1
|
Fierling N, Billard P, Dluzniewski A, Sohm B, Bauda P, Blaudez D. Importance of the envelope in Escherichia coli resistance to lithium. CHEMOSPHERE 2025; 374:144234. [PMID: 39983623 DOI: 10.1016/j.chemosphere.2025.144234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/10/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
The increasing use of lithium (Li) in emerging technologies has prompted concerns about its effects on living microorganisms. To enhance our understanding of the bacterial cytotoxicity of Li, we conducted a deletomic analysis using the bacterial model Escherichia coli. A screen of 3,985 knockout mutants under Li stress highlighted 27 Li-sensitive and 15 Li-resistant mutants. The synthesis of peptidoglycan and the capsule, along with the secretion of colanic acid, contributed to resistance to Li. Ribosomes and the stringent response also seem to play a role in mitigating Li cytotoxicity. A cross-metal comparison revealed that the Li-sensitive phenotype of the mutants was shared with Ca, whereas the resistant phenotype was shared with Mg, Na and K. Moreover, this allowed the identification of ΔacrA as a Li sensitivity-specific mutant. AcrA is a subunit of the AcrAB-TolC efflux pump, which is responsible for the efflux of various xenobiotics. We demonstrate that ΔacrB-ΔtolC accumulates approximately 1.5 times more Li than the WT, indicating that this pump could also facilitate the efflux of Li. This study offers a more comprehensive insight into the mechanisms involved in the Li response in E. coli.
Collapse
Affiliation(s)
| | | | | | - Bénédicte Sohm
- Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
| | - Pascale Bauda
- Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
| | - Damien Blaudez
- Université de Lorraine, CNRS, LIEC, F-54000, Nancy, France.
| |
Collapse
|
2
|
Hammad Hussain M, Sajid S, Martuscelli M, Aldahmash W, Zubair Mohsin M, Ashraf K, Guo M, Mohsin A. Sustainable biosynthesis of lycopene by using evolutionary adaptive recombinant Escherichia coli from orange peel waste. Heliyon 2024; 10:e34366. [PMID: 39114001 PMCID: PMC11305264 DOI: 10.1016/j.heliyon.2024.e34366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
This study aimed to evaluate the hydrolysates from orange peel waste (OPW) as the low-cost carbon source for lycopene production. Initially, the dilute acid pretreatment combined with enzymatic hydrolysis of OPW resulted in a total sugar concentration of 62.18 g/L. Meanwhile, a four-month adaptive laboratory evolution (ALE) experiment using a d-galacturonic acid minimal medium resulted in an improvement in the growth rate of our previously engineered Escherichia coli strain for lycopene production. After evolutionary adaptation, response surface methodology (RSM) was adapted to optimize the medium composition in fermentation. The results obtained from RSM analysis revealed that the 5.53 % carbon source of orange peel hydrolysate (OPH), 6.57 g/L nitrogen source, and 30 °C temperature boosted lycopene production in the final strain. Subsequently, the optimized treatment for lycopene fermentation was then conducted in a 5 L batch fermenter under the surveillance of a kinetic model that uses the Logistic equation for strain growth (μm = 0.441 h-1), and Luedeking-Piret equations for lycopene production (Pm = 1043 mgL-1) with growth rate constant (α = 0.1491). At last, lycopene biosynthesized from OPH was extracted and analyzed for qualitative validation. Likewise, its data on phytic acid (between 1.01 % and 0.86 %) and DPPH radical scavenging (between 38.06 % and 29.08 %) highlighted the better antioxidant capacity of lycopene. In conclusion, the OPH can be used as a fermentation feedstock which opens new possibilities of exploiting fruit crop residues for food and pharmaceutical applications.
Collapse
Affiliation(s)
- Muhammad Hammad Hussain
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology, Shanghai, 200237, PR China
| | - Subra Sajid
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan
| | - Maria Martuscelli
- Department of Bioscience and Food, Agricultural and Environmental Technology, University of the Studies of Teramo, Via Balzarini 1, 64100, Teramo (TE), Italy
| | - Waleed Aldahmash
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Zubair Mohsin
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology, Shanghai, 200237, PR China
| | - Kamran Ashraf
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology, Shanghai, 200237, PR China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology, Shanghai, 200237, PR China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
3
|
Lenski RE. Revisiting the Design of the Long-Term Evolution Experiment with Escherichia coli. J Mol Evol 2023; 91:241-253. [PMID: 36790511 DOI: 10.1007/s00239-023-10095-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/20/2023] [Indexed: 02/16/2023]
Abstract
The long-term evolution experiment (LTEE) with Escherichia coli began in 1988 and it continues to this day, with its 12 populations having recently reached 75,000 generations of evolution in a simple, well-controlled environment. The LTEE was designed to explore open-ended questions about the dynamics and repeatability of phenotypic and genetic evolution. Here I discuss various aspects of the LTEE's experimental design that have enabled its stability and success, including the choices of the culture regime, growth medium, ancestral strain, and statistical replication. I also discuss some of the challenges associated with a long-running project, such as handling procedural errors (e.g., cross-contamination) and managing the expanding collection of frozen samples. The simplicity of the experimental design and procedures have supported the long-term stability of the LTEE. That stability-along with the inherent creativity of the evolutionary process and the emergence of new genomic technologies-provides a platform that has allowed talented students and collaborators to pose questions, collect data, and make discoveries that go far beyond anything I could have imagined at the start of the LTEE.
