1
|
Lesch E, Stempel MS, Dressnandt V, Oldenkott B, Knoop V, Schallenberg-Rüdinger M. Conservation of the moss RNA editing factor PPR78 despite the loss of its known cytidine-to-uridine editing sites is explained by a hidden extra target. THE PLANT CELL 2024; 36:727-745. [PMID: 38000897 PMCID: PMC10896298 DOI: 10.1093/plcell/koad292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/27/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Cytidine (C)-to-uridine (U) RNA editing in plant organelles relies on specific RNA-binding pentatricopeptide repeat (PPR) proteins. In the moss Physcomitrium patens, all such RNA editing factors feature a C-terminal DYW domain that acts as the cytidine deaminase for C-to-U conversion. PPR78 of Physcomitrium targets 2 mitochondrial editing sites, cox1eU755SL and rps14eU137SL. Remarkably, the latter is edited to highly variable degrees in different mosses. Here, we aimed to unravel the coevolution of PPR78 and its 2 target sites in mosses. Heterologous complementation in a Physcomitrium knockout line revealed that the variable editing of rps14eU137SL depends on the PPR arrays of different PPR78 orthologues but not their C-terminal domains. Intriguingly, PPR78 has remained conserved despite the simultaneous loss of editing at both known targets among Hypnales (feather mosses), suggesting it serves an additional function. Using a recently established RNA editing assay in Escherichia coli, we confirmed site-specific RNA editing by PPR78 in the bacterium and identified 4 additional off-targets in the bacterial transcriptome. Based on conservation profiles, we predicted ccmFNeU1465RC as a candidate editing target of PPR78 in moss mitochondrial transcriptomes. We confirmed editing at this site in several mosses and verified that PPR78 targets ccmFNeU1465RC in the bacterial editing system, explaining the conservation and functional adaptation of PPR78 during moss evolution.
Collapse
Affiliation(s)
- Elena Lesch
- IZMB—Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn D-53115, Germany
| | - Maike Simone Stempel
- IZMB—Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn D-53115, Germany
| | - Vanessa Dressnandt
- IZMB—Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn D-53115, Germany
| | - Bastian Oldenkott
- IZMB—Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn D-53115, Germany
| | - Volker Knoop
- IZMB—Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn D-53115, Germany
| | - Mareike Schallenberg-Rüdinger
- IZMB—Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Bonn D-53115, Germany
| |
Collapse
|
2
|
Zhang A, Xiong Y, Liu F, Zhang X. A Genome-Wide Analysis of the Pentatricopeptide Repeat Protein Gene Family in Two Kiwifruit Species with an Emphasis on the Role of RNA Editing in Pathogen Stress. Int J Mol Sci 2023; 24:13700. [PMID: 37762001 PMCID: PMC10530749 DOI: 10.3390/ijms241813700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Kiwifruit is a perennial fruit tree with high nutritional and economic value; however, various pathogen stresses have resulted in reductions in its yield and quality. Pentatricopeptide repeat proteins (PPRs), characterized by tandem repetitions of 35 amino acid motifs, play roles in RNA editing, mRNA stability, and splicing. They may also regulate plant development and growth. Nevertheless, the roles of PPRs in plant development and disease resistance remain unclear. In this study, we focused on the roles of PPRs in the fruit development and pathogen stress of kiwifruit and conducted a series of analyses of the PPR gene family in two representative kiwifruit species (Actinidia chinensis (Ach) and Actinidia eriantha (Ace)) with markedly different degrees of disease resistance. A total of 497 and 499 PPRs were identified in Ach and Ace, respectively. All the kiwifruit PPRs could be phylogenetically divided into four subfamilies. There were about 40.68% PPRs predicted to be localized to mitochondria or chloroplasts. A synteny analysis showed that the expansion of the kiwifruit PPRs mainly originated from segmental duplication. Based on RNA-seq data from the fruit over 12 periods of development and maturity, a weighted correlation network analysis suggested that two PPRs, Actinidia20495.t1 and Actinidia15159.t1, may be involved in fruit development and maturation. In addition, we observed different responses with respect to the expression of PPRs and RNA editing between resistant and susceptible kiwifruits following infection with pathogenic bacteria, indicating the regulatory role of PPRs in the stress response via the modulation of RNA editing. The differentially expressed upstream transcription factors of the PPRs were further identified; they may regulate resistance adaption by modulating the expression of the PPRs. Collectively, these results suggest that PPRs play roles in the development and disease resistance of kiwifruit and provide candidate genes for further clarifying the resistance mechanisms in kiwifruits.
Collapse
Affiliation(s)
- Aidi Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (A.Z.); (Y.X.); (F.L.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yuhong Xiong
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (A.Z.); (Y.X.); (F.L.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (A.Z.); (Y.X.); (F.L.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiujun Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (A.Z.); (Y.X.); (F.L.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
3
|
Loiacono FV, Walther D, Seeger S, Thiele W, Gerlach I, Karcher D, Schöttler MA, Zoschke R, Bock R. Emergence of Novel RNA-Editing Sites by Changes in the Binding Affinity of a Conserved PPR Protein. Mol Biol Evol 2022; 39:6760358. [PMID: 36227729 PMCID: PMC9750133 DOI: 10.1093/molbev/msac222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 01/07/2023] Open
Abstract
RNA editing converts cytidines to uridines in plant organellar transcripts. Editing typically restores codons for conserved amino acids. During evolution, specific C-to-U editing sites can be lost from some plant lineages by genomic C-to-T mutations. By contrast, the emergence of novel editing sites is less well documented. Editing sites are recognized by pentatricopeptide repeat (PPR) proteins with high specificity. RNA recognition by PPR proteins is partially predictable, but prediction is often inadequate for PPRs involved in RNA editing. Here we have characterized evolution and recognition of a recently gained editing site. We demonstrate that changes in the RNA recognition motifs that are not explainable with the current PPR code allow an ancient PPR protein, QED1, to uniquely target the ndhB-291 site in Brassicaceae. When expressed in tobacco, the Arabidopsis QED1 edits 33 high-confident off-target sites in chloroplasts and mitochondria causing a spectrum of mutant phenotypes. By manipulating the relative expression levels of QED1 and ndhB-291, we show that the target specificity of the PPR protein depends on the RNA:protein ratio. Finally, our data suggest that the low expression levels of PPR proteins are necessary to ensure the specificity of editing site selection and prevent deleterious off-target editing.
