaud F, Fontaine MC, Prugnolle F, Rougeron V. Population genomic evidence of Plasmodium vivax Southeast Asian origin. SCIENCE ADVANCES 2021; 7:7/18/eabc3713. [PMID: 33910900 PMCID: PMC8081369 DOI: 10.1126/sciadv.abc3713] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 03/10/2021] [Indexed: 05/15/2023]
Abstract
Plasmodium vivax is the most common and widespread human malaria parasite. It was recently proposed that P. vivax originates from sub-Saharan Africa based on the circulation of its closest genetic relatives (P. vivax-like) among African great apes. However, the limited number of genetic markers and samples investigated questions the robustness of this hypothesis. Here, we extensively characterized the genomic variations of 447 human P. vivax strains and 19 ape P. vivax-like strains collected worldwide. Phylogenetic relationships between human and ape Plasmodium strains revealed that P. vivax is a sister clade of P. vivax-like, not included within the radiation of P. vivax-like By investigating various aspects of P. vivax genetic variation, we identified several notable geographical patterns in summary statistics in function of the increasing geographic distance from Southeast Asia, suggesting that P. vivax may have derived from a single area in Asia through serial founder effects.
Collapse
Affiliation(s)
- Josquin Daron
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France.
| | - Anne Boissière
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, France
| | - Larson Boundenga
- Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | | | - Sandrine Houze
- Service de Parasitologie-mycologie CNR du Paludisme, AP-HP Hôpital Bichat, 46 rue H. Huchard, 75877 Paris Cedex 18, France
| | - Celine Arnathau
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, France
| | - Christine Sidobre
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
| | - Jean-François Trape
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
| | - Patrick Durand
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, France
| | - François Renaud
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, France
| | - Michael C Fontaine
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, France
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103 CC, Groningen, Netherlands
| | - Franck Prugnolle
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, France
| | - Virginie Rougeron
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France.
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, France
| |
Collapse
|
4
|
Dong Y, Wang J, Sun A, Deng Y, Chen M, Xu Y, Xue J. Genetic association between the Pfk13 gene mutation and artemisinin resistance phenotype in Plasmodium falciparum isolates from Yunnan Province, China. Malar J 2018; 17:478. [PMID: 30563521 PMCID: PMC6299582 DOI: 10.1186/s12936-018-2619-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/08/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The problem of anti-malarial drug resistance is a long-term challenge faced by malaria control in Yunnan Province. Recently, the detection rates of chloroquine-resistant molecular markers (Plasmodium falciparum chloroquine resistant transporter, Pfcrt) and artemisinin-resistant molecular markers (P. falciparum kelch13 gene, ork13) were 85% and 35%, respectively. To understand the association of k13 gene mutation with artemisinin resistance in falciparum malaria cases, the difference in k13 gene differentiation between two populations and artemisinin resistance phenotype on falciparum malaria cases in Myanmar were analysed in this study. METHODS This research involved all of falciparum malaria cases diagnosed continuously in Yunnan Province from 2013 to 2015 and some of falciparum malaria cases found in Lazar, Myanmar. Blood samples were taken from the former group for molecular epidemiological analysis of k13 gene mutations, and artemisinin resistance phenotypes of P. falciparum were observed in the latter group using the in vivo testing method recommended by the World Health Organization. Nested PCR was used to amplify the propeller domain of the k13 gene in P. falciparum, followed by sequencing. RESULTS A total of 202 blood samples were collected from Yunnan Province and 382 blood samples were collected from falciparum malaria cases in Myanmar. 49 of 382 Myanmar cases were in vivo tested for artesunate resistance phenotype through full treatment course observation. At the same time, all the blood samples were screened for k13 gene mutation of P. falciparum. The genetic diversity of k13 was higher in the Plasmodium isolates from Yunnan Province than those from Myanmar cases. The genetic differentiation index of the two populations was 0.0410, where the intra- and inter-group variations were 95.9% and 4.1%, respectively. The odds ratio of artemisinin resistance phenotype and mutation at the locus 446 in k13 gene in Myanmar cases was 1.640, while the value was 1.840 based on the estimations of the mutations in the 12 loci. CONCLUSION Although the Plasmodium isolates from Yunnan Province and those from Myanmar were collected from different sites, they still belong to the same geographical population. It is, therefore, reasonable to contrast the artemisinin resistance status of the Plasmodium population from Myanmar with the Plasmodium population from Yunnan Province. As a result, based on the molecular epidemiological investigation on k13 mutations of Plasmodium isolates in Yunnan Province and the determination of the artemisinin resistance on falciparum malaria cases in Myanmar, the positively genetic correlated was found between the k13 locus mutations with artemisinin resistance phenotype. This provides a basis for further monitoring the artemisinin resistance by detection some molecular markers in k13 gene of Plasmodium in Yunnan Province.