Collapse
Affiliation(s)
- Richard E Lenski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
4
|
Accelerated Adaptive Laboratory Evolution by Automated Repeated Batch Processes in Parallelized Bioreactors. Microorganisms 2023; 11:microorganisms11020275. [PMID: 36838240 PMCID: PMC9965177 DOI: 10.3390/microorganisms11020275] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Adaptive laboratory evolution (ALE) is a valuable complementary tool for modern strain development. Insights from ALE experiments enable the improvement of microbial cell factories regarding the growth rate and substrate utilization, among others. Most ALE experiments are conducted by serial passaging, a method that involves large amounts of repetitive manual labor and comes with inherent experimental design flaws. The acquisition of meaningful and reliable process data is a burdensome task and is often undervalued and neglected, but also unfeasible in shake flask experiments due to technical limitations. Some of these limitations are alleviated by emerging automated ALE methods on the μL and mL scale. A novel approach to conducting ALE experiments is described that is faster and more efficient than previously used methods. The conventional shake flask approach was translated to a parallelized, L scale stirred-tank bioreactor system that runs controlled, automated, repeated batch processes. The method was validated with a growth optimization experiment of E. coli K-12 MG1655 grown with glycerol minimal media as a benchmark. Off-gas analysis enables the continuous estimation of the biomass concentration and growth rate using a black-box model based on first principles (soft sensor). The proposed method led to the same stable growth rates of E. coli with the non-native carbon source glycerol 9.4 times faster than the traditional manual approach with serial passaging in uncontrolled shake flasks and 3.6 times faster than an automated approach on the mL scale. Furthermore, it is shown that the cumulative number of cell divisions (CCD) alone is not a suitable timescale for measuring and comparing evolutionary progress.
Collapse
|
5
|
Laurin D, Mercier C, Quansah N, Robert JS, Usson Y, Schneider D, Hindré T, Schaack B. Extracellular Vesicles from 50,000 Generation Clones of the Escherichia coli Long-Term Evolution Experiment. Int J Mol Sci 2022; 23:ijms232314580. [PMID: 36498912 PMCID: PMC9737989 DOI: 10.3390/ijms232314580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Extracellular vesicles (EVs) are critical elements of cell-cell communication. Here, we characterized the outer membrane vesicles (OMVs) released by specific clones of Escherichia coli isolated from the Long-Term Evolution Experiment after 50,000 generations (50K) of adaptation to glucose minimal medium. Compared with their ancestor, the evolved clones produce small OMVs but also larger ones which display variable amounts of both OmpA and LPS. Tracking ancestral, fluorescently labelled OMVs revealed that they fuse with both ancestral- and 50K-evolved cells, albeit in different proportions. We quantified that less than 2% of the cells from one 50K-evolved clone acquired the fluorescence delivered by OMVs from the ancestral strain but that one cell concomitantly fuses with several OMVs. Globally, our results showed that OMV production in E. coli is a phenotype that varies along bacterial evolution and question the contribution of OMVs-mediated interactions in bacterial adaptation.
Collapse
Affiliation(s)
- David Laurin
- Département Scientifique Auvergne Rhône-Alpes, Etablissement Français du Sang, 38000 Grenoble, France
- Institute for Advanced Biosciences, INSERM U1209 & CNRS UMR 5309, Université Grenoble Alpes, 38042 Grenoble, France
| | - Corinne Mercier
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, 38000 Grenoble, France
- Correspondence:
| | - Nyamekye Quansah
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, 38000 Grenoble, France
| | - Julie Suzanne Robert
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, 38000 Grenoble, France
| | - Yves Usson
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, 38000 Grenoble, France
| | - Dominique Schneider
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, 38000 Grenoble, France
| | - Thomas Hindré
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, 38000 Grenoble, France
| | - Béatrice Schaack
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, 38000 Grenoble, France
- CEA, CNRS, IBS, Université Grenoble Alpes, 38044 Grenoble, France
| |
Collapse
|
6
|
Santiago-Alarcon D, Tapia-McClung H, Lerma-Hernández S, Venegas-Andraca SE. Quantum aspects of evolution: a contribution towards evolutionary explorations of genotype networks via quantum walks. J R Soc Interface 2020; 17:20200567. [PMID: 33171071 PMCID: PMC7729038 DOI: 10.1098/rsif.2020.0567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
Quantum biology seeks to explain biological phenomena via quantum mechanisms, such as enzyme reaction rates via tunnelling and photosynthesis energy efficiency via coherent superposition of states. However, less effort has been devoted to study the role of quantum mechanisms in biological evolution. In this paper, we used transcription factor networks with two and four different phenotypes, and used classical random walks (CRW) and quantum walks (QW) to compare network search behaviour and efficiency at finding novel phenotypes between CRW and QW. In the network with two phenotypes, at temporal scales comparable to decoherence time TD, QW are as efficient as CRW at finding new phenotypes. In the case of the network with four phenotypes, the QW had a higher probability of mutating to a novel phenotype than the CRW, regardless of the number of mutational steps (i.e. 1, 2 or 3) away from the new phenotype. Before quantum decoherence, the QW probabilities become higher turning the QW effectively more efficient than CRW at finding novel phenotypes under different starting conditions. Thus, our results warrant further exploration of the QW under more realistic network scenarios (i.e. larger genotype networks) in both closed and open systems (e.g. by considering Lindblad terms).