Collapse
Affiliation(s)
- F Vanessa Loiacono
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Dirk Walther
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Stefanie Seeger
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Wolfram Thiele
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ines Gerlach
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Daniel Karcher
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mark Aurel Schöttler
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Reimo Zoschke
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | | |
Collapse
|
4
|
Huang D, Huang D. Relationship between M6A methylation regulator and prognosis in patients with hepatocellular carcinoma after transcatheter arterial chemoembolization. Heliyon 2022; 8:e10931. [PMID: 36262291 PMCID: PMC9573888 DOI: 10.1016/j.heliyon.2022.e10931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/02/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Background Patients with mid-stage HCC (hepatocellular carcinoma) may benefit from transcatheter arterial chemoembolization (TACE). However, patient efficacy varies widely, and the detailed assessment index is unknown. The most general methylation alteration in mRNA (Messenger RNA), N6-methyladenosine (m6A), is controlled by the m6A regulator, which is associated with the emergence of tumors. To include the molecular causes of cancer, competition with ceRNA (endogenous RNA) networks is crucial. However, the exact processes they contribute to TACE HCC remain uncertain. The purpose of this study was tantamount to investigating the possible function of ceRNA networks and m6A regulators in patients with TACE HCC. Methods Genes Associated with m6A were discovered using the TACE GEO (Gene Expression Omnibus) dataset. An additional estimate of M6A-associated DEGs (differentially expressed genes) was used to create a predictive response model, which is required. LncRNA-miRNA and miRNA-mRNA interactions were then predicted, the regulatory ceRNA network was set up using Cytoscape software, and target genes were identified using GEPIA online analysis. The connection between immunological checkpoints, immune cell marker genes, and target genes for immune cells was also examined. Results The detection of 4 m6A-associated DEGs, the development and evaluation of 2 Machine learning models, and the development of risk models that accurately predicted the response rate of specific patients. Additionally, we obtained two miRNAs (micro RNAs)and six lncRNAs (Long non-coding RNAs), forming an 8-pair ceRNA network, and the target gene LRPPRC deletion of one copy number and gene expression was highly correlated with the amount of Tregs immune cells. LRPPRC was related positively with NRP1, IRF5, and ITGAM and negatively with CCR7 and CD8B among immune cell marker genes. We also discovered that LRPPRC correlates positively with immune checkpoint CD274 cells. Conclusion The response of HCC patients to TACE therapy may be predicted using a model based on four gene expression data. We also developed a ceRNA network for TACE HCC related to m6A, which offered suggestions for more research into its molecular processes and possible prognostic indicators.
Collapse
Affiliation(s)
- Deliang Huang
- Department of Interventional Medicine, Yellow River Central Hospital, Zhengzhou, Henan Province, China
| | - Dejing Huang
- Department of Thoracic Surgery, The Second Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China,Corresponding author.
| |
Collapse
|
5
|
Che L, Lu S, Liang G, Gou H, Li M, Chen B, Mao J. Identification and expression analysis of the grape pentatricopeptide repeat (PPR) gene family in abiotic stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1849-1874. [PMID: 36484031 PMCID: PMC9723081 DOI: 10.1007/s12298-022-01252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The pentatricopeptide repeat (PPR) is one of the largest gene family in plants, and play important role in regulating plant growth, development and abiotic stress response. However, PPR genes have been poorly studied in grapes. In this study, based on the grape genome database, bioinformatics methods and quantitative real-time PCR (qRT-PCR) were used to identify the VvPPR family and the response to abiotic stress. A total of 181 PPR genes were identified in grape and divided into two subfamilies. Subcellular localization predicted that this gene family mainly functions in chloroplasts, nucleus, and mitochondria. Protein-protein interaction prediction indicated that there may be interaction between VvPPR44,53 and VvPPR44. The promoter region of VvPPR gene family contained various cis-acting elements, which were related to light and hormone. Expression pattern analysis showed that the VvPPR gene family was highly expressed in grape leaves, buds and carpel tissues. qRT-PCR results showed that the expression of VvPPR genes in roots was higher than stems and leaves under NAA, SA, ABA, MeJA and GA3 treatments. VvPPR8 was significantly up-regulated after GA3 and MeJA treatment for 24 h, VvPPR53 was significantly up-regulated after SA, NAA, ABA and MeJA treatment. In addition, In grape leaves, VvPPR53 was up-regulated under PEG, Nacl and 4 ℃ treatments. These data indicate that VvPPR gene family members are responsive to hormones and abiotic stresses, and that there are some differences in the degree of response and expression in different grape tissues. This study provides a certain theoretical basis for grape resistance breeding.
Collapse
Affiliation(s)
- Lili Che
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| | - Guoping Liang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| | - Huimin Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| | - Min Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| |
Collapse
|
6
|
Lesch E, Schilling MT, Brenner S, Yang Y, Gruss O, Knoop V, Schallenberg-Rüdinger M. Plant mitochondrial RNA editing factors can perform targeted C-to-U editing of nuclear transcripts in human cells. Nucleic Acids Res 2022; 50:9966-9983. [PMID: 36107771 PMCID: PMC9508816 DOI: 10.1093/nar/gkac752] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 11/12/2022] Open
Abstract
RNA editing processes are strikingly different in animals and plants. Up to thousands of specific cytidines are converted into uridines in plant chloroplasts and mitochondria whereas up to millions of adenosines are converted into inosines in animal nucleo-cytosolic RNAs. It is unknown whether these two different RNA editing machineries are mutually incompatible. RNA-binding pentatricopeptide repeat (PPR) proteins are the key factors of plant organelle cytidine-to-uridine RNA editing. The complete absence of PPR mediated editing of cytosolic RNAs might be due to a yet unknown barrier that prevents its activity in the cytosol. Here, we transferred two plant mitochondrial PPR-type editing factors into human cell lines to explore whether they could operate in the nucleo-cytosolic environment. PPR56 and PPR65 not only faithfully edited their native, co-transcribed targets but also different sets of off-targets in the human background transcriptome. More than 900 of such off-targets with editing efficiencies up to 91%, largely explained by known PPR-RNA binding properties, were identified for PPR56. Engineering two crucial amino acid positions in its PPR array led to predictable shifts in target recognition. We conclude that plant PPR editing factors can operate in the entirely different genetic environment of the human nucleo-cytosol and can be intentionally re-engineered towards new targets.