Collapse
Affiliation(s)
- Ying Dong
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory, Yunnan Centre of Malaria Research, Pu'er, 665000, China.
| | - Jian Wang
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Aiming Sun
- Hubei International Travel Healthcare Centre, Wuhan, 430000, China
| | - Yan Deng
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Mengni Chen
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Yanchun Xu
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Jingpo Xue
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China
| |
Collapse
|
5
|
Paleopathological Considerations on Malaria Infection in Korea before the 20th Century. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8516785. [PMID: 29854798 PMCID: PMC5966694 DOI: 10.1155/2018/8516785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/01/2018] [Indexed: 12/31/2022]
Abstract
Malaria, one of the deadliest diseases in human history, still infects many people worldwide. Among the species of the genus Plasmodium, P. vivax is commonly found in temperate-zone countries including South Korea. In this article, we first review the history of malarial infection in Korea by means of studies on Joseon documents and the related scientific data on the evolutionary history of P. vivax in Asia. According to the historical records, malarial infection was not unusual in pre-20th-century Korean society. We also found that certain behaviors of the Joseon people might have affected the host-vector-pathogen relationship, which could explain why malarial infection prevalence was so high in Korea at that time. In our review of genetic studies on P. vivax, we identified substantial geographic differentiation among continents and even between neighboring countries. Based on these, we were able to formulate a strategy for future analysis of ancient Plasmodium strains in Korea.
Collapse
|
6
|
Liu Y, Zhou RM, Zhang YL, Wang DQ, Li SH, Yang CY, Qian D, Zhao YL, Zhang HW, Xu BL. Analysis of polymorphisms in the circumsporozoite protein gene of Plasmodium vivax isolates from Henan Province, China. Malar J 2018; 17:103. [PMID: 29506527 PMCID: PMC5838951 DOI: 10.1186/s12936-018-2237-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/15/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium vivax malaria has historically been a major source of disease in Henan, China. In the 1970s, the morbidity of malaria was highest in the country. With support from the government and the efforts of healthcare personnel, the reported malaria cases have declined dramatically and a national elimination programme was launched in 2010. To achieve the goal, it is essential to study the diversity of autochthonous malaria and transmission of Plasmodium parasites, which will provide baseline data for disease control and management. METHODS Thirty-two P. vivax isolates from Henan province were collected from 2008 to 2011, and circumsporozoite protein (csp) genes were analysed to estimate the genetic diversity of this parasite. RESULTS The assessment of csp sequences indicated that all the isolates were the VK210 type, however, none of them was identical to the VK210 strain. The sequences displayed variations in the central region, and eight sub-types were observed. Among the sub-types, HN7 was the most prevalent (37.5%), followed by HN3 (34.4%). A total of 653 repeat units were discovered in 32 Henan isolates. Nucleotide sequences were grouped in 13 unique repeat nucleotide sequence allotypes that coded for 7 different repeated amino acid allotypes. B (GNGAGGQAA) and D (GDRAAGQPA) were more frequent based on the results; they represented 53.9% (352/653) of the total. In comparison to the basic repeat units of VK210, more than 75% of the central repeat units had at least one non-synonymous nucleotide change. CONCLUSIONS Recent P. vivax populations in Henan province showed some degree of genetic diversity in csp, with 8 sub-types among 32 samples. Meantime, the results also suggested its relative conserved parasite populations. This could provide interesting baseline data that allow identifying whether potential new cases differ from the parasites already circulating in the area.