Collapse
Affiliation(s)
- Diego Santiago-Alarcon
- Red de Biología y Conservación de Vertebrados, Instituto de Ecología, A.C. Carr. Antigua a Coatepec 351, Col. El Haya, C.P. 91070, Xalapa, Veracruz, Mexico
| | - Horacio Tapia-McClung
- Centro de Investigación en Inteligencia Artificial, Universidad Veracruzana, Sebastián Camacho 5, Centro, Xalapa-Enríquez, Veracruz, Mexico
| | - Sergio Lerma-Hernández
- Facultad de Física, Universidad Veracruzana, Circuito Aguirre Beltrán s/n, Xalapa, Veracruz 91000, Mexico
| | - Salvador E. Venegas-Andraca
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Avenue Eugenio Garza Sada 2501, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
7
|
Hall AE, Karkare K, Cooper VS, Bank C, Cooper TF, Moore FB. Environment changes epistasis to alter trade‐offs along alternative evolutionary paths. Evolution 2019; 73:2094-2105. [DOI: 10.1111/evo.13825] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Anne E. Hall
- Department of Biology University of Akron Akron Ohio 44325
- Current address: Department of Molecular Virology and Microbiology Baylor College of Medicine Houston Texas 77030
| | - Kedar Karkare
- School of Natural and Computational Sciences Massey University Auckland 1025 New Zealand
| | - Vaughn S. Cooper
- Department of Microbiology and Molecular Genetics University of Pittsburgh Pittsburgh Pennsylvania 15219
| | - Claudia Bank
- Instituto Gulbenkian de Ciência 2780‐156 Oeiras Portugal
| | - Tim F. Cooper
- School of Natural and Computational Sciences Massey University Auckland 1025 New Zealand
| | | |
Collapse
|
8
|
Van den Bergh B, Swings T, Fauvart M, Michiels J. Experimental Design, Population Dynamics, and Diversity in Microbial Experimental Evolution. Microbiol Mol Biol Rev 2018; 82:e00008-18. [PMID: 30045954 PMCID: PMC6094045 DOI: 10.1128/mmbr.00008-18] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In experimental evolution, laboratory-controlled conditions select for the adaptation of species, which can be monitored in real time. Despite the current popularity of such experiments, nature's most pervasive biological force was long believed to be observable only on time scales that transcend a researcher's life-span, and studying evolution by natural selection was therefore carried out solely by comparative means. Eventually, microorganisms' propensity for fast evolutionary changes proved us wrong, displaying strong evolutionary adaptations over a limited time, nowadays massively exploited in laboratory evolution experiments. Here, we formulate a guide to experimental evolution with microorganisms, explaining experimental design and discussing evolutionary dynamics and outcomes and how it is used to assess ecoevolutionary theories, improve industrially important traits, and untangle complex phenotypes. Specifically, we give a comprehensive overview of the setups used in experimental evolution. Additionally, we address population dynamics and genetic or phenotypic diversity during evolution experiments and expand upon contributing factors, such as epistasis and the consequences of (a)sexual reproduction. Dynamics and outcomes of evolution are most profoundly affected by the spatiotemporal nature of the selective environment, where changing environments might lead to generalists and structured environments could foster diversity, aided by, for example, clonal interference and negative frequency-dependent selection. We conclude with future perspectives, with an emphasis on possibilities offered by fast-paced technological progress. This work is meant to serve as an introduction to those new to the field of experimental evolution, as a guide to the budding experimentalist, and as a reference work to the seasoned expert.
Collapse
Affiliation(s)
- Bram Van den Bergh
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
- Douglas Lab, Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Toon Swings
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
| | - Maarten Fauvart
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
- imec, Leuven, Belgium
| | - Jan Michiels
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
| |
Collapse
|
9
|
Abstract
Ever since Darwin, the role of natural selection in shaping the morphological, physiological, and behavioral adaptations of animals and plants across generations has been central to understanding life and its diversity. New discoveries have shown with increasing precision how genetic, molecular, and biochemical processes produce and express those organismal features during an individual's lifetime. When it comes to microorganisms, however, understanding the role of natural selection in producing adaptive solutions has historically been, and sometimes continues to be, contentious. This tension is curious because microbes enable one to observe the power of adaptation by natural selection with exceptional rigor and clarity, as exemplified by the burgeoning field of experimental microbial evolution. I trace the development of this field, describe an experiment with Escherichia coli that has been running for almost 30 years, and highlight other experiments in which natural selection has led to interesting dynamics and adaptive changes in microbial populations.
Collapse
Affiliation(s)
- Richard E Lenski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
10
|
Inter-laboratory evolution of a model organism and its epistatic effects on mutagenesis screens. Sci Rep 2016; 6:38001. [PMID: 27905490 PMCID: PMC5131308 DOI: 10.1038/srep38001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/02/2016] [Indexed: 01/12/2023] Open
Abstract
In theory, a few naturally occurring evolutionary changes in the genome of a model organism may have little or no observable impact on its wild type phenotype, and yet still substantially impact the phenotypes of mutant strains through epistasis. To see if this is happening in a model organism, we obtained nine different laboratories' wild type Myxococcus xanthus DK1622 "sublines" and sequenced each to determine if they had evolved after their physical separation. Under a common garden experiment, each subline satisfied the phenotypic prerequisites for wild type, but many differed to a significant degree in each of the four quantitative phenotypic traits we measured, with some sublines differing by several-fold. Genome resequencing identified 29 variants between the nine sublines, and eight had at least one unique variant within an Open Reading Frame (ORF). By disrupting the ORF MXAN7041 in two different sublines, we demonstrated substantial epistasis from these naturally occurring variants. The impact of such inter-laboratory wild type evolution is important to any genotype-to-phenotype study; an organism's phenotype may be sensitive to small changes in genetic background, so that results from phenotypic screens and other related experiments might not agree with prior published results or the results from other laboratories.
Collapse
|
11
|
Blount ZD. A case study in evolutionary contingency. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2016; 58:82-92. [PMID: 26787098 DOI: 10.1016/j.shpsc.2015.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/11/2015] [Indexed: 06/05/2023]
Abstract
Biological evolution is a fundamentally historical phenomenon in which intertwined stochastic and deterministic processes shape lineages with long, continuous histories that exist in a changing world that has a history of its own. The degree to which these characteristics render evolution historically contingent, and evolutionary outcomes thereby unpredictably sensitive to history has been the subject of considerable debate in recent decades. Microbial evolution experiments have proven among the most fruitful means of empirically investigating the issue of historical contingency in evolution. One such experiment is the Escherichia coli Long-Term Evolution Experiment (LTEE), in which twelve populations founded from the same clone of E. coli have evolved in parallel under identical conditions. Aerobic growth on citrate (Cit(+)), a novel trait for E. coli, evolved in one of these populations after more than 30,000 generations. Experimental replays of this population's evolution from various points in its history showed that the Cit(+) trait was historically contingent upon earlier mutations that potentiated the trait by rendering it mutationally accessible. Here I review this case of evolutionary contingency and discuss what it implies about the importance of historical contingency arising from the core processes of evolution.
