1
|
Lawrence AB, Brown SM, Bradford BM, Mabbott NA, Bombail V, Rutherford KMD. Non-neuronal brain biology and its relevance to animal welfare. Neurosci Biobehav Rev 2025; 173:106136. [PMID: 40185375 DOI: 10.1016/j.neubiorev.2025.106136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Non-neuronal cells constitute a significant portion of brain tissue and are seen as having key roles in brain homeostasis and responses to challenges. This review illustrates how non-neuronal biology can bring new perspectives to animal welfare through understanding mechanisms that determine welfare outcomes and highlighting interventions to improve welfare. Most obvious in this respect is the largely unrecognised relevance of neuroinflammation to animal welfare which is increasingly found to have roles in determining how animals respond to challenges. We start by introducing non-neuronal cells and review their involvement in affective states and cognition often seen as core psychological elements of animal welfare. We find that the evidence for a causal involvement of glia in cognition is currently more advanced than the corresponding evidence for affective states. We propose that translational research on affective disorders could usefully apply welfare science derived approaches for assessing affective states. Using evidence from translational research, we illustrate the involvement of non-neuronal cells and neuroinflammatory processes as mechanisms modulating resilience to welfare challenges including disease, pain, and social stress. We review research on impoverished environments and environmental enrichment which suggests that environmental conditions which improve animal welfare also improve resilience to challenges through balancing pro- and anti-inflammatory non-neuronal processes. We speculate that non-neuronal biology has relevance to animal welfare beyond neuro-inflammation including facilitating positive affective states. We acknowledge the relevance of neuronal biology to animal welfare whilst proposing that non-neuronal biology provides additional and relevant insights to improve animals' lives.
Collapse
Affiliation(s)
- Alistair B Lawrence
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK; Scotland's Rural College (SRUC), Edinburgh EH9 3JG, UK.
| | - Sarah M Brown
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Barry M Bradford
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Neil A Mabbott
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | | | | |
Collapse
|
2
|
Papatsiros VG, Maragkakis G, Papakonstantinou GI. Stress Biomarkers in Pigs: Current Insights and Clinical Application. Vet Sci 2024; 11:640. [PMID: 39728980 DOI: 10.3390/vetsci11120640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
Our study aimed to contribute to the understanding of the stress process in pigs to better assess and control their stress levels. Nowadays, pigs in intensive farming are exposed to several stress factors, such as weaning, transportation, diseases and vaccinations. As a result, the animals experience significant stress responses and inflammatory reactions that affect their health, growth and productivity. Therefore, it is crucial to assess their stress levels, and the use of stress biomarkers could be useful in their evaluation. An up-to-date overview of the different biomarkers that can be used for the assessment of stress is given. It also discusses the methods used to investigate these biomarkers, particularly non-invasive approaches, such as saliva sampling, as practical tools for monitoring animal welfare. In conclusion, our study highlights the importance of using multiple biomarkers for a comprehensive evaluation of stress and points to the need for further research to standardize the sampling procedures and improve stress management in pig farming.
Collapse
Affiliation(s)
- Vasileios G Papatsiros
- Clinic of Medicine, Faculty of Veterinary Medicine, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece
| | - Georgios Maragkakis
- Clinic of Medicine, Faculty of Veterinary Medicine, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece
| | - Georgios I Papakonstantinou
- Clinic of Medicine, Faculty of Veterinary Medicine, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece
| |
Collapse
|
3
|
Mormede E, Mormede P. Genetic Variation of Hypothalamic-Pituitary-Adrenal Axis Activity in Farm Animals and Beyond. Neuroendocrinology 2024; 115:128-137. [PMID: 39626641 DOI: 10.1159/000542831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/14/2024] [Indexed: 01/21/2025]
Abstract
BACKGROUND Many experimental data in several species clearly demonstrate the important genetic contribution to variations in HPA axis activity. The influence of corticosteroid hormones on adaptive processes and on production traits such as growth rate, feed efficiency, carcass composition, and meat quality is a strong impetus to the search for the molecular bases of these differences for efficient genetic selection. SUMMARY Three main sources of genetic variability have been documented so far in farm animal species, the adrenal cortex sensitivity to ACTH-regulating corticosteroid hormone production, the bioavailability of corticosteroid hormones and especially corticosteroid-binding globulin capacity, and glucocorticoid receptor function. The effect of single mutations may be dependent on the genetic background, and genetic variation of cortisol levels may have different functional consequences depending on the molecular mechanisms responsible for this change. KEY MESSAGES Understanding the genetic basis of HPA axis activity allows the development of genomic tools and breeding technologies aimed at improving adaptive capacity and stress tolerance in farm animals and their use as valuable models for the genetic study of the HPA axis and the correlation with adaptation, metabolism, and other functions regulated by adrenal hormones, and associated pathologies (obesity, cardiovascular, etc.). The next step will be to explore HPA axis variability from a system genetics perspective including the multiple sources of variation and their interactions. This multifactorial approach is a prerequisite to the use of the HPA axis phenotypes in the genetic selection for more productive and robust animals, with a high level of production of quality products.
Collapse
Affiliation(s)
- Elena Mormede
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, Toulouse, France
| | - Pierre Mormede
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, Toulouse, France
| |
Collapse
|
4
|
Ding L, Colman ER, Wang Y, Ramachandran M, Maloney SK, Chen N, Yin J, Chen L, Lier EV, Blache D, Wang M. Novel pathways linked to the expression of temperament in Merino sheep: a genome-wide association study. Animal 2024; 18:101279. [PMID: 39396416 DOI: 10.1016/j.animal.2024.101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 10/15/2024] Open
Abstract
Animal temperament refers to the inherent behavioural and emotional characteristics of an animal, influencing how it interacts with its environment. The selection of sheep for temperament can change the temperament traits of the selected line and improve the welfare and production (reproduction, growth, immunity) of those animals. To understand the genetics that underly variation in temperament in sheep, and how selection on temperament can affect other production traits, a genome-wide association study was carried out. Merino sheep from lines selected for traits of calm and nervous temperament, and a commercial population, on which the temperament traits had never been assessed, were used. Blood samples from the three populations were genotyped using an Illumina GGP Ovine 50 K Genotyping BeadChip. The calm and nervous populations in the selected lines presented as distinct genetic populations, and 2 729 of the 45 761 single nucleotide polymorphisms (SNPs) had significantly different proportions between the two lines. Of those 2 729 SNPs, 2 084 were also associated with temperament traits in the commercial population. A genomic annotation identified 81 candidate genes for temperament, nearly half of which are associated with disorders of social behaviour in humans. Five of those 81 candidate genes are related to production traits in sheep. Two genes were associated with personality disorders in humans and with production traits in sheep. We identified significant enrichment in genes involved in nervous system processes such as the regulation of systemic arterial blood pressure, ventricular myocyte action, multicellular organismal signalling, ion transmembrane transport, and calcium ion binding, suggesting that temperament is underpinned by variation in multiple biological systems. Our results contribute to understanding of the genetic basis of animal temperament which could be applied to the genetic evaluation of temperament in sheep and other farm animals.