Collapse
Affiliation(s)
- Ying Liu
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan China
| | - Rui-min Zhou
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan China
| | - Ya-lan Zhang
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan China
| | - Duo-quan Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Su-hua Li
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan China
| | - Cheng-yun Yang
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan China
| | - Dan Qian
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan China
| | - Yu-ling Zhao
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan China
| | - Hong-wei Zhang
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan China
| | - Bian-li Xu
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan China
| |
Collapse
|
7
|
Outbreak of human malaria caused by Plasmodium simium in the Atlantic Forest in Rio de Janeiro: a molecular epidemiological investigation. LANCET GLOBAL HEALTH 2017; 5:e1038-e1046. [PMID: 28867401 DOI: 10.1016/s2214-109x(17)30333-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/17/2017] [Accepted: 08/08/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Malaria was eliminated from southern and southeastern Brazil over 50 years ago. However, an increasing number of autochthonous episodes attributed to Plasmodium vivax have recently been reported from the Atlantic Forest region of Rio de Janeiro state. As the P vivax-like non-human primate malaria parasite species Plasmodium simium is locally enzootic, we performed a molecular epidemiological investigation to determine whether zoonotic malaria transmission is occurring. METHODS We examined blood samples from patients presenting with signs or symptoms suggestive of malaria as well as from local howler monkeys by microscopy and PCR. Samples were included from individuals if they had a history of travel to or resided in areas within the Rio de Janeiro Atlantic Forest, but not if they had malaria prophylaxis, blood transfusion or tissue or organ transplantation, or had travelled to known malaria endemic areas in the preceding year. Additionally, we developed a molecular assay based on sequencing of the parasite mitochondrial genome to distinguish between P vivax and P simium, and applied this assay to 33 cases from outbreaks that occurred in 2015, and 2016. FINDINGS A total of 49 autochthonous malaria cases were reported in 2015-16. Most patients were male, with a mean age of 44 years (SD 14·6), and 82% lived in urban areas of Rio de Janeiro state and had visited the Atlantic Forest for leisure or work-related activities. 33 cases were used for mitochondrial DNA sequencing. The assay was successfully performed for 28 samples, and all were shown to be P simium, indicative of zoonotic transmission of this species to human beings in this region. Sequencing of the whole mitochondrial genome of three of these cases showed that P simium is most closely related to P vivax parasites from South America. The malaria outbreaks in this region were caused by P simium, previously considered to be a monkey-specific malaria parasite, related to but distinct from P vivax, and which has never conclusively been shown to infect people before. INTERPRETATION This unequivocal demonstration of zoonotic transmission, 50 years after the only previous report of P simium in people, leads to the possibility that this parasite has always infected people in this region, but that it has been consistently misdiagnosed as P vivax because of an absence of molecular typing techniques. Thorough screening of local non-human primates and mosquitoes (Anopheline) is required to evaluate the extent of this newly recognised zoonotic threat to public health and malaria elimination in Brazil. FUNDING Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado de Rio de Janeiro, The Brazilian National Council for Scientific and Technological Development (CNPq), JSPS Grant-in-Aid for scientific research, Secretary for Health Surveillance of the Brazilian Ministry of Health, Global Fund, Fundaçao de amparo à pesquisa do estado de Minas Gerais (Fapemig), and PRONEX Program of the CNPq.
Collapse
|
8
|
Simon B, Sow F, Al Mukhaini SK, Al-Abri S, Ali OAM, Bonnot G, Bienvenu AL, Petersen E, Picot S. An outbreak of locally acquired Plasmodium vivax malaria among migrant workers in Oman. ACTA ACUST UNITED AC 2017; 24:25. [PMID: 28695821 PMCID: PMC5504921 DOI: 10.1051/parasite/2017028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/24/2017] [Indexed: 11/14/2022]
Abstract
Plasmodium vivax is the most widely distributed human malaria parasite. Outside sub-Saharan Africa, the proportion of P. vivax malaria is rising. A major cause for concern is the re-emergence of Plasmodium vivax in malaria-free areas. Oman, situated in the south-eastern corner of the Arabian Peninsula, has long been an area of vivax malaria transmission but no locally acquired cases were reported in 2004. However, local transmission has been registered in small outbreaks since 2007. In this study, a local outbreak of 54 cases over 50 days in 2014 was analyzed retrospectively and stained blood slides have been obtained for parasite identification and genotyping. The aim of this study was to identify the geographical origin of these cases, in an attempt to differentiate between imported cases and local transmission. Using circumsporozoite protein (csp), merozoite surface protein 1 (msp1), and merozoite surface protein 3 (msp3) markers for genotyping of parasite DNA obtained by scrapping off the surface of smears, genetic diversity and phylogenetic analysis were performed. The study found that the samples had very low genetic diversity, a temperate genotype, and a high genetic distance, with most of the reference strains coming from endemic countries. We conclude that a small outbreak of imported malaria is not associated with re-emergence of malaria transmission in Oman, as no new cases have been seen since the outbreak ended.