Collapse
Affiliation(s)
- Zachary D Blount
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
12
|
Cui F, Yuan B. Evolutionary dynamics of morphological stability in a long-term experiment with Escherichia coli. IET Syst Biol 2015; 9:25-30. [PMID: 25569861 PMCID: PMC8687259 DOI: 10.1049/iet-syb.2013.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/10/2014] [Accepted: 03/25/2014] [Indexed: 11/20/2022] Open
Abstract
To investigate the questions in morphological evolution, some biologists seek to carry out evolution experiments owing to the incompleteness and uncontrollability of the fossil record and natural populations. To quantitatively analyse the morphology (cell size) evolution observed from a long-term experiment with Escherichia coli, the authors present three mathematical approximations to the Wright-Fisher model of the morphological evolution. They firstly use a deterministic approximation, which fails to predict evolutionary dynamics of cell size and proves the importance of stochasticity in large populations. Then, they develop a stochastic approximation and derive an analytic expression for the anticipated waiting time to reach the stability of cell size. The results show that the calculation of this waiting time is in good agreement with the experimental data and that the selective advantage plays a prominent role in cell size evolution, with mutation rate and population size having less impact. Finally, they employ a multistep process to approximate the Wright-Fisher model of cell size evolution and acquire an analytical formula for the median waiting time until the stability of cell size. This median time supports the idea that the selective advantage is the dominant force for the morphological evolution in the long-term experiment.
Collapse
Affiliation(s)
- Fangshu Cui
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Bo Yuan
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| |
Collapse
|
13
|
Deatherage DE, Traverse CC, Wolf LN, Barrick JE. Detecting rare structural variation in evolving microbial populations from new sequence junctions using breseq. Front Genet 2015; 5:468. [PMID: 25653667 PMCID: PMC4301190 DOI: 10.3389/fgene.2014.00468] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/18/2014] [Indexed: 12/20/2022] Open
Abstract
New mutations leading to structural variation (SV) in genomes—in the form of mobile element insertions, large deletions, gene duplications, and other chromosomal rearrangements—can play a key role in microbial evolution. Yet, SV is considerably more difficult to predict from short-read genome resequencing data than single-nucleotide substitutions and indels (SN), so it is not yet routinely identified in studies that profile population-level genetic diversity over time in evolution experiments. We implemented an algorithm for detecting polymorphic SV as part of the breseq computational pipeline. This procedure examines split-read alignments, in which the two ends of a single sequencing read match disjoint locations in the reference genome, in order to detect structural variants and estimate their frequencies within a sample. We tested our algorithm using simulated Escherichia coli data and then applied it to 500- and 1000-generation population samples from the Lenski E. coli long-term evolution experiment (LTEE). Knowledge of genes that are targets of selection in the LTEE and mutations present in previously analyzed clonal isolates allowed us to evaluate the accuracy of our procedure. Overall, SV accounted for ~25% of the genetic diversity found in these samples. By profiling rare SV, we were able to identify many cases where alternative mutations in key genes transiently competed within a single population. We also found, unexpectedly, that mutations in two genes that rose to prominence at these early time points always went extinct in the long term. Because it is not limited by the base-calling error rate of the sequencing technology, our approach for identifying rare SV in whole-population samples may have a lower detection limit than similar predictions of SNs in these data sets. We anticipate that this functionality of breseq will be useful for providing a more complete picture of genome dynamics during evolution experiments with haploid microorganisms.
Collapse
Affiliation(s)
- Daniel E Deatherage
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, Center for Computational Biology and Bioinformatics, Institute for Cellular and Molecular Biology, The University of Texas at Austin Austin, TX, USA
| | - Charles C Traverse
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, Center for Computational Biology and Bioinformatics, Institute for Cellular and Molecular Biology, The University of Texas at Austin Austin, TX, USA
| | - Lindsey N Wolf
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, Center for Computational Biology and Bioinformatics, Institute for Cellular and Molecular Biology, The University of Texas at Austin Austin, TX, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, Center for Computational Biology and Bioinformatics, Institute for Cellular and Molecular Biology, The University of Texas at Austin Austin, TX, USA
| |
Collapse
|
14
|
Yoshida M, Tsuru S, Hirata N, Seno S, Matsuda H, Ying BW, Yomo T. Directed evolution of cell size in Escherichia coli. BMC Evol Biol 2014; 14:257. [PMID: 25514845 PMCID: PMC4279887 DOI: 10.1186/s12862-014-0257-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/27/2014] [Indexed: 11/16/2022] Open
Abstract
Background In bacteria, cell size affects chromosome replication, the assembly of division machinery, cell wall synthesis, membrane synthesis and ultimately growth rate. In addition, cell size can also be a target for Darwinian evolution for protection from predators. This strong coupling of cell size and growth, however, could lead to the introduction of growth defects after size evolution. An important question remains: can bacterial cell size change and/or evolve without imposing a growth burden? Results The directed evolution of particular cell sizes, without a growth burden, was tested with a laboratory Escherichia coli strain. Cells of defined size ranges were collected by a cell sorter and were subsequently cultured. This selection-propagation cycle was repeated, and significant changes in cell size were detected within 400 generations. In addition, the width of the size distribution was altered. The changes in cell size were unaccompanied by a growth burden. Whole genome sequencing revealed that only a few mutations in genes related to membrane synthesis conferred the size evolution. Conclusions In conclusion, bacterial cell size could evolve, through a few mutations, without growth reduction. The size evolution without growth reduction suggests a rapid evolutionary change to diverse cell sizes in bacterial survival strategies. Electronic supplementary material The online version of this article (doi:10.1186/s12862-014-0257-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mari Yoshida
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Saburo Tsuru
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Naoko Hirata
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Shigeto Seno
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hideo Matsuda
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Bei-Wen Ying
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Tetsuya Yomo
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Graduate School of Frontier Biosciences, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), Suita, Osaka, 565-0871, Japan. .,Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
| |
Collapse
|
15
|
Williams AB. Spontaneous mutation rates come into focus in Escherichia coli. DNA Repair (Amst) 2014; 24:73-79. [DOI: 10.1016/j.dnarep.2014.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/15/2014] [Accepted: 09/20/2014] [Indexed: 11/15/2022]
|
16
|
Kim J, Webb AM, Kershner JP, Blaskowski S, Copley SD. A versatile and highly efficient method for scarless genome editing in Escherichia coli and Salmonella enterica. BMC Biotechnol 2014; 14:84. [PMID: 25255806 PMCID: PMC4236582 DOI: 10.1186/1472-6750-14-84] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 08/14/2014] [Indexed: 11/10/2022] Open
Abstract
Background Recently developed methods for genome editing in bacteria take advantage of the introduction of double-strand breaks by I-SceI in a mutation cassette to select for cells in which homologous recombination has healed the break and introduced a desired mutation. This elegantly designed method did not work well in our hands for most genes. Results We corrected a mutation in the gene encoding I-SceI that compromised the function of a previously used Red helper plasmid. Further, we found that transcription extending into the mutation cassette interferes with cleavage by I-SceI. Addition of two transcription terminators upstream of the cleavage site dramatically increases the efficiency of genome editing. We also developed an improved method for modification of essential genes. Inclusion of a segment of the essential gene consisting of synonymous codons restores an open reading frame when the mutation cassette is integrated into the genome and decreases the frequency of recombination events that fail to incorporate the desired mutation. The optimized protocol takes only 5 days and has been 100% successful for over 100 genomic modifications in our hands. Conclusions The method we describe here is reliable and versatile, enabling various types of genome editing in Escherichia coli and Salmonella enterica by straightforward modifications of the mutation cassette. We provide detailed descriptions of the methods as well as designs for insertions, deletions, and introduction of point mutations.