Collapse
Affiliation(s)
- L Ding
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China; UWA Institute of Agriculture, The University of Western Australia, Perth 6009, WA, Australia; School of Agriculture and Environment, The University of Western Australia, Perth 6009, WA, Australia
| | - E R Colman
- Facultad de Agronomía, Universidad de la República, Montevideo 12900, Uruguay
| | - Y Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
| | - M Ramachandran
- School of Human Sciences, The University of Western Australia, Perth 6009, WA, Australia
| | - S K Maloney
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, WA, Australia; School of Human Sciences, The University of Western Australia, Perth 6009, WA, Australia
| | - N Chen
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
| | - J Yin
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
| | - L Chen
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China; Department of Cardiology, Nanjing Medical University, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - E V Lier
- Facultad de Agronomía, Universidad de la República, Montevideo 12900, Uruguay
| | - D Blache
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, WA, Australia; School of Agriculture and Environment, The University of Western Australia, Perth 6009, WA, Australia
| | - M Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| |
Collapse
|
5
|
Ballan M, Schiavo G, Bovo S, Schiavitto M, Negrini R, Frabetti A, Fornasini D, Fontanesi L. Comparative analysis of genomic inbreeding parameters and runs of homozygosity islands in several fancy and meat rabbit breeds. Anim Genet 2022; 53:849-862. [PMID: 36073189 PMCID: PMC9826494 DOI: 10.1111/age.13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/01/2022] [Accepted: 08/25/2022] [Indexed: 01/11/2023]
Abstract
Runs of homozygosity (ROH) are defined as long stretches of DNA homozygous at each polymorphic position. The proportion of genome covered by ROH and their length are indicators of the level and origin of inbreeding. In this study, we analysed SNP chip datasets (obtained using the Axiom OrcunSNP Array) of a total of 702 rabbits from 12 fancy breeds and four meat breeds to identify ROH with different approaches and calculate several genomic inbreeding parameters. The highest average number of ROH per animal was detected in Belgian Hare (~150) and the lowest in Italian Silver (~106). The average length of ROH ranged from 4.001 ± 0.556 Mb in Italian White to 6.268 ± 1.355 Mb in Ermine. The same two breeds had the lowest (427.9 ± 86.4 Mb, Italian White) and the highest (921.3 ± 179.8 Mb, Ermine) average values of the sum of all ROH segments. More fancy breeds had a higher level of genomic inbreeding (as defined by ROH) than meat breeds. Several ROH islands contain genes involved in body size, body length, pigmentation processes, carcass traits, growth, and reproduction traits (e.g.: AOX1, GPX5, IFRD1, ITGB8, NELL1, NR3C1, OCA2, TRIB1, TRIB2). Genomic inbreeding parameters can be useful to overcome the lack of information in the management of rabbit genetic resources. ROH provided information to understand, to some extent, the genetic history of rabbit breeds and to identify signatures of selection in the rabbit genome.
Collapse
Affiliation(s)
- Mohamad Ballan
- Division of Animal Sciences, Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| | - Giuseppina Schiavo
- Division of Animal Sciences, Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| | - Samuele Bovo
- Division of Animal Sciences, Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| | - Michele Schiavitto
- Associazione Nazionale Coniglicoltori Italiani (ANCI), Contrada Giancola SncVolturara AppulaItaly
| | | | | | | | - Luca Fontanesi
- Division of Animal Sciences, Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| |
Collapse
|
6
|
Tasci G, Kaya S, Kalayci M, Atmaca M. Increased ghrelin and decreased leptin levels in patients with antisocial personality disorder. J Affect Disord 2022; 317:22-28. [PMID: 36028010 DOI: 10.1016/j.jad.2022.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/25/2022] [Accepted: 08/20/2022] [Indexed: 10/31/2022]
Abstract
OBJECTIVE The study aimed to compare acyl ghrelin (AG), des-acyl ghrelin (DAG), and leptin levels considered to be used as biological markers in the etiopathogenesis of antisocial personality disorder (ASPD) with healthy controls, and to investigate the relationship between these hormones and aggression and impulsivity. METHOD The study included 45 patients with ASPD and 61 healthy people in the control group. Sociodemographic data form, Beck Depression Inventory (BDI), Beck Anxiety Inventory (BAI), Barratt Impulsiveness Scale (BIS-11), and Buss-Durkee Aggression Scale (BDAS) were applied to all participants. Fasting venous blood samples were taken from all participants at the same time of the day and the height and weight of the participants were measured. RESULTS It was found that the mean serum AG and DAG levels were significantly higher than that of healthy controls whereas leptin hormone levels were significantly lower in patients compared to healthy controls. BDI, BAI, BIS-11, and BDAS scores of the patients were significantly higher compared to healthy controls. There was a positive correlation between AG and DAG hormone levels and impulsivity and aggression. DISCUSSION The present study is the first in the literature to examine AG, DAG, and leptin hormone levels of patients diagnosed with ASPD. According to the results of the study, it is believed that changes in serum leptin and ghrelin levels will bring a new perspective in terms of understanding the pathophysiological mechanism of ASPD. Further studies are required to explain the definitive roles of these hormones in ASPD.