Collapse
Affiliation(s)
- Bruno Simon
- Malaria Research Unit, SMITh, ICBMS UMR 5246, University of Lyon, Campus Lyon-Tech La Doua, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
| | - Fatimata Sow
- Malaria Research Unit, SMITh, ICBMS UMR 5246, University of Lyon, Campus Lyon-Tech La Doua, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
| | - Said K Al Mukhaini
- The Department of Malaria, Directorate General for Disease Surveillance and Control, Ministry of Health, P. O. Box 393, Postal Code 113, Muscat, Oman
| | - Seif Al-Abri
- Directorate General for Disease Surveillance and Control, Ministry of Health, P. O. Box 2657, CPO 111, Muscat, Oman
| | - Osama A M Ali
- The Department of Malaria, Directorate General for Disease Surveillance and Control, Ministry of Health, P. O. Box 393, Postal Code 113, Muscat, Oman
| | - Guillaume Bonnot
- Malaria Research Unit, SMITh, ICBMS UMR 5246, University of Lyon, Campus Lyon-Tech La Doua, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
| | - Anne-Lise Bienvenu
- Malaria Research Unit, SMITh, ICBMS UMR 5246, University of Lyon, Campus Lyon-Tech La Doua, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France - Service Pharmacie, Hospices Civils de Lyon, 103 Grande Rue de la Croix-Rousse, 69317 Lyon, France
| | - Eskild Petersen
- Department of Infectious Diseases, The Royal Hospital, P. O. Box 1331, CPO 111, Muscat, Oman - Institute of Clinical Medicine, Faculty of Health Sciences, University of Aarhus, Palle Juul-Jensens Boulevard 82, 8200 Aarhus N, Denmark
| | - Stéphane Picot
- Malaria Research Unit, SMITh, ICBMS UMR 5246, University of Lyon, Campus Lyon-Tech La Doua, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France - Institut de Parasitologie et Mycologie Médicale, Hospices Civils de Lyon, 103 Grande Rue de la Croix-Rousse, 69317 Lyon, France
| |
Collapse
|
9
|
Flores-Alanis A, González-Cerón L, Santillán F, Ximenez C, Sandoval MA, Cerritos R. Temporal genetic changes in Plasmodium vivax apical membrane antigen 1 over 19 years of transmission in southern Mexico. Parasit Vectors 2017; 10:217. [PMID: 28464959 PMCID: PMC5414334 DOI: 10.1186/s13071-017-2156-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 04/25/2017] [Indexed: 01/21/2023] Open
Abstract
Background Mexico advanced to the pre-elimination phase in 2009 due to a significant reduction in malaria cases, and since 2000, Plasmodium vivax is the only species transmitted. During the last two decades, malaria transmission has been mostly local and isolated to a few regions. It is important to gain further insights into the impact of control measures on the parasite population structure. Hence, the aim of the current study was to determine detailed changes in P. vivax genetic diversity and population structure based on analysing the gene that encodes the apical membrane antigen 1 (pvama1). This analysis covered from control to pre-elimination (1993–2011) in a hypo-endemic region in southern Mexico. Results The 213 pvama1I-II sequences presently analysed were grouped into six periods of three years each. They showed low genetic diversity, with 15 haplotypes resolved. Among the DNA sequences, there was a gradual decrease in genetic diversity, the number of mixed genotype infections and the intensity of positive selection, in agreement with the parallel decline in malaria cases. At the same time, linkage disequilibrium (R2) increased. The three-dimensional haplotype network revealed that pvama1I-II haplotypes were separated by 1–11 mutational steps, and between one another by 0–3 unsampled haplotypes. In the temporal network, seven haplotypes were detected in at least two of the six-time layers, and only four distinct haplotypes were evidenced in the pre-elimination phase. Structure analysis indicated that three subpopulations fluctuated over time. Only 8.5% of the samples had mixed ancestry. In the pre-elimination phase, subpopulation P1 was drastically reduced, and the admixture was absent. Conclusions The results suggest that P. vivax in southern Mexico evolved based on local adaptation into three “pseudoclonal” subpopulations that diversified at the regional level and persisted over time, although with varying frequency. Control measures and climate events influenced the number of malaria cases and the genetic structure. The sharp decrease in parasite diversity and other related genetic parameters during the pre-elimination phase suggests that malaria elimination is possible in the near future. These results are useful for epidemiological surveillance. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2156-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alejandro Flores-Alanis
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Lilia González-Cerón
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, 30700, Mexico.
| | - Frida Santillán
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, 30700, Mexico
| | - Cecilia Ximenez
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 06729, Mexico
| | - Marco A Sandoval
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, 30700, Mexico
| | - René Cerritos
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| |
Collapse
|
10
|
Mitochondrial DNA from the eradicated European Plasmodium vivax and P. falciparum from 70-year-old slides from the Ebro Delta in Spain. Proc Natl Acad Sci U S A 2016; 113:11495-11500. [PMID: 27671660 DOI: 10.1073/pnas.1611017113] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phylogenetic analysis of Plasmodium parasites has indicated that their modern-day distribution is a result of a series of human-mediated dispersals involving transport between Africa, Europe, America, and Asia. A major outstanding question is the phylogenetic affinity of the malaria causing parasites Plasmodium vivax and falciparum in historic southern Europe-where it was endemic until the mid-20th century, after which it was eradicated across the region. Resolving the identity of these parasites will be critical for answering several hypotheses on the malaria dispersal. Recently, a set of slides with blood stains of malaria-affected people from the Ebro Delta (Spain), dated between 1942 and 1944, have been found in a local medical collection. We extracted DNA from three slides, two of them stained with Giemsa (on which Plasmodium parasites could still be seen under the microscope) and another one consisting of dried blood spots. We generated the data using Illumina sequencing after using several strategies aimed at increasing the Plasmodium DNA yield: depletion of the human genomic (g)DNA content through hybridization with human gDNA baits, and capture-enrichment using gDNA derived from P. falciparum Plasmodium mitochondrial genome sequences were subsequently reconstructed from the resulting data. Phylogenetic analysis of the eradicated European P. vivax mtDNA genome indicates that the European isolate is closely related to the most common present-day American haplotype and likely entered the American continent post-Columbian contact. Furthermore, the European P. falciparum mtDNA indicates a link with current Indian strains that is in agreement with historical accounts.