Collapse
Affiliation(s)
- Elena Lesch
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn , Kirschallee 1 , D-53115 Bonn , Germany
| | - Maximilian T Schilling
- Institut für Genetik, Abteilung Zellteilung, Universität Bonn , Karlrobert-Kreiten-Str. 13 , D-53115 Bonn , Germany
| | - Sarah Brenner
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn , Kirschallee 1 , D-53115 Bonn , Germany
| | - Yingying Yang
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn , Kirschallee 1 , D-53115 Bonn , Germany
| | - Oliver J Gruss
- Institut für Genetik, Abteilung Zellteilung, Universität Bonn , Karlrobert-Kreiten-Str. 13 , D-53115 Bonn , Germany
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn , Kirschallee 1 , D-53115 Bonn , Germany
| | - Mareike Schallenberg-Rüdinger
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn , Kirschallee 1 , D-53115 Bonn , Germany
| |
Collapse
|
7
|
Sugita M. An Overview of Pentatricopeptide Repeat (PPR) Proteins in the Moss Physcomitrium patens and Their Role in Organellar Gene Expression. PLANTS 2022; 11:plants11172279. [PMID: 36079663 PMCID: PMC9459714 DOI: 10.3390/plants11172279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
Abstract
Pentatricopeptide repeat (PPR) proteins are one type of helical repeat protein that are widespread in eukaryotes. In particular, there are several hundred PPR members in flowering plants. The majority of PPR proteins are localized in the plastids and mitochondria, where they play a crucial role in various aspects of RNA metabolism at the post-transcriptional and translational steps during gene expression. Among the early land plants, the moss Physcomitrium (formerly Physcomitrella) patens has at least 107 PPR protein-encoding genes, but most of their functions remain unclear. To elucidate the functions of PPR proteins, a reverse-genetics approach has been applied to P. patens. To date, the molecular functions of 22 PPR proteins were identified as essential factors required for either mRNA processing and stabilization, RNA splicing, or RNA editing. This review examines the P. patens PPR gene family and their current functional characterization. Similarities and a diversity of functions of PPR proteins between P. patens and flowering plants and their roles in the post-transcriptional regulation of organellar gene expression are discussed.
Collapse
Affiliation(s)
- Mamoru Sugita
- Graduate School of Informatics, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
8
|
Li S, Chang L, Zhang J. Advancing organelle genome transformation and editing for crop improvement. PLANT COMMUNICATIONS 2021; 2:100141. [PMID: 33898977 PMCID: PMC8060728 DOI: 10.1016/j.xplc.2021.100141] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/15/2020] [Accepted: 01/01/2021] [Indexed: 05/05/2023]
Abstract
Plant cells contain three organelles that harbor DNA: the nucleus, plastids, and mitochondria. Plastid transformation has emerged as an attractive platform for the generation of transgenic plants, also referred to as transplastomic plants. Plastid genomes have been genetically engineered to improve crop yield, nutritional quality, and resistance to abiotic and biotic stresses, as well as for recombinant protein production. Despite many promising proof-of-concept applications, transplastomic plants have not been commercialized to date. Sequence-specific nuclease technologies are widely used to precisely modify nuclear genomes, but these tools have not been applied to edit organelle genomes because the efficient homologous recombination system in plastids facilitates plastid genome editing. Unlike plastid transformation, successful genetic transformation of higher plant mitochondrial genome transformation was tested in several research group, but not successful to date. However, stepwise progress has been made in modifying mitochondrial genes and their transcripts, thus enabling the study of their functions. Here, we provide an overview of advances in organelle transformation and genome editing for crop improvement, and we discuss the bottlenecks and future development of these technologies.
Collapse
Affiliation(s)
- Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ling Chang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
9
|
Oldenkott B, Burger M, Hein AC, Jörg A, Senkler J, Braun HP, Knoop V, Takenaka M, Schallenberg-Rüdinger M. One C-to-U RNA Editing Site and Two Independently Evolved Editing Factors: Testing Reciprocal Complementation with DYW-Type PPR Proteins from the Moss Physcomitrium ( Physcomitrella) patens and the Flowering Plants Macadamia integrifolia and Arabidopsis. THE PLANT CELL 2020; 32:2997-3018. [PMID: 32616665 PMCID: PMC7474288 DOI: 10.1105/tpc.20.00311] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/09/2020] [Accepted: 06/30/2020] [Indexed: 05/15/2023]
Abstract
Cytidine-to-uridine RNA editing is a posttranscriptional process in plant organelles, mediated by specific pentatricopeptide repeat (PPR) proteins. In angiosperms, hundreds of sites undergo RNA editing. By contrast, only 13 sites are edited in the moss Physcomitrium (Physcomitrella) patens Some are conserved between the two species, like the mitochondrial editing site nad5eU598RC. The PPR proteins assigned to this editing site are known in both species: the DYW-type PPR protein PPR79 in P. patens and the E+-type PPR protein CWM1 in Arabidopsis (Arabidopsis thaliana). CWM1 also edits sites ccmCeU463RC, ccmBeU428SL, and nad5eU609VV. Here, we reciprocally expressed the P. patens and Arabidopsis editing factors in the respective other genetic environment. Surprisingly, the P. patens editing factor edited all target sites when expressed in the Arabidopsis cwm1 mutant background, even when carboxy-terminally truncated. Conversely, neither Arabidopsis CWM1 nor CWM1-PPR79 chimeras restored editing in P. patens ppr79 knockout plants. A CWM1-like PPR protein from the early diverging angiosperm macadamia (Macadamia integrifolia) features a complete DYW domain and fully rescued editing of nad5eU598RC when expressed in P. patens. We conclude that (1) the independently evolved P. patens editing factor PPR79 faithfully operates in the more complex Arabidopsis editing system, (2) truncated PPR79 recruits catalytic DYW domains in trans when expressed in Arabidopsis, and (3) the macadamia CWM1-like protein retains the capacity to work in the less complex P. patens editing environment.
Collapse
Affiliation(s)
- Bastian Oldenkott
- Institut für Zelluläre und Molekulare Botanik, Abt. Molekulare Evolution, University of Bonn, 53115 Bonn, Germany
| | | | - Anke-Christiane Hein
- Institut für Zelluläre und Molekulare Botanik, Abt. Molekulare Evolution, University of Bonn, 53115 Bonn, Germany
| | - Anja Jörg
- Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany
| | - Jennifer Senkler
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Hans-Peter Braun
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Volker Knoop
- Institut für Zelluläre und Molekulare Botanik, Abt. Molekulare Evolution, University of Bonn, 53115 Bonn, Germany
| | - Mizuki Takenaka
- Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | | |
Collapse
|
10
|
Hein A, Brenner S, Polsakiewicz M, Knoop V. The dual-targeted RNA editing factor AEF1 is universally conserved among angiosperms and reveals only minor adaptations upon loss of its chloroplast or its mitochondrial target. PLANT MOLECULAR BIOLOGY 2020; 102:185-198. [PMID: 31797248 DOI: 10.1007/s11103-019-00940-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Upon loss of either its chloroplast or mitochondrial target, a uniquely dual-targeted factor for C-to-U RNA editing in angiosperms reveals low evidence for improved molecular adaptation to its remaining target. RNA-binding pentatricopeptide repeat (PPR) proteins specifically recognize target sites for C-to-U RNA editing in the transcriptomes of plant chloroplasts and mitochondria. Among more than 80 PPR-type editing factors that have meantime been characterized, AEF1 (or MPR25) is a special case given its dual targeting to both organelles and addressing an essential mitochondrial (nad5eU1580SL) and an essential chloroplast (atpFeU92SL) RNA editing site in parallel in Arabidopsis. Here, we explored the angiosperm-wide conservation of AEF1 and its two organelle targets. Despite numerous independent losses of the chloroplast editing site by C-to-T conversion and at least four such conversions at the mitochondrial target site in other taxa, AEF1 remains consistently conserved in more than 120 sampled angiosperm genomes. Not a single case of simultaneous loss of the chloroplast and mitochondrial editing target or of AEF1 disintegration or loss could be identified, contrasting previous findings for editing factors targeted to only one organelle. Like in most RNA editing factors, the PPR array of AEF1 reveals potential for conceptually "improved fits" to its targets according to the current PPR-RNA binding code. Surprisingly, we observe only minor evidence for adaptation to the mitochondrial target also after deep losses of the chloroplast target among Asterales, Caryophyllales and Poales or, vice versa, for the remaining chloroplast target after a deep loss of the mitochondrial target among Malvales. The evolutionary observations support the notion that PPR-RNA mismatches may be essential for proper function of editing factors.