Collapse
Affiliation(s)
- Gulay Tasci
- Elazig Fethi Sekin City Hospital, Elazig, Turkey.
| | - Suheda Kaya
- Elazig Mental Health Hospital, Elazig, Turkey
| | | | - Murad Atmaca
- Firat University School of Medicine Department of Psychiatry, Elazig, Turkey
| |
Collapse
|
7
|
Zhao J, Gao S, Guo Y, Xu Q, Liu M, Zhang C, Cheng M, Zhao X, Schinckel AP, Zhou B. Functionally Antagonistic Transcription Factors IRF1 and IRF2 Regulate the Transcription of the Dopamine Receptor D2 Gene Associated with Aggressive Behavior of Weaned Pigs. BIOLOGY 2022; 11:biology11010135. [PMID: 35053133 PMCID: PMC8773180 DOI: 10.3390/biology11010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
Aggressive behavior has negative effects on animal welfare and growth performance in pigs. The dopamine receptor D2 (DRD2) has a critical neuromodulator role in the dopamine signal pathway within the brain to control behavior. A functional single-nucleotide polymorphism (SNP), rs1110730503, in the promoter region of the porcine DRD2 gene was identified, which affects aggressive behavior in pigs. A chromatin immunoprecipitation (ChIP) assay was used to identify the interactions between interferon regulatory factor 1 (IRF1) and IRF2 with the DRD2 gene. The overexpression or knockdown of these two transcription factors in porcine kidney-15 (PK15) and porcine neuronal cells (PNCs) indicate that the binding of IRF1 to DRD2 promotes the transcription of the DRD2 gene, but the binding of IRF2 to the DRD2 gene inhibits its transcription. Furthermore, IRF1 and IRF2 are functionally antagonistic to each other. The downregulation of DRD2 or upregulation of IRF2 increased the apoptosis rate of porcine neuroglial cells. Taken together, we found that transcriptional factors IRF1 and IRF2 have vital roles in regulating the transcription of the DRD2 gene, and rs1110730503 (−915A/T) is a functional SNP that influences IRF2 binding to the promoter of the DRD2 gene. These findings will provide further insight towards controlling aggressive behavior in pigs.
Collapse
Affiliation(s)
- Jing Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (S.G.); (Y.G.); (Q.X.); (M.L.); (C.Z.); (M.C.); (X.Z.)
| | - Siyuan Gao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (S.G.); (Y.G.); (Q.X.); (M.L.); (C.Z.); (M.C.); (X.Z.)
| | - Yanli Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (S.G.); (Y.G.); (Q.X.); (M.L.); (C.Z.); (M.C.); (X.Z.)
| | - Qinglei Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (S.G.); (Y.G.); (Q.X.); (M.L.); (C.Z.); (M.C.); (X.Z.)
| | - Mingzheng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (S.G.); (Y.G.); (Q.X.); (M.L.); (C.Z.); (M.C.); (X.Z.)
| | - Chunlei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (S.G.); (Y.G.); (Q.X.); (M.L.); (C.Z.); (M.C.); (X.Z.)
| | - Meng Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (S.G.); (Y.G.); (Q.X.); (M.L.); (C.Z.); (M.C.); (X.Z.)
| | - Xianle Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (S.G.); (Y.G.); (Q.X.); (M.L.); (C.Z.); (M.C.); (X.Z.)
| | - Allan P. Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2054, USA;
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (S.G.); (Y.G.); (Q.X.); (M.L.); (C.Z.); (M.C.); (X.Z.)
- Correspondence:
| |
Collapse
|
8
|
Larson S, Zhou R, Li K, Zhang Y, Jafarikia M, Bergeron R, Lu R. Genetic diversity in the stress regulatory gene LUMAN/CREB3 of Yorkshire and Meishan pigs. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2020-0155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A candidate-gene high-density single-nucleotide polymorphism (SNP) scanning approach was used to investigate the swine LUMAN/CREB3 locus for polymorphisms in 232 Ontario Yorkshire and 29 Chinese Meishan pigs. Inter- and intra-breed differences in genetic diversity were characterized. In the Yorkshire breed, eight variations (three coding and five non-coding) were identified. Two linkage disequilibrium (LD) blocks (550 bp and ∼4 kb in length) featuring two and three haplotypes, respectively, were reconstructed. In the Meishan breed, six variations (two coding and four non-coding) and one LD block (∼3 kb in length) with three haplotypes were detected. This investigation may provide insight into variable stress responsiveness among pigs.
Collapse
Affiliation(s)
- Shayla Larson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Rong Zhou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100091, People’s Republic of China
| | - Kui Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100091, People’s Republic of China
| | - Yani Zhang
- College of Animal Science and Technology, Yangzhou University, Jiangsu 225000, People’s Republic of China
| | - Mohsen Jafarikia
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- Canadian Centre for Swine Improvement Inc., Central Experimental Farm, Building #75, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - Renée Bergeron
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ray Lu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
9
|
Larson S, Arrazola A, Parra R, Morrissey K, Faulkner T, Jafarikia M, Mandell I, Bergeron R, Lu R. Genetic variation in LUMAN/CREB3 and association with stress and meat quality traits in Yorkshire pigs. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2020-0156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
LUMAN/CREB3 is a stress regulatory gene that affects the activity of the hypothalamic–pituitary–adrenal axis in mice and presents a promising avenue for exploring variable stress-responsiveness in pigs. Pigs with similar characteristics to LUMAN-deficient mice, including greater resilience to stress and receptivity to human handling, would be valuable in the pork industry from animal welfare and production efficiency perspectives. We previously identified eight genetic variations and five haplotypes throughout the LUMAN locus in Yorkshire pigs. In this study, we analysed associations between LUMAN variations with behavioural stress response during three tests (open field test, novel object test, and human approach test), physiological stress responsiveness (cortisol), and carcass/meat quality measurements from purebred Yorkshire pigs. Haplotypes A1 and A2 were associated with decreased activity levels in novel environments and greater plasma cortisol concentrations at slaughter. Haplotype A1 was associated with lower carcass scratch scores and meat with lower cooking losses and greater tenderness. Haplotypes B1 and B2 were associated with the opposite traits including increased activity levels in novel environments and characteristics for lower meat quality including greater cooking losses, lower marbling, and paler coloured meat. We conclude that DNA variations in the LUMAN locus could potentially be used as genetic markers for stress resistance and meat quality in pig breeding.