Collapse
|
11
|
Mapua MI, Petrželková KJ, Burgunder J, Dadáková E, Brožová K, Hrazdilová K, Stewart FA, Piel AK, Vallo P, Fuehrer HP, Hashimoto C, Modrý D, Qablan MA. A comparative molecular survey of malaria prevalence among Eastern chimpanzee populations in Issa Valley (Tanzania) and Kalinzu (Uganda). Malar J 2016; 15:423. [PMID: 27543045 PMCID: PMC4992209 DOI: 10.1186/s12936-016-1476-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 08/10/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Habitat types can affect vector and pathogen distribution and transmission dynamics. The prevalence and genetic diversity of Plasmodium spp. in two eastern chimpanzee populations-Kalinzu Forest Reserve, Uganda and Issa Valley, Tanzania-inhabiting different habitat types was investigated. As a follow up study the effect of host sex and age on infections patterns in Kalinzu Forest Reserve chimpanzees was determined. METHODS Molecular methods were employed to detect Plasmodium DNA from faecal samples collected from savanna-woodland (Issa Valley) and forest (Kalinzu Forest Reserve) chimpanzee populations. RESULTS Based on a Cytochrome-b PCR assay, 32 out of 160 Kalinzu chimpanzee faecal samples were positive for Plasmodium DNA, whilst no positive sample was detected in 171 Issa Valley chimpanzee faecal samples. Sequence analysis revealed that previously known Laverania species (Plasmodium reichenowi, Plasmodium billbrayi and Plasmodium billcollinsi) are circulating in the Kalinzu chimpanzees. A significantly higher proportion of young individuals were tested positive for infections, and switching of Plasmodium spp. was reported in one individual. Amongst the positive individuals sampled more than once, the success of amplification of Plasmodium DNA from faeces varied over sampling time. CONCLUSION The study showed marked differences in the prevalence of malaria parasites among free ranging chimpanzee populations living in different habitats. In addition, a clear pattern of Plasmodium infections with respect to host age was found. The results presented in this study contribute to understanding the ecological aspects underlying the malaria infections in the wild. Nevertheless, integrative long-term studies on vector abundance, Plasmodium diversity during different seasons between sites would provide more insight on the occurrence, distribution and ecology of these pathogens.
Collapse
Affiliation(s)
- Mwanahamisi I. Mapua
- Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| | - Klára J. Petrželková
- Institute of Vertebrate Biology, Czech Academy of Sciences, 603 00 Brno, Czech Republic
- Liberec Zoo, 460 01 Liberec, Czech Republic
- Institute of Parasitology, Biology Centre, Czech of the Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Jade Burgunder
- Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
- Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
| | - Eva Dadáková
- Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| | - Kristýna Brožová
- Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| | - Kristýna Hrazdilová
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
- Department of Virology, Veterinary Research Institute, 621 00 Brno, Czech Republic
- CEITEC-Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| | - Fiona A. Stewart
- Division of Biological Anthropology, Department of Archaeology and Anthropology, University of Cambridge, Cambridge, CB2 3QG UK
| | - Alex K. Piel
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, L33AF UK
| | - Peter Vallo
- Institute of Vertebrate Biology, Czech Academy of Sciences, 603 00 Brno, Czech Republic
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Albert-Einstein Allee 11, 89069 Ulm, Germany
| | - Hans-Peter Fuehrer
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Chie Hashimoto
- Primate Research Institute, Kyoto University, Kanrin, Inuyama, Aichi 484-8506 Japan
| | - David Modrý
- Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
- Institute of Parasitology, Biology Centre, Czech of the Academy of Sciences, 370 05 České Budějovice, Czech Republic
- CEITEC-Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| | - Moneeb A. Qablan
- Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
- CEITEC-Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
- Department of Veterinary Medicine, College of Food and Agriculture, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
12
|
Gupta B, Reddy BPN, Fan Q, Yan G, Sirichaisinthop J, Sattabongkot J, Escalante AA, Cui L. Molecular Evolution of PvMSP3α Block II in Plasmodium vivax from Diverse Geographic Origins. PLoS One 2015; 10:e0135396. [PMID: 26266539 PMCID: PMC4534382 DOI: 10.1371/journal.pone.0135396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/21/2015] [Indexed: 11/29/2022] Open
Abstract
Block II of Plasmodium vivax merozoite surface protein 3α (PvMSP3α) is conserved and has been proposed as a potential candidate for a malaria vaccine. The present study aimed to compare sequence diversity in PvMSP3a block II at a local microgeographic scale in a village as well as from larger geographic regions (countries and worldwide). Blood samples were collected from asymptomatic carriers of P. vivax in a village at the western border of Thailand and PvMSP3α was amplified and sequenced. For population genetic analysis, 237 PvMSP3α block II sequences from eleven P. vivax endemic countries were analyzed. PvMSP3α sequences from 20 village-level samples revealed two length variant types with one type containing a large deletion in block I. In contrast, block II was relatively conserved; especially, some non-synonymous mutations were extensively shared among 11 parasite populations. However, the majority of the low-frequency synonymous variations were population specific. The conserved pattern of nucleotide diversity in block II sequences was probably due to functional/structural constraints, which were further supported by the tests of neutrality. Notably, a small region in block II that encodes a predicted B cell epitope was highly polymorphic and showed signs of balancing selection, signifying that this region might be influenced by the immune selection and may serve as a starting point for designing multi-antigen/stage epitope based vaccines against this parasite.