Collapse
Affiliation(s)
| | | | | | | | - Shelley D Copley
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
17
|
Guidot A, Jiang W, Ferdy JB, Thébaud C, Barberis P, Gouzy J, Genin S. Multihost experimental evolution of the pathogen Ralstonia solanacearum unveils genes involved in adaptation to plants. Mol Biol Evol 2014; 31:2913-28. [PMID: 25086002 DOI: 10.1093/molbev/msu229] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ralstonia solanacearum, the causal agent of a lethal bacterial wilt plant disease, infects an unusually wide range of hosts. These hosts can further be split into plants where R. solanacearum is known to cause disease (original hosts) and those where this bacterium can grow asymptomatically (distant hosts). Moreover, this pathogen is able to adapt to many plants as supported by field observations reporting emergence of strains with enlarged pathogenic properties. To investigate the genetic bases of host adaptation, we conducted evolution experiments by serial passages of a single clone of the pathogen on three original and two distant hosts over 300 bacterial generations and then analyzed the whole-genome of nine evolved clones. Phenotypic analysis of the evolved clones showed that the pathogen can increase its fitness on both original and distant hosts although the magnitude of fitness increase was greater on distant hosts. Only few genomic modifications were detected in evolved clones compared with the ancestor but parallel evolutionary changes in two genes were observed in independent evolved populations. Independent mutations in the regulatory gene efpR were selected for in three populations evolved on beans, a distant host. Reverse genetic approaches confirmed that these mutations were associated with fitness gain on bean plants. This work provides a first step toward understanding the within-host evolutionary dynamics of R. solanacearum during infection and identifying bacterial genes subjected to in planta selection. The discovery of EfpR as a determinant conditioning host adaptation of the pathogen illustrates how experimental evolution coupled with whole-genome sequencing is a potent tool to identify novel molecular players involved in central life-history traits.
Collapse
Affiliation(s)
- Alice Guidot
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Wei Jiang
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Jean-Baptiste Ferdy
- UPS-CNRS-ENFA, Laboratoire Évolution et Diversité Biologique (EDB), UMR5174, Université Paul Sabatier, Toulouse, France
| | - Christophe Thébaud
- UPS-CNRS-ENFA, Laboratoire Évolution et Diversité Biologique (EDB), UMR5174, Université Paul Sabatier, Toulouse, France
| | - Patrick Barberis
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Jérôme Gouzy
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Stéphane Genin
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| |
Collapse
|
18
|
Dunn IS. Are molecular alphabets universal enabling factors for the evolution of complex life? ORIGINS LIFE EVOL B 2013; 43:445-64. [PMID: 24510462 DOI: 10.1007/s11084-014-9354-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
Abstract
Terrestrial biosystems depend on macromolecules, and this feature is often considered as a likely universal aspect of life. While opinions differ regarding the importance of small-molecule systems in abiogenesis, escalating biological functional demands are linked with increasing complexity in key molecules participating in biosystem operations, and many such requirements cannot be efficiently mediated by relatively small compounds. It has long been recognized that known life is associated with the evolution of two distinct molecular alphabets (nucleic acid and protein), specific sequence combinations of which serve as informational and functional polymers. In contrast, much less detailed focus has been directed towards the potential universal need for molecular alphabets in constituting complex chemically-based life, and the implications of such a requirement. To analyze this, emphasis here is placed on the generalizable replicative and functional characteristics of molecular alphabets and their concatenates. A primary replicative alphabet based on the simplest possible molecular complementarity can potentially enable evolutionary processes to occur, including the encoding of secondarily functional alphabets. Very large uniquely specified ('non-alphabetic') molecules cannot feasibly underlie systems capable of the replicative and evolutionary properties which characterize complex biosystems. Transitions in the molecular evolution of alphabets can be related to progressive bridging of barriers which enable higher levels of biosystem organization. It is thus highly probable that molecular alphabets are an obligatory requirement for complex chemically-based life anywhere in the universe. In turn, reference to molecular alphabets should be usefully applied in current definitions of life.
Collapse
Affiliation(s)
- Ian S Dunn
- CytoCure LLC, Suite 430C, 100 Cummings Center, Beverly, MA, 01915, USA,
| |
Collapse
|
19
|
Abstract
Experimental studies of evolution have increased greatly in number in recent years, stimulated by the growing power of genomic tools. However, organismal fitness remains the ultimate metric for interpreting these experiments, and the dynamics of fitness remain poorly understood over long time scales. Here, we examine fitness trajectories for 12 Escherichia coli populations during 50,000 generations. Mean fitness appears to increase without bound, consistent with a power law. We also derive this power-law relation theoretically by incorporating clonal interference and diminishing-returns epistasis into a dynamical model of changes in mean fitness over time.