Collapse
Affiliation(s)
- Anke Hein
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Sarah Brenner
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Monika Polsakiewicz
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
11
|
Loiacono FV, Thiele W, Schöttler MA, Tillich M, Bock R. Establishment of a Heterologous RNA Editing Event in Chloroplasts. PLANT PHYSIOLOGY 2019; 181:891-900. [PMID: 31519789 PMCID: PMC6836845 DOI: 10.1104/pp.19.00922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/31/2019] [Indexed: 05/18/2023]
Abstract
In chloroplasts and plant mitochondria, specific cytidines in mRNAs are posttranscriptionally converted to uridines by RNA editing. Editing sites are recognized by nucleus-encoded RNA-binding proteins of the pentatricopeptide repeat (PPR) family, which bind upstream of the editing site in a sequence-specific manner and direct the editing activity to the target position. Editing sites have been lost many times during evolution by C-to-T mutations. Loss of an editing site is thought to be accompanied by loss or degeneration of its cognate PPR protein. Consequently, foreign editing sites are usually not recognized when introduced into species lacking the site. Previously, the spinach (Spinacia oleracea) psbF-26 editing site was introduced into the tobacco (Nicotiana tabacum) plastid genome. Tobacco lacks the psbF-26 site and cannot edit it. Expression of the "unedited" PsbF protein resulted in impaired PSII function. In Arabidopsis (Arabidopsis thaliana), the PPR protein LPA66 is required for editing at psbF-26. Here, we show that introduction of the Arabidopsis LPA66 reconstitutes editing of the spinach psbF-26 site in tobacco and restores a wild-type-like phenotype. Our findings define the minimum requirements for establishing new RNA editing sites and suggest that the evolutionary dynamics of editing patterns is largely explained by coevolution of editing sites and PPR proteins.
Collapse
Affiliation(s)
- Filomena Vanessa Loiacono
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Wolfram Thiele
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mark Aurel Schöttler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Michael Tillich
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
12
|
Cui J, Wang L, Ren X, Zhang Y, Zhang H. LRPPRC: A Multifunctional Protein Involved in Energy Metabolism and Human Disease. Front Physiol 2019; 10:595. [PMID: 31178748 PMCID: PMC6543908 DOI: 10.3389/fphys.2019.00595] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 04/26/2019] [Indexed: 12/26/2022] Open
Abstract
The pentatricopeptide repeat (PPR) family plays a major role in RNA stability, regulation, processing, splicing, translation, and editing. Leucine-rich PPR-motif-containing protein (LRPPRC), a member of the PPR family, is a known gene mutation that causes Leigh syndrome French-Canadian. Recently, growing evidence has pointed out that LRPPRC dysregulation is related to various diseases ranging from tumors to viral infections. This review presents available published data on the LRPPRC protein function and its role in tumors and other diseases. As a multi-functional protein, LRPPRC regulates a myriad of biological processes, including energy metabolism and maturation and the export of nuclear mRNA. Overexpression of LRPPRC has been observed in various human tumors and is associated with poor prognosis. Downregulation of LRPPRC inhibits growth and invasion, induces apoptosis, and overcomes drug resistance in tumor cells. In addition, LRPPRC plays a potential role in Parkinson's disease, neurofibromatosis 1, viral infections, and venous thromboembolism. Further investigating these new functions of LRPPRC should provide novel opportunities for a better understanding of its pathological role in diseases from tumors to viral infections and as a potential biomarker and molecular target for disease treatment.
Collapse
Affiliation(s)
- Jie Cui
- Department of Oncology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China.,College of General Practitioners, Xi'an Medical University, Xi'an, China
| | - Li Wang
- Department of Oncology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China.,College of General Practitioners, Xi'an Medical University, Xi'an, China
| | - Xiaoyue Ren
- Department of Oncology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China.,College of General Practitioners, Xi'an Medical University, Xi'an, China
| | - Yamin Zhang
- Department of Oncology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China.,College of General Practitioners, Xi'an Medical University, Xi'an, China
| | - Hongyi Zhang
- College of General Practitioners, Xi'an Medical University, Xi'an, China.,Department of Urology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China
| |
Collapse
|
13
|
Hein A, Brenner S, Knoop V. Multifarious Evolutionary Pathways of a Nuclear RNA Editing Factor: Disjunctions in Coevolution of DOT4 and Its Chloroplast Target rpoC1eU488SL. Genome Biol Evol 2019; 11:798-813. [PMID: 30753430 PMCID: PMC6424221 DOI: 10.1093/gbe/evz032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2019] [Indexed: 12/25/2022] Open
Abstract
Nuclear-encoded pentatricopeptide repeat (PPR) proteins are site-specific factors for C-to-U RNA editing in plant organelles coevolving with their targets. Losing an editing target by C-to-T conversion allows for eventual loss of its editing factor, as recently confirmed for editing factors CLB19, CRR28, and RARE1 targeting ancient chloroplast editing sites in flowering plants. Here, we report on alternative evolutionary pathways for DOT4 addressing rpoC1eU488SL, a chloroplast editing site in the RNA polymerase β' subunit mRNA. Upon loss of rpoC1eU488SL by C-to-T conversion, DOT4 got lost multiple times independently in angiosperm evolution with intermediate states of DOT4 orthologs in various stages of degeneration. Surprisingly, we now also observe degeneration and loss of DOT4 despite retention of a C in the editing position (in Carica, Coffea, Vicia, and Spirodela). We find that the cytidine remains unedited, proving that DOT4 was not replaced by another editing factor. Yet another pathway of DOT4 evolution is observed among the Poaceae. Although the rpoC1eU488SL edit has been lost through C-to-T conversion, DOT4 orthologs not only remain conserved but also have their array of PPRs extended by six additional repeats. Here, the loss of the ancient target has likely allowed DOT4 to adapt for a new function. We suggest rps3 antisense transcripts as previously demonstrated in barley (Hordeum vulgare) arising from promotor sequences newly emerging in the rpl16 intron of Poaceae as a new candidate target for the extended PPR stretch of DOT4. Altogether, DOT4 and its target show more flexible pathways for evolution than the previously explored editing factors CLB19, CRR28, and RARE1. Certain plant clades (e.g., Amaranthus, Vaccinium, Carica, the Poaceae, Fabales, and Caryophyllales) show pronounced dynamics in the evolution of editing sites and corresponding factors.