Collapse
Affiliation(s)
- Shayla Larson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Aitor Arrazola
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Rebecca Parra
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Krysta Morrissey
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Tess Faulkner
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Mohsen Jafarikia
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- Canadian Centre for Swine Improvement Inc., Central Experimental Farm, Building #75, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - Ira Mandell
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Renée Bergeron
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ray Lu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
10
|
Maskal JM, Brito LF, Duttlinger AW, Kpodo KR, McConn BR, Byrd CJ, Richert BT, Marchant JN, Lay DC, Perry SD, Lucy MC, Safranski TJ, Johnson JS. Characterizing the postnatal hypothalamic-pituitary-adrenal axis response of in utero heat stressed pigs at 10 and 15 weeks of age. Sci Rep 2021; 11:22527. [PMID: 34795321 PMCID: PMC8602641 DOI: 10.1038/s41598-021-01889-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
In utero heat stress alters postnatal physiological and behavioral stress responses in pigs. However, the mechanisms underlying these alterations have not been determined. The study objective was to characterize the postnatal hypothalamic–pituitary–adrenal axis response of in utero heat-stressed pigs. Pigs were subjected to a dexamethasone suppression test followed by a corticotrophin releasing hormone challenge at 10 and 15 weeks of age. Following the challenge, hypothalamic, pituitary, and adrenal tissues were collected from all pigs for mRNA abundance analyses. At 10 weeks of age, in utero heat-stressed pigs had a reduced (P < 0.05) cortisol response to the corticotrophin releasing hormone challenge versus controls. Additionally, the cortisol response tended to be greater overall (P < 0.10) in 15 versus 10-week-old pigs in response to the dexamethasone suppression test. The cortisol response tended to be reduced overall (P < 0.10) in 15 versus 10-week-old pigs in response to the corticotrophin releasing hormone challenge. Hypothalamic corticotropin releasing hormone mRNA abundance tended to be greater (P < 0.10) in in utero heat-stressed versus control pigs at 15-weeks of age. In summary, in utero heat stress altered some aspects of the hypothalamic–pituitary–adrenal axis related to corticotropin releasing hormone signaling, and age influenced this response.
Collapse
Affiliation(s)
- Jacob M Maskal
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Alan W Duttlinger
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Kouassi R Kpodo
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Betty R McConn
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA
| | - Christopher J Byrd
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Brian T Richert
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jeremy N Marchant
- Livestock Behavior Research Unit, USDA-ARS, West Lafayette, IN, 47907, USA
| | - Donald C Lay
- Livestock Behavior Research Unit, USDA-ARS, West Lafayette, IN, 47907, USA
| | - Shelbi D Perry
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65221, USA
| | - Matthew C Lucy
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65221, USA
| | - Tim J Safranski
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65221, USA
| | - Jay S Johnson
- Livestock Behavior Research Unit, USDA-ARS, West Lafayette, IN, 47907, USA.
| |
Collapse
|
11
|
Expression of candidate genes for residual feed intake in tropically adapted Bos taurus and Bos indicus bulls under thermoneutral and heat stress environmental conditions. J Therm Biol 2021; 99:102998. [PMID: 34420630 DOI: 10.1016/j.jtherbio.2021.102998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 01/17/2023]
Abstract
The objectives of this study were to measure the relative expression of the ATP1A1, NR3C1, POMC, NPY, and LEP genes in Caracu (Bos taurus) and Nelore (Bos indicus) bulls submitted to feed efficiency tests at high environmental temperatures, and to evaluate differences in adaptability to tropical conditions between breeds. Thirty-five Caracu and 30 Nelore bulls were submitted to a feed efficiency test using automated feeding stations. At the end of the test, the animals were subjected to thermoneutral (TN) and heat stress (HS) conditions. Blood samples were collected after the exposure to the TN and HS conditions and the relative expression of genes was measured by qPCR. The bulls exhibited lower expression of ATP1A1 in the HS condition than in the TN condition (1.98 ± 0.27 and 2.86 ± 0.26, P = 0.02), while the relative expression of NR3C1, POMC, and LEP did not differ (P > 0.05) between climatic conditions. The breed and feed intake influenced NPY and LEP expression levels (P < 0.05). Different climate conditions associated with residual feed intake can modify the gene expression patterns of ATP1A1 and NPY. The association observed among all genes studied shows that they are involved in appetite control. Bos taurus and Bos indicus bulls exhibited similar adaptability to tropical climate conditions.
Collapse
|
12
|
Jiang R, Lu XJ, Lu JF, Chen J. Characterization of ayu (Plecoglossus altivelis) urocortin: The function of an endocrine factor in monocyte/macrophage regulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 117:103978. [PMID: 33338518 DOI: 10.1016/j.dci.2020.103978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Urocortin (UCN) is a hormone in the hypothalamic-pituitary-adrenal axis that is expressed in various immune cells. However, the function of teleost UCN in the immune system remains unclear. In this study, we cloned the cDNA sequence of UCN from ayu Plecoglossus altivelis (PaUCN). Sequence and phylogenetic tree analyses showed that PaUCN clustered within the fish UCN 1 group and was most related to the rainbow trout (Oncorhynchus mykiss) UCN. PaUCN was expressed in all tested tissues and its expression increased in the liver, spleen, head kidney, and gill upon Vibrio anguillarum infection. Mature PaUCN protein (mPaUCN) treatment affected the phagocytosis and bacterial killing of monocytes/macrophages (MO/MФ). mPaUCN reduced pro-inflammatory cytokine expression in MO/MФ, which was partially mediated via interaction with ayu interleukin-6. mPaUCN reduced bacterial load and increased the survival of V. anguillarum-infected ayu. Overall, UCN as an endocrine factor regulates the immune response of ayu after infection by activating MO/MФ, thus contributing to enhance fish survival.
Collapse
Affiliation(s)
- Rui Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Xin-Jiang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China.