Collapse
Affiliation(s)
- Michael J Wiser
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
20
|
Genome duplication and mutations in ACE2 cause multicellular, fast-sedimenting phenotypes in evolved Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2013; 110:E4223-31. [PMID: 24145419 DOI: 10.1073/pnas.1305949110] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Laboratory evolution of the yeast Saccharomyces cerevisiae in bioreactor batch cultures yielded variants that grow as multicellular, fast-sedimenting clusters. Knowledge of the molecular basis of this phenomenon may contribute to the understanding of natural evolution of multicellularity and to manipulating cell sedimentation in laboratory and industrial applications of S. cerevisiae. Multicellular, fast-sedimenting lineages obtained from a haploid S. cerevisiae strain in two independent evolution experiments were analyzed by whole genome resequencing. The two evolved cell lines showed different frameshift mutations in a stretch of eight adenosines in ACE2, which encodes a transcriptional regulator involved in cell cycle control and mother-daughter cell separation. Introduction of the two ace2 mutant alleles into the haploid parental strain led to slow-sedimenting cell clusters that consisted of just a few cells, thus representing only a partial reconstruction of the evolved phenotype. In addition to single-nucleotide mutations, a whole-genome duplication event had occurred in both evolved multicellular strains. Construction of a diploid reference strain with two mutant ace2 alleles led to complete reconstruction of the multicellular-fast sedimenting phenotype. This study shows that whole-genome duplication and a frameshift mutation in ACE2 are sufficient to generate a fast-sedimenting, multicellular phenotype in S. cerevisiae. The nature of the ace2 mutations and their occurrence in two independent evolution experiments encompassing fewer than 500 generations of selective growth suggest that switching between unicellular and multicellular phenotypes may be relevant for competitiveness of S. cerevisiae in natural environments.
Collapse
|
21
|
Mozhayskiy V, Tagkopoulos I. Microbial evolution in vivo and in silico: methods and applications. Integr Biol (Camb) 2013; 5:262-77. [PMID: 23096365 DOI: 10.1039/c2ib20095c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Microbial evolution has been extensively studied in the past fifty years, which has lead to seminal discoveries that have shaped our understanding of evolutionary forces and dynamics. It is only recently however, that transformative technologies and computational advances have enabled a larger in-scale and in-depth investigation of the genetic basis and mechanistic underpinnings of evolutionary adaptation. In this review we focus on the strengths and limitations of in vivo and in silico techniques for studying microbial evolution in the laboratory, and we discuss how these complementary approaches can be integrated in a unifying framework for elucidating microbial evolution.
Collapse
Affiliation(s)
- Vadim Mozhayskiy
- Department of Computer Science, UC Davis Genome Center, University of California Davis, Davis, California 95616, USA
| | | |
Collapse
|
22
|
Beaume M, Monina N, Schrenzel J, François P. Bacterial genome evolution within a clonal population: from in vitro investigations to in vivo observations. Future Microbiol 2013; 8:661-74. [PMID: 23642119 DOI: 10.2217/fmb.13.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacteria are faced with a diversity of environmental stresses that include high salt concentrations, heavy metals and pH fluctuations. Adaptation to resist such stresses is a complex phenomenon that involves global pathways and simultaneous acquisition of multiple unrelated properties. During the last 3 years, the development of new technologies in the field of molecular biology has led to numerous fundamental and quantitative in vitro and in vivo evolutionary studies that have improved our understanding of the principles underlying bacterial adaptations, and helped us develop strategies to cope with the health burden of bacterial virulence. In this review, the authors discuss the evolution of bacteria in the laboratory and in human patients.
Collapse
Affiliation(s)
- Marie Beaume
- Genomic Research Laboratory, Infectious Diseases Service, University of Geneva Hospitals, Rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva 14, Switzerland
| | | | | | | |
Collapse
|
23
|
Flynn KM, Cooper TF, Moore FBG, Cooper VS. The environment affects epistatic interactions to alter the topology of an empirical fitness landscape. PLoS Genet 2013; 9:e1003426. [PMID: 23593024 PMCID: PMC3616912 DOI: 10.1371/journal.pgen.1003426] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 02/14/2013] [Indexed: 11/27/2022] Open
Abstract
The fitness effect of mutations can be influenced by their interactions with the environment, other mutations, or both. Previously, we constructed 32 ( = 25) genotypes that comprise all possible combinations of the first five beneficial mutations to fix in a laboratory-evolved population of Escherichia coli. We found that (i) all five mutations were beneficial for the background on which they occurred; (ii) interactions between mutations drove a diminishing returns type epistasis, whereby epistasis became increasingly antagonistic as the expected fitness of a genotype increased; and (iii) the adaptive landscape revealed by the mutation combinations was smooth, having a single global fitness peak. Here we examine how the environment influences epistasis by determining the interactions between the same mutations in two alternative environments, selected from among 1,920 screened environments, that produced the largest increase or decrease in fitness of the most derived genotype. Some general features of the interactions were consistent: mutations tended to remain beneficial and the overall pattern of epistasis was of diminishing returns. Other features depended on the environment; in particular, several mutations were deleterious when added to specific genotypes, indicating the presence of antagonistic interactions that were absent in the original selection environment. Antagonism was not caused by consistent pleiotropic effects of individual mutations but rather by changing interactions between mutations. Our results demonstrate that understanding adaptation in changing environments will require consideration of the combined effect of epistasis and pleiotropy across environments. The fitness effect of beneficial mutations can depend on how they interact with their genetic and external environment. The form of these interactions is important because it can alter adaptive outcomes, selecting for or against certain combinations of beneficial mutations. Here, we examine how interactions between beneficial mutations favored during adaptation of a lab strain of Escherichia coli to one simple environment are altered when the strain is grown in two novel environments. We found that fitness effects were greatly influenced by both the genetic and external environments. In several instances a change in environment reversed the effect of a mutation from beneficial to deleterious or caused combinations of beneficial mutations to become deleterious. Our results suggest that a complex or fluctuating environment may favor combinations of mutations whose interactions may be less sensitive to external conditions.