Collapse
Affiliation(s)
- Bhavna Gupta
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, United States of America
| | - B. P. Niranjan Reddy
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA 92697, United States of America
| | | | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Ananias A. Escalante
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States of America
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, United States of America
- * E-mail:
| |
Collapse
|
13
|
Escalante AA, Ferreira MU, Vinetz JM, Volkman SK, Cui L, Gamboa D, Krogstad DJ, Barry AE, Carlton JM, van Eijk AM, Pradhan K, Mueller I, Greenhouse B, Andreina Pacheco M, Vallejo AF, Herrera S, Felger I. Malaria Molecular Epidemiology: Lessons from the International Centers of Excellence for Malaria Research Network. Am J Trop Med Hyg 2015; 93:79-86. [PMID: 26259945 PMCID: PMC4574277 DOI: 10.4269/ajtmh.15-0005] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 05/15/2015] [Indexed: 01/31/2023] Open
Abstract
Molecular epidemiology leverages genetic information to study the risk factors that affect the frequency and distribution of malaria cases. This article describes molecular epidemiologic investigations currently being carried out by the International Centers of Excellence for Malaria Research (ICEMR) network in a variety of malaria-endemic settings. First, we discuss various novel approaches to understand malaria incidence and gametocytemia, focusing on Plasmodium falciparum and Plasmodium vivax. Second, we describe and compare different parasite genotyping methods commonly used in malaria epidemiology and population genetics. Finally, we discuss potential applications of molecular epidemiological tools and methods toward malaria control and elimination efforts.
Collapse
Affiliation(s)
- Ananias A. Escalante
- *Address correspondence to Ananias A. Escalante, Institute for Genomics and Evolutionary Medicine, Temple University, SERC Building, 1925 N. 12th Street Philadelphia, PA 19122-1801, E-mail: or Marcelo U. Ferreira, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 1374 - Edifício Biomédicas II, São Paulo, Brazil CEP CEP 05508-900, E-mail: or Ingrid Felger, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland, E-mail:
| | - Marcelo U. Ferreira
- *Address correspondence to Ananias A. Escalante, Institute for Genomics and Evolutionary Medicine, Temple University, SERC Building, 1925 N. 12th Street Philadelphia, PA 19122-1801, E-mail: or Marcelo U. Ferreira, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 1374 - Edifício Biomédicas II, São Paulo, Brazil CEP CEP 05508-900, E-mail: or Ingrid Felger, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ingrid Felger
- *Address correspondence to Ananias A. Escalante, Institute for Genomics and Evolutionary Medicine, Temple University, SERC Building, 1925 N. 12th Street Philadelphia, PA 19122-1801, E-mail: or Marcelo U. Ferreira, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 1374 - Edifício Biomédicas II, São Paulo, Brazil CEP CEP 05508-900, E-mail: or Ingrid Felger, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland, E-mail:
| |
Collapse
|
14
|
Barry AE, Waltmann A, Koepfli C, Barnadas C, Mueller I. Uncovering the transmission dynamics of Plasmodium vivax using population genetics. Pathog Glob Health 2015; 109:142-52. [PMID: 25891915 DOI: 10.1179/2047773215y.0000000012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Population genetic analysis of malaria parasites has the power to reveal key insights into malaria epidemiology and transmission dynamics with the potential to deliver tools to support control and elimination efforts. Analyses of parasite genetic diversity have suggested that Plasmodium vivax populations are more genetically diverse and less structured than those of Plasmodium falciparum indicating that P. vivax may be a more ancient parasite of humans and/or less susceptible to population bottlenecks, as well as more efficient at disseminating its genes. These population genetic insights into P. vivax transmission dynamics provide an explanation for its relative resilience to control efforts. Here, we describe current knowledge on P. vivax population genetic structure, its relevance to understanding transmission patterns and relapse and how this information can inform malaria control and elimination programmes.