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
13
|
Alvarenga AB, Oliveira HR, Chen SY, Miller SP, Marchant-Forde JN, Grigoletto L, Brito LF. A Systematic Review of Genomic Regions and Candidate Genes Underlying Behavioral Traits in Farmed Mammals and Their Link with Human Disorders. Animals (Basel) 2021; 11:ani11030715. [PMID: 33800722 PMCID: PMC7999279 DOI: 10.3390/ani11030715] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/21/2021] [Accepted: 02/27/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary This study is a comprehensive review of genomic regions associated with animal behavior in farmed mammals (beef and dairy cattle, pigs, and sheep) which contributes to a better understanding of the biological mechanisms influencing the target indicator trait and to gene expression studies by suggesting genes likely controlling the trait, and it will be useful in optimizing genomic predictions of breeding values incorporating biological information. Behavioral mechanisms are complex traits, genetically controlled by multiple genes spread across the whole genome. The majority of the genes identified in cattle, pigs, and sheep in association with a plethora of behavioral measurements (e.g., temperament, terrain use, milking speed, tail biting, and sucking reflex) are likely controlling stimuli reception (e.g., olfactory), internal recognition of stimuli (e.g., neuroactive ligand–receptor interaction), and body response to a stimulus (e.g., blood pressure, fatty acidy metabolism, hormone signaling, and inflammatory pathways). Six genes were commonly identified between cattle and pigs. About half of the genes for behavior identified in farmed mammals were also identified in humans for behavioral, mental, and neuronal disorders. Our findings indicate that the majority of the genes identified are likely controlling animal behavioral outcomes because their biological functions as well as potentially differing allele frequencies between two breed groups (subjectively) clustered based on their temperament characteristics. Abstract The main objectives of this study were to perform a systematic review of genomic regions associated with various behavioral traits in the main farmed mammals and identify key candidate genes and potential causal mutations by contrasting the frequency of polymorphisms in cattle breeds with divergent behavioral traits (based on a subjective clustering approach). A total of 687 (cattle), 1391 (pigs), and 148 (sheep) genomic regions associated with 37 (cattle), 55 (pigs), and 22 (sheep) behavioral traits were identified in the literature. In total, 383, 317, and 15 genes overlap with genomic regions identified for cattle, pigs, and sheep, respectively. Six common genes (e.g., NR3C2, PITPNM3, RERG, SPNS3, U6, and ZFAT) were found for cattle and pigs. A combined gene-set of 634 human genes was produced through identified homologous genes. A total of 313 out of 634 genes have previously been associated with behavioral, mental, and neurologic disorders (e.g., anxiety and schizophrenia) in humans. Additionally, a total of 491 candidate genes had at least one statistically significant polymorphism (p-value < 0.05). Out of those, 110 genes were defined as having polymorphic regions differing in greater than 50% of exon regions. Therefore, conserved genomic regions controlling behavior were found across farmed mammal species and humans.
Collapse
Affiliation(s)
- Amanda B. Alvarenga
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (A.B.A.); (H.R.O.); (S.-Y.C.); (L.G.)
| | - Hinayah R. Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (A.B.A.); (H.R.O.); (S.-Y.C.); (L.G.)
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shi-Yi Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (A.B.A.); (H.R.O.); (S.-Y.C.); (L.G.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 625014, China
| | | | - Jeremy N. Marchant-Forde
- Livestock Behavior Research Unit, United States Department of Agriculture—Agricultural Research Service (USDA–ARS), West Lafayette, IN 47907, USA;
| | - Lais Grigoletto
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (A.B.A.); (H.R.O.); (S.-Y.C.); (L.G.)
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga 05508, São Paulo, Brazil
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (A.B.A.); (H.R.O.); (S.-Y.C.); (L.G.)
- Correspondence:
| |
Collapse
|
14
|
Larzul C. How to Improve Meat Quality and Welfare in Entire Male Pigs by Genetics. Animals (Basel) 2021; 11:ani11030699. [PMID: 33807677 PMCID: PMC7998615 DOI: 10.3390/ani11030699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Successful breeding of entire male pigs needs a better understanding of factors driving meat quality and behavior traits as entire male pigs have lower meat quality, including an occasional strong defect known as boar taint, and more aggressive and sexual behavior. The review provides an update on how genetic factors affecting boar taint compounds and aggressive behavior in male pigs with emphasis on application in selection. Abstract Giving up surgical castration is desirable to avoid pain during surgery but breeding entire males raises issues on meat quality, particularly on boar taint, and aggression. It has been known for decades that boar taint is directly related to sexual development in uncastrated male pigs. The proportion of tainted carcasses depends on many factors, including genetics. The selection of lines with a low risk of developing boar taint should be considered as the most desirable solution in the medium to long term. It has been evidenced that selection against boar taint is feasible, and has been set up in a balanced way in some pig populations to counterbalance potential unfavorable effects on reproductive performances. Selection against aggressive behaviors, though theoretically feasible, faces phenotyping challenges that compromise selection in practice. In the near future, new developments in modelization, automatic recording, and genomic data will help define breeding objectives to solve entire male meat quality and welfare issues.
Collapse
Affiliation(s)
- Catherine Larzul
- GenPhySE, Université de Toulouse, French National Institute for Agriculture, Food, and Environment INRAE, ENVT, 31326 Castanet-Tolosan, France
| |
Collapse
|
15
|
Norscia I, Collarini E, Cordoni G. Anxiety Behavior in Pigs ( Sus scrofa) Decreases Through Affiliation and May Anticipate Threat. Front Vet Sci 2021; 8:630164. [PMID: 33665219 PMCID: PMC7921160 DOI: 10.3389/fvets.2021.630164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
Anxiety is a physio-psychological state anticipating an imminent threat. In social mammals it is behaviorally expressed via displacement activities and buffered via affiliation. Anxiety research on domestic pigs (Sus scrofa) has mostly focused on abnormal/stereotypic behavior associated with intensive farming. We investigated how anxiety is expressed and modulated in semi-free ranging pigs, in natural habitats. Owing to pigs' socio-cognitive complexity, we posited that displacement activities, if such, would increase after a (stressful) intra-group aggression (Prediction 1), be reduced by affiliation (Prediction 2) and influenced by individual/contextual factors (Prediction 3). From 224 videos recorded on adult individuals (Mean ± SD/subject: 4.84 ± 1.85 h) at the “Ethical Farm Parva Domus” (Turin, Italy), we extracted possible displacement activities (vacuum-chewing, scratching/body-rubbing, head/body-shaking, and yawning) in four 3-min conditions: before (BA) and after aggression events, in the absence (AA) or presence (AP) of post-aggression affiliation, and a matched-control (no event; MC). We conducted a minute-by-minute analysis in AE/AA and assessed the effect of subjects' involvement in a conflict (aggressor, aggression's recipient, bystander). All activities were higher in AA than in BA condition—thus being anxiety markers—and all of them decreased to baseline levels in AP, faster compared to AE. Hence, anxiety behavior in pigs was socially buffered. Intriguingly, anxiety behavior was expressed significantly more by bystanders than opponents, which suggests that pigs may be able to anticipate imminent threats. By highlighting how anxiety is managed under extensive farming, this study contributes to the understanding of pig welfare and biology.