Collapse
Affiliation(s)
- Anke Hein
- IZMB – Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Germany
| | - Sarah Brenner
- IZMB – Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Germany
| | - Volker Knoop
- IZMB – Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Germany
| |
Collapse
|
14
|
Kawabe A, Furihata HY, Tsujino Y, Kawanabe T, Fujii S, Yoshida T. Divergence of RNA editing among Arabidopsis species. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:241-247. [PMID: 30824002 DOI: 10.1016/j.plantsci.2018.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 05/25/2023]
Abstract
RNA editing altered the RNA sequence by replacing the C nucleotide to U in the organellar genomes of plants. RNA editing status sometimes differed among distant species. The pattern of conservation and variation of RNA editing status made it possible to evaluate evolutionary mechanisms impacting functional aspects of RNA editing. In this study, divergence of RNA editing in the chloroplast genome among Arabidopsis species was analyzed to determine 9 losses and 1 gain in RNA editing. All changes in A. thaliana lineage resulted from changes to the chloroplast genome sequence, whereas changes in the A. lyrata / halleri lineage were possibly due to exclusive changes in the nuclear editing factors. One loss of RNA editing in A. lyrata was caused by a deficiency in the PPR gene OTP80. The changes in RNA editing occurred approximately every two million years and were not observed at functionally important sites. These results highlight the conserved nature of RNA editing status suggesting the importance of RNA editing during evolution.
Collapse
Affiliation(s)
- Akira Kawabe
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan.
| | - Hazuka Y Furihata
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan
| | - Yudai Tsujino
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan
| | - Takahiro Kawanabe
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan
| | - Sota Fujii
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takanori Yoshida
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan
| |
Collapse
|
15
|
Hein A, Knoop V. Expected and unexpected evolution of plant RNA editing factors CLB19, CRR28 and RARE1: retention of CLB19 despite a phylogenetically deep loss of its two known editing targets in Poaceae. BMC Evol Biol 2018; 18:85. [PMID: 29879897 PMCID: PMC5992886 DOI: 10.1186/s12862-018-1203-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/24/2018] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND C-to-U RNA editing in mitochondria and chloroplasts and the nuclear-encoded, RNA-binding PPR proteins acting as editing factors present a wide field of co-evolution between the different genetic systems in a plant cell. Recent studies on chloroplast editing factors RARE1 and CRR28 addressing one or two chloroplast editing sites, respectively, found them strictly conserved among 65 flowering plants as long as one of their RNA editing targets remained present. RESULTS Extending the earlier sampling to 117 angiosperms with high-quality genome or transcriptome data, we find more evidence confirming previous conclusions but now also identify cases for expected evolutionary transition states such as retention of RARE1 despite loss of its editing target or the degeneration of CRR28 truncating its carboxyterminal DYW domain. The extended angiosperm set was now used to explore CLB19, an "E+"-type PPR editing factor targeting two chloroplast editing sites, rpoAeU200SF and clpPeU559HY, in Arabidopsis thaliana. We found CLB19 consistently conserved if one of the two targets was retained and three independent losses of CLB19 after elimination of both targets. The Ericales show independent regains of the ancestrally lost clpPeU559HY editing, further explaining why multiple-target editing factors are lost much more rarely than single target factors like RARE1. The retention of CLB19 despite loss of both editing targets in some Ericaceae, Apocynaceae and in Camptotheca (Nyssaceae) likely represents evolutionary transitions. However, the retention of CLB19 after a phylogenetic deep loss in the Poaceae rather suggests a yet unrecognized further editing target, for which we suggest editing event ndhAeU473SL. CONCLUSION Extending the scope of studies on plant organelle RNA editing to further taxa and additional nuclear cofactors reveals expected evolutionary transitions, strikingly different evolutionary dynamics for multiple-target editing factors like CLB19 and CRR28 and suggests additional functions for editing factor CLB19 among the Poaceae.
Collapse
Affiliation(s)
- Anke Hein
- IZMB – Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Volker Knoop
- IZMB – Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115 Bonn, Germany
| |
Collapse
|
16
|
Li H, Li C, Deng Y, Jiang X, Lu S. The Pentatricopeptide Repeat Gene Family in Salvia miltiorrhiza: Genome-Wide Characterization and Expression Analysis. Molecules 2018; 23:molecules23061364. [PMID: 29882758 PMCID: PMC6099403 DOI: 10.3390/molecules23061364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/03/2018] [Accepted: 06/05/2018] [Indexed: 01/19/2023] Open
Abstract
The pentatricopeptide repeat (PPR) gene family is one of the largest gene families in plants and plays important roles in posttranscriptional regulation. In this study, we combined whole genome sequencing and transcriptomes to systematically investigate PPRs in Salvia miltiorrhiza, which is a well-known material of traditional Chinese medicine and an emerging model system for medicinal plant studies. Among 562 identified SmPPRs, 299 belong to the P subfamily while the others belong to the PLS subfamily. The majority of SmPPRs have only one exon and are localized in the mitochondrion or chloroplast. As many as 546 SmPPRs were expressed in at least one tissue and exhibited differential expression patterns, which indicates they likely play a variety of functions in S. miltiorrhiza. Up to 349 SmPPRs were salicylic acid-responsive and 183 SmPPRs were yeast extract and Ag+-responsive, which indicates these genes might be involved in S. miltiorrhiza defense stresses and secondary metabolism. Furthermore, 23 salicylic acid-responsive SmPPRs were co-expressed with phenolic acid biosynthetic enzyme genes only while 16 yeast extract and Ag+-responsive SmPPRs were co-expressed with tanshinone biosynthetic enzyme genes only. Two SmPPRs were co-expressed with both phenolic acid and tanshinone biosynthetic enzyme genes. The results provide a useful platform for further investigating the roles of PPRs in S. miltiorrhiza.