Collapse
Key Words
- Control,
- Elimination
- Genetic diversity,
- Genetics,
- Genomics,
- Linkage disequilibrium,
- Malaria,
- Microsatellites,
- Mitochondrial DNA,
- Plasmodium vivax,
- Population structure,
- Relapse,
- Single nucleotide polymorphisms,
- Transmission,
Collapse
|
15
|
Rodrigues PT, Alves JMP, Santamaria AM, Calzada JE, Xayavong M, Parise M, da Silva AJ, Ferreira MU. Using mitochondrial genome sequences to track the origin of imported Plasmodium vivax infections diagnosed in the United States. Am J Trop Med Hyg 2014; 90:1102-8. [PMID: 24639297 DOI: 10.4269/ajtmh.13-0588] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Although the geographic origin of malaria cases imported into the United States can often be inferred from travel histories, these histories may be lacking or incomplete. We hypothesized that mitochondrial haplotypes could provide region-specific molecular barcodes for tracing the origin of imported Plasmodium vivax infections. An analysis of 348 mitochondrial genomes from worldwide parasites and new sequences from 69 imported malaria cases diagnosed across the United States allowed for a geographic assignment of most infections originating from the Americas, southeast Asia, east Asia, and Melanesia. However, mitochondrial lineages from Africa, south Asia, central Asia, and the Middle East, which altogether contribute the vast majority of imported malaria cases in the United States, were closely related to each other and could not be reliably assigned to their geographic origins. More mitochondrial genomes are required to characterize molecular barcodes of P. vivax from these regions.
Collapse
Affiliation(s)
- Priscila T Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Parasitology, Gorgas Memorial Institute of Health, Panama City, Panama; Center for Global Health, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - João Marcelo P Alves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Parasitology, Gorgas Memorial Institute of Health, Panama City, Panama; Center for Global Health, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ana María Santamaria
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Parasitology, Gorgas Memorial Institute of Health, Panama City, Panama; Center for Global Health, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - José E Calzada
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Parasitology, Gorgas Memorial Institute of Health, Panama City, Panama; Center for Global Health, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Maniphet Xayavong
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Parasitology, Gorgas Memorial Institute of Health, Panama City, Panama; Center for Global Health, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Monica Parise
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Parasitology, Gorgas Memorial Institute of Health, Panama City, Panama; Center for Global Health, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Alexandre J da Silva
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Parasitology, Gorgas Memorial Institute of Health, Panama City, Panama; Center for Global Health, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Parasitology, Gorgas Memorial Institute of Health, Panama City, Panama; Center for Global Health, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
16
|
Cerritos R, González-Cerón L, Nettel JA, Wegier A. Genetic structure of Plasmodium vivax using the merozoite surface protein 1 icb5-6 fragment reveals new hybrid haplotypes in southern Mexico. Malar J 2014; 13:35. [PMID: 24472213 PMCID: PMC3923247 DOI: 10.1186/1475-2875-13-35] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 01/22/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium vivax is a protozoan parasite with an extensive worldwide distribution, being highly prevalent in Asia as well as in Mesoamerica and South America. In southern Mexico, P. vivax transmission has been endemic and recent studies suggest that these parasites have unique biological and genetic features. The msp1 gene has shown high rate of nucleotide substitutions, deletions, insertions, and its mosaic structure reveals frequent events of recombination, maybe between highly divergent parasite isolates. METHODS The nucleotide sequence variation in the polymorphic icb5-6 fragment of the msp1 gene of Mexican and worldwide isolates was analysed. To understand how genotype diversity arises, disperses and persists in Mexico, the genetic structure and genealogical relationships of local isolates were examined. To identify new sequence hybrids and their evolutionary relationships with other P. vivax isolates circulating worldwide two haplotype networks were constructed questioning that two portions of the icb5-6 have different evolutionary history. RESULTS Twelve new msp1 icb5-6 haplotypes of P. vivax from Mexico were identified. These nucleotide sequences show mosaic structure comprising three partially conserved and two variable subfragments and resulted into five different sequence types. The variable subfragment sV1 has undergone recombination events and resulted in hybrid sequences and the haplotype network allocated the Mexican haplotypes to three lineages, corresponding to the Sal I and Belem types, and other more divergent group. In contrast, the network from icb5-6 fragment but not sV1 revealed that the Mexican haplotypes belong to two separate lineages, none of which are closely related to Sal I or Belem sequences. CONCLUSIONS These results suggest that the new hybrid haplotypes from southern Mexico were the result of at least three different recombination events. These rearrangements likely resulted from the recombination between haplotypes of highly divergent lineages that are frequently distributed in South America and Asia and diversified rapidly.