Collapse
Affiliation(s)
- Ivan Norscia
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Edoardo Collarini
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Giada Cordoni
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| |
Collapse
|
16
|
Endocrine Fertility Parameters-Genomic Background and their Genetic Relationship to Boar Taint in German Landrace and Large White. Animals (Basel) 2021; 11:ani11010231. [PMID: 33477702 PMCID: PMC7831948 DOI: 10.3390/ani11010231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 11/16/2022] Open
Abstract
The surgical castration of young male piglets without anesthesia is no longer allowed in Germany from 2021. One alternative is breeding against boar taint, but shared synthesis pathways of androstenone (AND) and several endocrine fertility parameters (EFP) indicate a risk of decreasing fertility. The objective of this study was to investigate the genetic background between AND, skatole (SKA), and six EFP in purebred Landrace (LR) and Large White (LW) populations. The animals were clustered according to their genetic relatedness because of their different origins. Estimated heritabilities (h2) of AND and SKA ranged between 0.52 and 0.34 in LR and LW. For EFP, h2 differed between the breeds except for follicle-stimulating hormone (FSH) (h2: 0.28-0.37). Both of the breeds showed unfavorable relationships between AND and testosterone, 17-β estradiol, and FSH. The genetic relationships (rg) between SKA and EFP differed between the breeds. A genome-wide association analysis revealed 48 significant associations and confirmed a region for SKA on S
us
S
crofa chromosome (SSC) 14. For EFP, the results differed between the clusters. In conclusion, rg partly confirmed physiologically expected antagonisms between AND and EFP. Particular attention should be spent on fertility traits that are based on EFP when breeding against boar taint to balance the genetic progress in both of the trait complexes.
Collapse
|
17
|
Qing L, Gao C, Ji A, Lü X, Zhou L, Nie S. Association of mineralocorticoid receptor gene (NR3C2) hypermethylation in adult males with aggressive behavior. Behav Brain Res 2020; 398:112980. [PMID: 33250445 DOI: 10.1016/j.bbr.2020.112980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/06/2020] [Accepted: 10/21/2020] [Indexed: 12/27/2022]
Abstract
Aggressive behavior may have adaptive value under some environmental conditions. However, when it is extreme or improper, it may also lead to maladaptive results, seriously threatening human and social well-being. Aggressive behavior is a multifactorial disease, and the etiology is largely unknown. The stress-related hypothalamic-pituitary-adrenal (HPA) axis is a crucial system in the stress response that has emerged as a potential mechanism of aggressive behavior. The NR3C2 gene is an important regulator of the HPA axis: it is involved in regulating HPA axis activity and behavioral adaptation to stressors. Moreover, the epigenetic mechanism of DNA methylation has been suggested to mediate the development of aggressive behavior. However, the association between NR3C2 methylation and aggressive behavior has not been studied. In the present study, we assessed NR3C2 methylation (including three regions: promoter P1, exon 1α, and the sequence downstream of exon 1α) in peripheral blood DNA of adult males with aggressive behavior (n = 106) and healthy controls (n = 104). We found the NR3C2 gene to be associated with aggressive behavior, with hypermethylation detected in the entire aggressive behavior group as well as in the robbery subgroup compared to controls. In addition, analysis of methylation at 75 CpG sites revealed that some important CpG sites are associated with aggressive behavior. Our results suggest that HPA axis-related gene NR3C2 methylation is associated with aggressive behavior. These results lend support for using NR3C2 DNA methylation as a potential biomarker of aggressive behavior.
Collapse
Affiliation(s)
- Lili Qing
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Changqing Gao
- Mental Health Center of Yunnan Province, Kunming, Yunnan Province, People's Republic of China
| | - Aicen Ji
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Xin Lü
- Mental Health Center of Yunnan Province, Kunming, Yunnan Province, People's Republic of China
| | - Li Zhou
- Mental Health Center of Yunnan Province, Kunming, Yunnan Province, People's Republic of China.
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China.
| |
Collapse
|
18
|
Omics Application in Animal Science-A Special Emphasis on Stress Response and Damaging Behaviour in Pigs. Genes (Basel) 2020; 11:genes11080920. [PMID: 32796712 PMCID: PMC7464449 DOI: 10.3390/genes11080920] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Increasing stress resilience of livestock is important for ethical and profitable meat and dairy production. Susceptibility to stress can entail damaging behaviours, a common problem in pig production. Breeding animals with increased stress resilience is difficult for various reasons. First, studies on neuroendocrine and behavioural stress responses in farm animals are scarce, as it is difficult to record adequate phenotypes under field conditions. Second, damaging behaviours and stress susceptibility are complex traits, and their biology is not yet well understood. Dissecting complex traits into biologically better defined, heritable and easily measurable proxy traits and developing biomarkers will facilitate recording these traits in large numbers. High-throughput molecular technologies (“omics”) study the entirety of molecules and their interactions in a single analysis step. They can help to decipher the contributions of different physiological systems and identify candidate molecules that are representative of different physiological pathways. Here, we provide a general overview of different omics approaches and we give examples of how these techniques could be applied to discover biomarkers. We discuss the genetic dissection of the stress response by different omics techniques and we provide examples and outline potential applications of omics tools to understand and prevent outbreaks of damaging behaviours.
Collapse
|
19
|
Oldham L, Camerlink I, Arnott G, Doeschl-Wilson A, Farish M, Turner SP. Winner-loser effects overrule aggressiveness during the early stages of contests between pigs. Sci Rep 2020; 10:13338. [PMID: 32770010 PMCID: PMC7414859 DOI: 10.1038/s41598-020-69664-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/15/2020] [Indexed: 11/15/2022] Open
Abstract
Contest behaviour, and in particular the propensity to attack an unfamiliar conspecific, is influenced by an individual's aggressiveness, as well as by experience of winning and losing (so called 'winner-loser effects'). Individuals vary in aggressiveness and susceptibility to winner-loser effects but the relationship between these drivers of contest behaviour has been poorly investigated. Here we hypothesise that the winner-loser effect on initiation of agonistic behaviour (display, non-damaging aggression, biting and mutual fighting) is influenced by aggressiveness. Pigs (n = 255) were assayed for aggressiveness (tendency to attack in resident-intruder tests) and then experienced two dyadic contests (age 10 and 13 weeks). Agonistic behaviour, up to reciprocal fighting, in contest 2 was compared between individuals of different aggressiveness in the RI test and experiences of victory or defeat in contest 1. Winner-loser effects were more influential than aggressiveness in determining initiation of agonistic behaviour. After accruing more skin lesions in contest 1, individuals were less likely to engage in escalated aggression in contest 2. The interaction between aggressiveness and winner-loser experience did not influence contest behaviour. The results suggest that aggressiveness does not compromise learning from recent contest experience and that reducing aggressiveness is unlikely to affect how animals experience winning and losing.