Collapse
Affiliation(s)
- Kenneth M. Flynn
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Tim F. Cooper
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Francisco B-G. Moore
- Integrated Bioscience Program, University of Akron, Akron, Ohio, United States of America
| | - Vaughn S. Cooper
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
24
|
Herron MD, Doebeli M. Parallel evolutionary dynamics of adaptive diversification in Escherichia coli. PLoS Biol 2013; 11:e1001490. [PMID: 23431270 PMCID: PMC3576414 DOI: 10.1371/journal.pbio.1001490] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 01/09/2013] [Indexed: 11/19/2022] Open
Abstract
The divergence of Escherichia coli bacteria into metabolically distinct ecotypes has a similar genetic basis and similar evolutionary dynamics across independently evolved populations. The causes and mechanisms of evolutionary diversification are central issues in biology. Geographic isolation is the traditional explanation for diversification, but recent theoretical and empirical studies have shown that frequency-dependent selection can drive diversification without isolation and that adaptive diversification occurring in sympatry may be an important source of biological diversity. However, there are no empirical examples in which sympatric lineage splits have been understood at the genetic level, and it is unknown how predictable this process is—that is, whether similar ecological settings lead to parallel evolutionary dynamics of diversification. We documented the genetic basis and the evolutionary dynamics of adaptive diversification in three replicate evolution experiments, in which competition for two carbon sources caused initially isogenic populations of the bacterium Escherichia coli to diversify into two coexisting ecotypes representing different physiological adaptations in the central carbohydrate metabolism. Whole-genome sequencing of clones of each ecotype from different populations revealed many parallel and some unique genetic changes underlying the derived phenotypes, including changes to the same genes and sometimes to the same nucleotide. Timelines of allele frequencies extracted from the frozen “fossil” record of the three evolving populations suggest parallel evolutionary dynamics driven at least in part by a co-evolutionary process in which mutations causing one type of physiology changed the ecological environment, allowing the invasion of mutations causing an alternate physiology. This process closely corresponds to the evolutionary dynamics seen in mathematical models of adaptive diversification due to frequency-dependent ecological interactions. The parallel genetic changes underlying similar phenotypes in independently evolved lineages provide empirical evidence of adaptive diversification as a predictable evolutionary process. The causes and mechanisms of evolutionary diversification are central issues in biology. There is well-established theory that predicts that adaptive diversification can arise because of ecological interactions between individuals, such as competition or predation, but there are no empirical examples in which this process has been observed at the genetic level. We documented the genetic basis of adaptive diversification resulting from competition for resources in populations of the bacterium Escherichia coli. The populations diversified into two coexisting ecotypes representing different physiological adaptations. We found that similar but independently evolved phenotypes often shared mutations in the same gene and, in four cases, shared identical mutations at the same nucleotide position. Timelines of allele frequencies extracted from the frozen “fossil record” of three evolving populations showed parallel evolutionary dynamics, suggesting that mutations causing one type of physiology changed the ecological environment and allowed invasion of mutations causing an alternate physiology. The results provide empirical evidence of adaptive diversification as a predictable evolutionary process.
Collapse
Affiliation(s)
- Matthew D. Herron
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Doebeli
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
25
|
Qi J, Du Y, Bai H, Zhu X, Hu M, Luo Y, Liu Y. Global Protein Expression Profile Response ofEscherichia coliATCC 25922 Exposed to Enrofloxacin. Microb Drug Resist 2013; 19:6-14. [DOI: 10.1089/mdr.2012.0097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jing Qi
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hua Bai
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaoling Zhu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ming Hu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yanbo Luo
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuqing Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
26
|
Abstract
Hypermutability is a phenotype characterized by a moderate to high elevation of spontaneous mutation rates and could result from DNA replication errors, defects in error correction mechanisms and many other causes. The elevated mutation rates are helpful to organisms to adapt to sudden and unforeseen threats to survival. At the same time hypermutability also leads to the generation of many deleterious mutations which offset its adaptive value and therefore disadvantageous. Nevertheless, it is very common in nature, especially among clinical isolates of pathogens. Hypermutability is inherited by indirect (second order) selection along with the beneficial mutations generated. At large population sizes and high mutation rates many cells in the population could concurrently acquire beneficial mutations of varying adaptive (fitness) values. These lineages compete with the ancestral cells and also among themselves for fixation. The one with the 'fittest' mutation gets fixed ultimately while the others are lost. This has been called 'clonal interference' which puts a speed limit on adaptation. The original clonal interference hypothesis has been modified recently. Nonheritable (transient) hypermtability conferring significant adaptive benefits also occur during stress response although its molecular basis remains controversial. The adaptive benefits of heritable hypermutability are discussed with emphasis on host-pathogen interactions.
Collapse
|
27
|
Historical contingency affects signaling strategies and competitive abilities in evolving populations of simulated robots. Proc Natl Acad Sci U S A 2012; 109:864-8. [PMID: 22215591 DOI: 10.1073/pnas.1104267109] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the key innovations during the evolution of life on earth has been the emergence of efficient communication systems, yet little is known about the causes and consequences of the great diversity within and between species. By conducting experimental evolution in 20 independently evolving populations of cooperatively foraging simulated robots, we found that historical contingency in the occurrence order of novel phenotypic traits resulted in the emergence of two distinct communication strategies. The more complex foraging strategy was less efficient than the simpler strategy. However, when the 20 populations were placed in competition with each other, the populations with the more complex strategy outperformed the populations with the less complex strategy. These results demonstrate a tradeoff between communication efficiency and robustness and suggest that stochastic events have important effects on signal evolution and the outcome of competition between distinct populations.
Collapse
|
28
|
Barrett RDH, Hoekstra HE. Molecular spandrels: tests of adaptation at the genetic level. Nat Rev Genet 2011; 12:767-80. [PMID: 22005986 DOI: 10.1038/nrg3015] [Citation(s) in RCA: 371] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although much progress has been made in identifying the genes (and, in rare cases, mutations) that contribute to phenotypic variation, less is known about the effects that these genes have on fitness. Nonetheless, genes are commonly labelled as 'adaptive' if an allele has been shown to affect a phenotype with known or suspected functional importance or if patterns of nucleotide variation at the locus are consistent with positive selection. In these cases, the 'adaptive' designation may be premature and may lead to incorrect conclusions about the relationships between gene function and fitness. Experiments to test targets and agents of natural selection within a genomic context are necessary for identifying the adaptive consequences of individual alleles.