Collapse
Affiliation(s)
| | - Lilia González-Cerón
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, México.
| | | | | |
Collapse
|
17
|
González-Cerón L, Martinez-Barnetche J, Montero-Solís C, Santillán F, Soto AM, Rodríguez MH, Espinosa BJ, Chávez OA. Molecular epidemiology of Plasmodium vivax in Latin America: polymorphism and evolutionary relationships of the circumsporozoite gene. Malar J 2013; 12:243. [PMID: 23855807 PMCID: PMC3729580 DOI: 10.1186/1475-2875-12-243] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 07/09/2013] [Indexed: 01/01/2023] Open
Abstract
Background The origins and dispersal of Plasmodium vivax to its current worldwide distribution remains controversial. Although progress on P. vivax genetics and genomics has been achieved worldwide, information concerning New World parasites remains fragmented and largely incomplete. More information on the genetic diversity in Latin America (LA) is needed to better explain current patterns of parasite dispersion and evolution. Methods Plasmodium vivax circumsporozoite protein gene polymorphism was investigated using polymerase chain reaction amplification and restriction fragment length polymorphism (PCR-RFLP), and Sanger sequencing in isolates from the Pacific Ocean coast of Mexico, Nicaragua, and Peru. In conjunction with worldwide sequences retrieved from the Genbank, mismatch distribution analysis of central repeat region (CRR), frequency estimation of unique repeat types and phylogenetic analysis of the 3′ terminal region, were performed to obtain an integrative view of the genetic relationships between regional and worldwide isolates. Results Four RFLP subtypes, vk210a, b, c and d were identified in Southern Mexico and three subtypes vk210a, e and f in Nicaragua. The nucleotide sequences showed that Mexican vk210a and all Nicaraguan isolates were similar to other American parasites. In contrast, vk210b, c and d were less frequent, had a domain ANKKAEDA in their carboxyl end and clustered with Asian isolates. All vk247 isolates from Mexico and Peru had identical RFLP pattern. Their nucleotide sequences showed two copies of GGQAAGGNAANKKAGDAGA at the carboxyl end. Differences in mismatch distribution parameters of the CRR separate vk247 from most vk210 isolates. While vk247 isolates display a homogeneous pattern with no geographical clustering, vk210 isolates display a heterogeneous geographically clustered pattern which clearly separates LA from non-American isolates, except vk210b, c and d from Southern Mexico. Conclusions The presence of vk210a in Mexico and vk210e, f and g in Nicaragua are consistent with other previously reported LA isolates and reflect their circulation throughout the continent. The vk210b, c and d are novel genotypes in LA. Their genetic relationships and low variability within these vk210 and/or within the vk247 parasites in Southern Mexico suggest its recent introduction and/or recent expansion to this region. The global analysis of P. vivax csp suggests this parasite introduction to the region and likely LA by different independent events.
Collapse
Affiliation(s)
- Lilia González-Cerón
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Taylor JE, Pacheco MA, Bacon DJ, Beg MA, Machado RL, Fairhurst RM, Herrera S, Kim JY, Menard D, Póvoa MM, Villegas L, Mulyanto, Snounou G, Cui L, Zeyrek FY, Escalante AA. The evolutionary history of Plasmodium vivax as inferred from mitochondrial genomes: parasite genetic diversity in the Americas. Mol Biol Evol 2013; 30:2050-64. [PMID: 23733143 PMCID: PMC3748350 DOI: 10.1093/molbev/mst104] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Plasmodium vivax is the most prevalent human malaria parasite in the Americas. Previous studies have contrasted the genetic diversity of parasite populations in the Americas with those in Asia and Oceania, concluding that New World populations exhibit low genetic diversity consistent with a recent introduction. Here we used an expanded sample of complete mitochondrial genome sequences to investigate the diversity of P. vivax in the Americas as well as in other continental populations. We show that the diversity of P. vivax in the Americas is comparable to that in Asia and Oceania, and we identify several divergent clades circulating in South America that may have resulted from independent introductions. In particular, we show that several haplotypes sampled in Venezuela and northeastern Brazil belong to a clade that diverged from the other P. vivax lineages at least 30,000 years ago, albeit not necessarily in the Americas. We propose that, unlike in Asia where human migration increases local genetic diversity, the combined effects of the geographical structure and the low incidence of vivax malaria in the Americas has resulted in patterns of low local but high regional genetic diversity. This could explain previous views that P. vivax in the Americas has low genetic diversity because these were based on studies carried out in limited areas. Further elucidation of the complex geographical pattern of P. vivax variation will be important both for diversity assessments of genes encoding candidate vaccine antigens and in the formulation of control and surveillance measures aimed at malaria elimination.
Collapse
Affiliation(s)
- Jesse E Taylor
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|