Collapse
Affiliation(s)
- Heqin Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China.
- College of Agronomy, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, China.
| | - Caili Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China.
| | - Yuxing Deng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China.
| | - Xuwen Jiang
- College of Agronomy, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, China.
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
17
|
Diaz MF, Bentolila S, Hayes ML, Hanson MR, Mulligan RM. A protein with an unusually short PPR domain, MEF8, affects editing at over 60 Arabidopsis mitochondrial C targets of RNA editing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:638-649. [PMID: 29035004 DOI: 10.1111/tpj.13709] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/27/2017] [Accepted: 08/30/2017] [Indexed: 05/15/2023]
Abstract
An RNA-seq approach was used to investigate the role of a PLS-subfamily pentatricopeptide repeat protein, Mitochondrial Editing Factor 8 (MEF8), on editing in Arabidopsis mitochondria and plastids. MEF8 has an intact DYW domain, but possesses an unusually short PLS repeat region of only five repeats. The MEF8 T-DNA insertion (mef8) line exhibited reduced editing at 38 mitochondrial editing sites and increased editing at 24 sites; therefore the absence of MEF8 affects 11% of the mitochondrial editome. Notably, 60% of the matR transcripts' sites showed a decrease of editing extent in the mef8 mutant. An E549A substitution in the MEF8 protein replaced the putatively catalytic glutamate of the HXE motif in the DYW domain. Complementation with MEF8-E549A failed to restore editing at the main target sites but was able to restore editing at the matR transcript; it also decreased the editing extent of most of the C targets exhibiting an increase of editing extent in the mef8 mutant plant. Thus, MEF8 has two antagonistic effects on mitochondrial editing: stimulatory, which requires a catalytic glutamate for most of the targets except for the matR transcript, and inhibitory, for which glutamate is dispensable.
Collapse
Affiliation(s)
- Michael F Diaz
- Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Stephane Bentolila
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Michael L Hayes
- Department of Chemistry and Biochemistry, California State University, Los Angeles, CA, USA
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - R Michael Mulligan
- Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
18
|
Functional divergence and origin of the DAG-like gene family in plants. Sci Rep 2017; 7:5688. [PMID: 28720816 PMCID: PMC5515838 DOI: 10.1038/s41598-017-05961-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/06/2017] [Indexed: 01/08/2023] Open
Abstract
The nuclear-encoded DAG-like (DAL) gene family plays critical roles in organelle C-to-U RNA editing in Arabidopsis thaliana. However, the origin, diversification and functional divergence of DAL genes remain unclear. Here, we analyzed the genomes of diverse plant species and found that: DAL genes are specific to spermatophytes, all DAL genes share a conserved gene structure and protein similarity with the inhibitor I9 domain of subtilisin genes found in ferns and mosses, suggesting that DAL genes likely arose from I9-containing proproteases via exon shuffling. Based on phylogenetic inference, DAL genes can be divided into five subfamilies, each composed of putatively orthologous and paralogous genes from different species, suggesting that all DAL genes originated from a common ancestor in early seed plants. Significant type I functional divergence was observed in 6 of 10 pairwise comparisons, indicating that shifting functional constraints have contributed to the evolution of DAL genes. This inference is supported by the finding that functionally divergent amino acids between subfamilies are predominantly located in the DAL domain, a critical part of the RNA editosome. Overall, these findings shed light on the origin of DAL genes in spermatophytes and outline functionally important residues involved in the complexity of the RNA editosome.
Collapse
|
19
|
Schallenberg-Rüdinger M, Oldenkott B, Hiss M, Trinh PL, Knoop V, Rensing SA. A Single-Target Mitochondrial RNA Editing Factor of Funaria hygrometrica Can Fully Reconstitute RNA Editing at Two Sites in Physcomitrella patens. PLANT & CELL PHYSIOLOGY 2017; 58:496-507. [PMID: 28394399 DOI: 10.1093/pcp/pcw229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/21/2016] [Indexed: 05/26/2023]
Abstract
Nuclear-encoded pentatricopeptide repeat (PPR) proteins are key factors for site-specific RNA editing, converting cytidines into uridines in plant mitochondria and chloroplasts. All editing factors in the model moss Physcomitrella patens have a C-terminal DYW domain with similarity to cytidine deaminase. However, numerous editing factors in flowering plants lack such a terminal DYW domain, questioning its immediate role in the pyrimidine base conversion process. Here we further investigate the Physcomitrella DYW-type PPR protein PPR_78, responsible for mitochondrial editing sites cox1eU755SL and rps14eU137SL. Complementation assays with truncated proteins demonstrate that the DYW domain is essential for full PPR_78 editing functionality. The DYW domain can be replaced, however, with its counterpart from another editing factor, PPR_79. The PPR_78 ortholog of the related moss Funaria hygrometrica fully complements the Physcomitrella mutant for editing at both sites, although the editing site in rps14 is lacking in Funaria. Editing factor orthologs in different taxa may thus retain editing capacity for multiple sites despite the absence of editing requirement.
Collapse
Affiliation(s)
- Mareike Schallenberg-Rüdinger
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str, Marburg, Germany
- IZMB-Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee, Bonn, Germany
| | - Bastian Oldenkott
- IZMB-Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee, Bonn, Germany
| | - Manuel Hiss
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str, Marburg, Germany
| | - Phuong Le Trinh
- IZMB-Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee, Bonn, Germany
- Key Laboratory of Enzyme and Protein Technology (KLEPT), VNU University of Science, Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Volker Knoop
- IZMB-Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee, Bonn, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str, Marburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
Jhuang HY, Lee HY, Leu JY. Mitochondrial-nuclear co-evolution leads to hybrid incompatibility through pentatricopeptide repeat proteins. EMBO Rep 2016; 18:87-101. [PMID: 27920033 DOI: 10.15252/embr.201643311] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/09/2016] [Accepted: 10/21/2016] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial-nuclear incompatibility has a major role in reproductive isolation between species. However, the underlying mechanism and driving force of mitochondrial-nuclear incompatibility remain elusive. Here, we report a pentatricopeptide repeat-containing (PPR) protein, Ccm1, and its interacting partner, 15S rRNA, to be involved in hybrid incompatibility between two yeast species, Saccharomyces cerevisiae and Saccharomyces bayanus S. bayanus-Ccm1 has reduced binding affinity for S. cerevisiae-15S rRNA, leading to respiratory defects in hybrid cells. This incompatibility can be rescued by single mutations on several individual PPR motifs, demonstrating the highly evolvable nature of PPR proteins. When we examined other PPR proteins in the closely related Saccharomyces sensu stricto yeasts, about two-thirds of them showed detectable incompatibility. Our results suggest that fast co-evolution between flexible PPR proteins and their mitochondrial RNA substrates may be a common driving force in the development of mitochondrial-nuclear hybrid incompatibility.