Collapse
Affiliation(s)
- Lucy Oldham
- Animal Behaviour and Welfare, Animal and Veterinary Sciences Department, Scotland's Rural College (SRUC), West Mains Rd, Edinburgh, EH9 3JG, UK.
| | - Irene Camerlink
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Ul. Postepu 36A, Jastrzebiec, 05-552, Magdalenka, Poland
| | - Gareth Arnott
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Andrea Doeschl-Wilson
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Marianne Farish
- Animal Behaviour and Welfare, Animal and Veterinary Sciences Department, Scotland's Rural College (SRUC), West Mains Rd, Edinburgh, EH9 3JG, UK
| | - Simon P Turner
- Animal Behaviour and Welfare, Animal and Veterinary Sciences Department, Scotland's Rural College (SRUC), West Mains Rd, Edinburgh, EH9 3JG, UK
| |
Collapse
|
20
|
Intra-Group Lethal Gang Aggression in Domestic Pigs (Sus scrofa domesticus). Animals (Basel) 2020; 10:ani10081287. [PMID: 32731463 PMCID: PMC7459786 DOI: 10.3390/ani10081287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Aggression between pigs in pig husbandry is common during regrouping but rare in stable social groups. Farmers report the occurrence of lethal gang aggression in stable groups of pigs, whereby the group attacks one group member until it is dead. Our aim was to document this extreme type of aggression and to identify potential causes. Forty-two farmers, experiencing lethal gang aggression or not, filled out a survey about their farm management. From 91 victims, information was obtained on their injuries and body condition. Gang aggression occurred more on farms with deep straw bedding, a housing type commonly associated with better animal welfare. However, the presence of straw may also be related to other factors, which could not be disentangled here. Gang aggression did not relate to the genetic line, breeding company or feed type. It equally occurred between females and males and tended to occur more in winter. Victims were covered in injuries, but had a healthy body condition, whereas survivors had a lower body condition. Overall, the cause seems multi-factorial, and further research on the occurrence of lethal gang aggression is needed. Abstract Intraspecific coalitional aggression is rare among all species, especially within stable social groups. We report here numerous cases of intraspecific lethal gang aggression within stable groups of domestic pigs. The objective was to describe this extreme aggression and to identify potential causes. Management data were collected from farms with (n = 23) and without (n = 19) gang aggression. From one farm, 91 victims were assessed for skin injuries and body condition score. Lethal gang aggression was significantly associated with deep straw bedding, which may be related to various other factors. Gang aggression tended to occur more in winter, and was unrelated to genetic line, breeding company, group size or feed type. It occurred equally in female-only and mixed sex groups (male-only groups were not represented), from around eight weeks of age. Injuries typically covered the whole body and were more severe on the front of the body. Victims who survived had a lower body condition score and fewer injuries than victims found dead. There are still many unknowns as to why this abnormal social behaviour occurs and it deserves further research attention, both for its applied relevance to animal welfare as for the evolutionary background of lethal gang aggression.
Collapse
|
21
|
Liu L, Li J, Qing L, Yan M, Xiong G, Lian X, Hu L, Nie S. Glucocorticoid receptor gene (NR3C1) is hypermethylated in adult males with aggressive behaviour. Int J Legal Med 2020; 135:43-51. [PMID: 32577827 DOI: 10.1007/s00414-020-02328-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022]
Abstract
Aggressive behaviour is a serious threat to the personal safety and property of others due to the potential that the assailant may hurt people, himself/herself or objects, and aggression has always been one of the focuses of research and concern. Accumulating evidence suggests that the hypothalamic-pituitary-adrenal (HPA) axis plays a major role in the development, elicitation, enhancement and genetic susceptibility of aggressive behaviour in humans and animals. GR (NR3C1) plays a crucial role in controlling HPA activity, which directly affects aggressive behaviour. Here, we investigated the methylation state of the NR3C1 gene promoter region and its role in aggressive behaviour in adult males for the first time by applying a case-control approach (N = 106 controls, N = 104 patients). Methylation of NR3C1 was measured in peripheral blood samples at exons 1D, 1B and 1F via sodium bisulfite treatment combined with the MethylTarget method. Methylation of the NR3C1 gene was significantly correlated with aggressive behaviour, and the methylation levels of 1D, 1B and 1F were upregulated in the aggressive behaviour group, intentional injury subgroup and robbery subgroup, and the significance varied. In addition, multiple CpG sites were found to be significantly associated with aggressive behaviour. These results suggest that epigenetic aberrations of NR3C1 are associated with aggressive behaviour, and epigenetic processes might mediate aggressive behaviour by affecting the activity of the HPA axis. This correlative study between DNA methylation of the NR3C1 gene and aggressive behaviour in patients may be helpful for forensic assessments.
Collapse
Affiliation(s)
- Linlin Liu
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Jiajue Li
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Lili Qing
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Ming Yan
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Gen Xiong
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Xinqing Lian
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Liping Hu
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China.
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China.
| |
Collapse
|
22
|
Gley K, Murani E, Haack F, Trakooljul N, Zebunke M, Puppe B, Wimmers K, Ponsuksili S. Haplotypes of coping behavior associated QTL regions reveal distinct transcript profiles in amygdala and hippocampus. Behav Brain Res 2019; 372:112038. [PMID: 31202863 DOI: 10.1016/j.bbr.2019.112038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 12/15/2022]
Abstract
Stress response and coping behavior in pigs are largely shaped by hypothalamic-pituitary-adrenal axis and sympatho-adrenomedullary system action. However, the dynamic interaction between amygdala and hippocampus crucially modulates the behavioral response towards significant emotional events. While this functional relationship is well documented, the molecular underpinnings still remain insufficiently understood. Our study used transcriptome profiling of porcine amygdala and hippocampus to identify molecular pathways that are differentially activated depending on the haplotype of a significantly coping behavior-associated region on pig chromosome 12 (SSC12). The pigs were classified into two groups based on the haplotype information of this QTL-region discovered in our previous genome-wide association study. Ten each of high- (HR) and low- (LR) reactive pigs (n = 20) were selected for differential gene expression analysis and weighted gene co-expression analysis with subsequent pathway analysis. Differentially expressed genes identified in the amygdala include SELL, CXCR7 and NTS, while TRAF3, PTGS2 and CFI were detected in the hippocampus indicating a role of neuroinflammation and immunological processes. Pathway analysis revealed IL-8 signaling, NF-κB signaling, glutamate and GABA metabolism, glucocorticoid receptor signaling and chemokine signaling in the amygdala and ephrin receptor signaling, as well as NF-κB signaling in the hippocampus. We discovered candidate genes in regions detected by genome-wide association study including ARRB2, ADRBK2, THRB, NEK7 and ACVR2B, which relate to dopaminergic and other monoaminergic neurotransmitter systems, neuroimmunomodulation, neuroinflammation and GABA-ergic neurotransmission. These findings provide insights into the molecular underpinning of divergent coping behavior and associated haplotypes in limbic forebrain system in pig.