Collapse
Affiliation(s)
- Rowan D H Barrett
- Department of Organismic and Evolutionary Biology, Department of Molecular and Cellular Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
29
|
Lee DH, Feist AM, Barrett CL, Palsson BØ. Cumulative number of cell divisions as a meaningful timescale for adaptive laboratory evolution of Escherichia coli. PLoS One 2011; 6:e26172. [PMID: 22028828 PMCID: PMC3196513 DOI: 10.1371/journal.pone.0026172] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/21/2011] [Indexed: 11/18/2022] Open
Abstract
Adaptive laboratory evolution (ALE) under controlled conditions has become a valuable approach for the study of the genetic and biochemical basis for microbial adaptation under a given selection pressure. Conventionally, the timescale in ALE experiments has been set in terms of number of generations. As mutations are believed to occur primarily during cell division in growing cultures, the cumulative number of cell divisions (CCD) would be an alternative way to set the timescale for ALE. Here we show that in short-term ALE (up to 40–50 days), Escherichia coli, under growth rate selection pressure, was found to undergo approximately 1011.2 total cumulative cell divisions in the population to produce a new stable growth phenotype that results from 2 to 8 mutations. Continuous exposure to a low level of the mutagen N-methyl-N′-nitro-N-nitrosoguanidine was found to accelerate this timescale and led to a superior growth rate phenotype with a much larger number of mutations as determined with whole-genome sequencing. These results would be useful for the fundamental kinetics of the ALE process in designing ALE experiments and provide a basis for its quantitative description.
Collapse
Affiliation(s)
- Dae-Hee Lee
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Adam M. Feist
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (BOP); (AMF)
| | - Christian L. Barrett
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Bernhard Ø. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (BOP); (AMF)
| |
Collapse
|
30
|
Woods RJ, Barrick JE, Cooper TF, Shrestha U, Kauth MR, Lenski RE. Second-order selection for evolvability in a large Escherichia coli population. Science 2011; 331:1433-6. [PMID: 21415350 DOI: 10.1126/science.1198914] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In theory, competition between asexual lineages can lead to second-order selection for greater evolutionary potential. To test this hypothesis, we revived a frozen population of Escherichia coli from a long-term evolution experiment and compared the fitness and ultimate fates of four genetically distinct clones. Surprisingly, two clones with beneficial mutations that would eventually take over the population had significantly lower competitive fitness than two clones with mutations that later went extinct. By replaying evolution many times from these clones, we showed that the eventual winners likely prevailed because they had greater potential for further adaptation. Genetic interactions that reduce the benefit of certain regulatory mutations in the eventual losers appear to explain, at least in part, why they were outcompeted.
Collapse
Affiliation(s)
- Robert J Woods
- Department of Zoology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|
31
|
Dhar R, Sägesser R, Weikert C, Yuan J, Wagner A. Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution. J Evol Biol 2011; 24:1135-53. [PMID: 21375649 DOI: 10.1111/j.1420-9101.2011.02249.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Most laboratory evolution studies that characterize evolutionary adaptation genomically focus on genetically simple traits that can be altered by one or few mutations. Such traits are important, but they are few compared with complex, polygenic traits influenced by many genes. We know much less about complex traits, and about the changes that occur in the genome and in gene expression during their evolutionary adaptation. Salt stress tolerance is such a trait. It is especially attractive for evolutionary studies, because the physiological response to salt stress is well-characterized on the molecular and transcriptome level. This provides a unique opportunity to compare evolutionary adaptation and physiological adaptation to salt stress. The yeast Saccharomyces cerevisiae is a good model system to study salt stress tolerance, because it contains several highly conserved pathways that mediate the salt stress response. We evolved three replicate lines of yeast under continuous salt (NaCl) stress for 300 generations. All three lines evolved faster growth rate in high salt conditions than their ancestor. In these lines, we studied gene expression changes through microarray analysis and genetic changes through next generation population sequencing. We found two principal kinds of gene expression changes, changes in basal expression (82 genes) and changes in regulation (62 genes). The genes that change their expression involve several well-known physiological stress-response genes, including CTT1, MSN4 and HLR1. Next generation sequencing revealed only one high-frequency single-nucleotide change, in the gene MOT2, that caused increased fitness when introduced into the ancestral strain. Analysis of DNA content per cell revealed ploidy increases in all the three lines. Our observations suggest that evolutionary adaptation of yeast to salt stress is associated with genome size increase and modest expression changes in several genes.
Collapse
Affiliation(s)
- R Dhar
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
32
|
RENAUT SÉBASTIEN, NOLTE ARNEW, ROGERS SEANM, DEROME NICOLAS, BERNATCHEZ LOUIS. SNP signatures of selection on standing genetic variation and their association with adaptive phenotypes along gradients of ecological speciation in lake whitefish species pairs (Coregonus spp.). Mol Ecol 2010; 20:545-59. [DOI: 10.1111/j.1365-294x.2010.04952.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
33
|
Adaptation of Drosophila melanogaster to increased NaCl concentration due to dominant beneficial mutations. Genetica 2010; 139:177-86. [PMID: 21128095 DOI: 10.1007/s10709-010-9535-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 11/23/2010] [Indexed: 10/18/2022]
|
34
|
Abstract
Multiple constraints variously affect different parts of the genomes of diverse life forms. The selective pressures that shape the evolution of viral, archaeal, bacterial and eukaryotic genomes differ markedly, even among relatively closely related animal and bacterial lineages; by contrast, constraints affecting protein evolution seem to be more universal. The constraints that shape the evolution of genomes and phenomes are complemented by the plasticity and robustness of genome architecture, expression and regulation. Taken together, these findings are starting to reveal complex networks of evolutionary processes that must be integrated to attain a new synthesis of evolutionary biology.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA.
| | | |
Collapse
|