Collapse
Affiliation(s)
- Han-Ying Jhuang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Hsin-Yi Lee
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Molecular and Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center and Academia Sinica, Taipei, Taiwan
| | - Jun-Yi Leu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan .,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
21
|
Hein A, Polsakiewicz M, Knoop V. Frequent chloroplast RNA editing in early-branching flowering plants: pilot studies on angiosperm-wide coexistence of editing sites and their nuclear specificity factors. BMC Evol Biol 2016; 16:23. [PMID: 26809609 PMCID: PMC4727281 DOI: 10.1186/s12862-016-0589-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/12/2016] [Indexed: 11/11/2022] Open
Abstract
Background RNA editing by cytidine-to-uridine conversions is an essential step of RNA maturation in plant organelles. Some 30–50 sites of C-to-U RNA editing exist in chloroplasts of flowering plant models like Arabidopsis, rice or tobacco. We now predicted significantly more RNA editing in chloroplasts of early-branching angiosperm genera like Amborella, Calycanthus, Ceratophyllum, Chloranthus, Illicium, Liriodendron, Magnolia, Nuphar and Zingiber. Nuclear-encoded RNA-binding pentatricopeptide repeat (PPR) proteins are key editing factors expected to coevolve with their cognate RNA editing sites in the organelles. Results With an extensive chloroplast transcriptome study we identified 138 sites of RNA editing in Amborella trichopoda, approximately the 3- to 4-fold of cp editing in Arabidopsis thaliana or Oryza sativa. Selected cDNA studies in the other early-branching flowering plant taxa furthermore reveal a high diversity of early angiosperm RNA editomes. Many of the now identified editing sites in Amborella have orthologues in ferns, lycophytes or hornworts. We investigated the evolution of CRR28 and RARE1, two known Arabidopsis RNA editing factors responsible for cp editing events ndhBeU467PL, ndhDeU878SL and accDeU794SL, respectively, all of which we now found conserved in Amborella. In a phylogenetically wide sampling of 65 angiosperm genomes we find evidence for only one single loss of CRR28 in chickpea but several independent losses of RARE1, perfectly congruent with the presence of their cognate editing sites in the respective cpDNAs. Conclusion Chloroplast RNA editing is much more abundant in early-branching than in widely investigated model flowering plants. RNA editing specificity factors can be traced back for more than 120 million years of angiosperm evolution and show highly divergent patterns of evolutionary losses, matching the presence of their target editing events. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0589-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anke Hein
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany.
| | - Monika Polsakiewicz
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany.
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany.
| |
Collapse
|
22
|
Richardson E, Dorrell RG, Howe CJ. Genome-wide transcript profiling reveals the coevolution of plastid gene sequences and transcript processing pathways in the fucoxanthin dinoflagellate Karlodinium veneficum. Mol Biol Evol 2014; 31:2376-86. [PMID: 24925926 PMCID: PMC4137713 DOI: 10.1093/molbev/msu189] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Plastids utilize a complex gene expression machinery, which has coevolved with the underlying genome sequence. Relatively, little is known about the genome-wide evolution of transcript processing in algal plastids that have undergone complex endosymbiotic events. We present the first genome-wide study of transcript processing in a plastid acquired through serial endosymbiosis, in the fucoxanthin-containing dinoflagellate Karlodinium veneficum. The fucoxanthin dinoflagellate plastid has an extremely divergent genome and utilizes two unusual transcript processing pathways, 3'-poly(U) tail addition and sequence editing, which were acquired following the serial endosymbiosis event. We demonstrate that poly(U) addition and sequence editing are widespread features across the Karl. veneficum plastid transcriptome, whereas other dinoflagellate plastid lineages that have arisen through independent serial endosymbiosis events do not utilize either RNA processing pathway. These pathways constrain the effects of divergent sequence evolution in fucoxanthin plastids, for example by correcting mutations in the genomic sequence that would otherwise be deleterious, and are specifically associated with transcripts that encode functional plastid proteins over transcripts of recently generated pseudogenes. These pathways may have additionally facilitated divergent evolution within the Karl. veneficum plastid. Transcript editing, for example, has contributed to the evolution of a novel C-terminal sequence extension on the Karl. veneficum AtpA protein. We furthermore provide the first complete sequence of an episomal minicircle in a fucoxanthin dinoflagellate plastid, which contains the dnaK gene, and gives rise to polyuridylylated and edited transcripts. Our results indicate that RNA processing in fucoxanthin dinoflagellate plastids is evolutionarily dynamic, coevolving with the underlying genome sequence.
Collapse
Affiliation(s)
| | - Richard G Dorrell
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Christopher J Howe
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
23
|
Zhang J, Ruhlman TA, Mower JP, Jansen RK. Comparative analyses of two Geraniaceae transcriptomes using next-generation sequencing. BMC PLANT BIOLOGY 2013; 13:228. [PMID: 24373163 PMCID: PMC3880972 DOI: 10.1186/1471-2229-13-228] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 12/20/2013] [Indexed: 05/24/2023]
Abstract
BACKGROUND Organelle genomes of Geraniaceae exhibit several unusual evolutionary phenomena compared to other angiosperm families including accelerated nucleotide substitution rates, widespread gene loss, reduced RNA editing, and extensive genomic rearrangements. Since most organelle-encoded proteins function in multi-subunit complexes that also contain nuclear-encoded proteins, it is likely that the atypical organellar phenomena affect the evolution of nuclear genes encoding organellar proteins. To begin to unravel the complex co-evolutionary interplay between organellar and nuclear genomes in this family, we sequenced nuclear transcriptomes of two species, Geranium maderense and Pelargonium x hortorum. RESULTS Normalized cDNA libraries of G. maderense and P. x hortorum were used for transcriptome sequencing. Five assemblers (MIRA, Newbler, SOAPdenovo, SOAPdenovo-trans [SOAPtrans], Trinity) and two next-generation technologies (454 and Illumina) were compared to determine the optimal transcriptome sequencing approach. Trinity provided the highest quality assembly of Illumina data with the deepest transcriptome coverage. An analysis to determine the amount of sequencing needed for de novo assembly revealed diminishing returns of coverage and quality with data sets larger than sixty million Illumina paired end reads for both species. The G. maderense and P. x hortorum transcriptomes contained fewer transcripts encoding the PLS subclass of PPR proteins relative to other angiosperms, consistent with reduced mitochondrial RNA editing activity in Geraniaceae. In addition, transcripts for all six plastid targeted sigma factors were identified in both transcriptomes, suggesting that one of the highly divergent rpoA-like ORFs in the P. x hortorum plastid genome is functional. CONCLUSIONS The findings support the use of the Illumina platform and assemblers optimized for transcriptome assembly, such as Trinity or SOAPtrans, to generate high-quality de novo transcriptomes with broad coverage. In addition, results indicated no major improvements in breadth of coverage with data sets larger than six billion nucleotides or when sampling RNA from four tissue types rather than from a single tissue. Finally, this work demonstrates the power of cross-compartmental genomic analyses to deepen our understanding of the correlated evolution of the nuclear, plastid, and mitochondrial genomes in plants.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Integrative Biology and Institute of Cellular and Molecular Biology, The University of Texas at Austin, 205 W. 24th St. Stop C0930, Austin, TX 78712, USA
| | - Tracey A Ruhlman
- Department of Integrative Biology and Institute of Cellular and Molecular Biology, The University of Texas at Austin, 205 W. 24th St. Stop C0930, Austin, TX 78712, USA
| | - Jeffrey P Mower
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Robert K Jansen
- Department of Integrative Biology and Institute of Cellular and Molecular Biology, The University of Texas at Austin, 205 W. 24th St. Stop C0930, Austin, TX 78712, USA
- Genomics and Biotechnology Section, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
24
|
Manna S, Barth C. Identification of a novel pentatricopeptide repeat subfamily with a C-terminal domain of bacterial origin acquired via ancient horizontal gene transfer. BMC Res Notes 2013; 6:525. [PMID: 24321137 PMCID: PMC4029402 DOI: 10.1186/1756-0500-6-525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/29/2013] [Indexed: 11/10/2022] Open
Abstract
Background Pentatricopeptide repeat (PPR) proteins are a large family of sequence-specific RNA binding proteins involved in organelle RNA metabolism. Very little is known about the origin and evolution of these proteins, particularly outside of plants. Here, we report the identification of a novel subfamily of PPR proteins not found in plants and explore their evolution. Results We identified a novel subfamily of PPR proteins, which all contain a C-terminal tRNA guanine methyltransferase (TGM) domain, suggesting a predicted function not previously associated with PPR proteins. This group of proteins, which we have named the PPR-TGM subfamily, is found in distantly related eukaryotic lineages including cellular slime moulds, entamoebae, algae and diatoms, but appears to be the first PPR subfamily absent from plants. Each PPR-TGM protein identified is predicted to have different subcellular locations, thus we propose that these proteins have roles in tRNA metabolism in all subcellular locations, not just organelles. We demonstrate that the TGM domain is not only similar to bacterial TGM proteins, but that it is most similar to chlamydial TGMs in particular, despite the absence of PPR proteins in bacteria. Based on our data, we postulate that this subfamily of PPR proteins evolved from a TGM-encoding gene of a member of the Chlamydiae, which was obtained via ancient prokaryote-to-eukaryote horizontal gene transfer. Following its acquisition, the N-terminus of the encoded TGM protein must have been extended to include PPR motifs, possibly to confer additional functions to the protein, giving rise to the PPR-TGM subfamily. Conclusions The identification of a unique PPR subfamily which originated from the Chlamydiae group of bacteria offers novel insight into the origin and evolution of PPR proteins not previously considered. It also provides further understanding into their roles in non-organellar RNA metabolism.
Collapse
Affiliation(s)
| | - Christian Barth
- Department of Microbiology, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
25
|
Hayes ML, Giang K, Berhane B, Mulligan RM. Identification of two pentatricopeptide repeat genes required for RNA editing and zinc binding by C-terminal cytidine deaminase-like domains. J Biol Chem 2013; 288:36519-29. [PMID: 24194514 DOI: 10.1074/jbc.m113.485755] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many transcripts expressed from plant organelle genomes are modified by C-to-U RNA editing. Nuclear encoded pentatricopeptide repeat (PPR) proteins are required as RNA binding specificity determinants in the RNA editing mechanism. Bioinformatic analysis has shown that most of the Arabidopsis PPR proteins necessary for RNA editing events include a C-terminal portion that shares structural characteristics with a superfamily of deaminases. The DYW deaminase domain includes a highly conserved zinc binding motif that shares characteristics with cytidine deaminases. The Arabidopsis PPR genes, ELI1 and DOT4, both have DYW deaminase domains and are required for single RNA editing events in chloroplasts. The ELI1 DYW deaminase domain was expressed as a recombinant protein in Escherichia coli and was shown to bind two zinc atoms per polypeptide. Thus, the DYW deaminase domain binds a zinc metal ion, as expected for a cytidine deaminase, and is potentially the catalytic component of an editing complex. Genetic complementation experiments demonstrate that large portions of the DYW deaminase domain of ELI1 may be eliminated, but the truncated genes retain the ability to restore editing site conversion in a mutant plant. These results suggest that the catalytic activity can be supplied in trans by uncharacterized protein(s) of the editosome.
Collapse
|
26
|
Sugita M, Ichinose M, Ide M, Sugita C. Architecture of the PPR gene family in the moss Physcomitrella patens. RNA Biol 2013; 10:1439-45. [PMID: 23645116 PMCID: PMC3858427 DOI: 10.4161/rna.24772] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are widespread in eukaryotes and in particular, include several hundred members in land plants. The majority of PPR proteins are localized in mitochondria and plastids, where they play a crucial role in various aspects of RNA metabolism at the post-transcriptional level in gene expression. However, many of their functions remain to be characterized. In contrast to vascular plants, the moss Physcomitrella patens has only 105 PPR genes. This number may represent a minimum set of PPR proteins required for post-transcriptional regulation in plant organelles. Here, we review the overall structure of the P. patens PPR gene family and the current status of the functional characterization of moss PPR proteins.
Collapse
Affiliation(s)
- Mamoru Sugita
- Center for Gene Research; Nagoya University; Chikusa-ku; Nagoya, Japan
| | - Mizuho Ichinose
- Center for Gene Research; Nagoya University; Chikusa-ku; Nagoya, Japan
| | - Mizuki Ide
- Center for Gene Research; Nagoya University; Chikusa-ku; Nagoya, Japan
| | - Chieko Sugita
- Center for Gene Research; Nagoya University; Chikusa-ku; Nagoya, Japan
| |
Collapse
|
27
|
Ruwe H, Castandet B, Schmitz-Linneweber C, Stern DB. Arabidopsis
chloroplast quantitative editotype. FEBS Lett 2013; 587:1429-33. [DOI: 10.1016/j.febslet.2013.03.022] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/07/2013] [Accepted: 03/08/2013] [Indexed: 10/27/2022]
|