Collapse
Affiliation(s)
- Kevin Gley
- Leibniz Institute of Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Eduard Murani
- Leibniz Institute of Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Fiete Haack
- Leibniz Institute of Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute of Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Manuela Zebunke
- Leibniz Institute of Farm Animal Biology (FBN), Institute of Genetics and Biometry, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany; Leibniz Institute of Farm Animal Biology (FBN), Institute for Behavioral Physiology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Birger Puppe
- Leibniz Institute of Farm Animal Biology (FBN), Institute for Behavioral Physiology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute of Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Leibniz Institute of Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany.
| |
Collapse
|
23
|
Escribano D, Ko HL, Chong Q, Llonch L, Manteca X, Llonch P. Salivary biomarkers to monitor stress due to aggression after weaning in piglets. Res Vet Sci 2019; 123:178-183. [PMID: 30682579 DOI: 10.1016/j.rvsc.2019.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 11/26/2022]
|
24
|
Herbeck YE, Gulevich RG. Neuropeptides as facilitators of domestication. Cell Tissue Res 2018; 375:295-307. [DOI: 10.1007/s00441-018-2939-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/04/2018] [Indexed: 01/14/2023]
|
25
|
Fam BS, Paré P, Felkl AB, Vargas-Pinilla P, Paixão-Côrtes VR, Viscardi LH, Bortolini MC. Oxytocin and arginine vasopressin systems in the domestication process. Genet Mol Biol 2018; 41:235-242. [PMID: 29668014 PMCID: PMC5913714 DOI: 10.1590/1678-4685-gmb-2017-0069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/01/2017] [Indexed: 11/22/2022] Open
Abstract
Domestication is of unquestionable importance to the technological revolution that has given rise to modern human societies. In this study, we analyzed the DNA and protein sequences of six genes of the oxytocin and arginine vasopressin systems (OXT-OXTR; AVP-AVPR1a, AVPR1b and AVPR2) in 40 placental mammals. These systems play an important role in the control of physiology and behavior. According to our analyses, neutrality does not explain the pattern of molecular evolution found in some of these genes. We observed specific sites under positive selection in AVPR1b (ω = 1.429, p = 0.001) and AVPR2 (ω= 1.49, p = 0.001), suggesting that they could be involved in behavior and physiological changes, including those related to the domestication process. Furthermore, AVPR1a, which plays a role in social behavior, is under relaxed selective constraint in domesticated species. These results provide new insights into the nature of the domestication process and its impact on the OXT-AVP system.
Collapse
Affiliation(s)
- Bibiana S.O. Fam
- Departamento de Genética, Universidade Federal do Rio Grande do
Sul, Porto Alegre, RS, Brazil
| | - Pamela Paré
- Departamento de Genética, Universidade Federal do Rio Grande do
Sul, Porto Alegre, RS, Brazil
| | - Aline B. Felkl
- Departamento de Genética, Universidade Federal do Rio Grande do
Sul, Porto Alegre, RS, Brazil
| | - Pedro Vargas-Pinilla
- Departamento de Genética, Universidade Federal do Rio Grande do
Sul, Porto Alegre, RS, Brazil
| | | | | | - Maria Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do
Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
26
|
Cataldo I, Azhari A, Esposito G. A Review of Oxytocin and Arginine-Vasopressin Receptors and Their Modulation of Autism Spectrum Disorder. Front Mol Neurosci 2018; 11:27. [PMID: 29487501 PMCID: PMC5816822 DOI: 10.3389/fnmol.2018.00027] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/18/2018] [Indexed: 12/24/2022] Open
Abstract
Oxytocin (OXT) and arginine-vasopressin (AVP) play a key regulatory part in social and affiliative behaviors; two aspects highly compromised in Autism Spectrum Disorder (ASD). Furthermore, variants in the adjacent oxytocin-vasopressin gene regions have been found to be associated with ASD diagnosis and endophenotypes. This review focuses mainly on common OXTr single nucleotide polymorphisms (SNPs), AVPR1a microsatellites and AVPR1b polymorphisms in relation to the development of autism. Although these genes did not surface in genome-wide association studies, evidence supports the hypothesis that these receptors and their polymorphisms are widely involved in the regulation of social behavior, and in modulating neural and physiological pathways contributing to the etiology of ASD. With a specific focus on variants considered to be among the most prevalent in the development of ASD, these issues will be discussed in-depth and suggestions to approach inconsistencies in the present literature will be provided. Translational implications and future directions are deliberated from a short-term and a forward-looking perspective. While the scientific community has made significant progress in enhancing our understanding of ASD, more research is required for the ontology of this disorder to be fully elucidated. By supplementing information related to genetics, highlighting the differences across male and female sexes, this review provides a wider view of the current state of knowledge of OXTr and AVPr mechanisms of functioning, eventually addressing future research in the identification of further risk factors, to build new strategies for early interventions.
Collapse
Affiliation(s)
- Ilaria Cataldo
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy.,Mobile and Social Computing Lab, Fondazione Bruno Kessler, Trento, Italy
| | - Atiqah Azhari
- Division of Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy.,Division of Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
27
|
Jonas E, Rydhmer L. Effect of candidate genes for maternal ability on piglet survival and growth. Livest Sci 2018. [DOI: 10.1016/j.livsci.2017.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Dayger CA, Lutterschmidt DI. Patterns of stress responses shift during seasonal life-history transitions: An analysis comparing baseline, maximal and integrated corticosterone in female red-sided garter snakes (Thamnophis sirtalis parietalis). Gen Comp Endocrinol 2017; 246:29-36. [PMID: 28322762 DOI: 10.1016/j.ygcen.2017.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/20/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
Glucocorticoids often rise and fall with a variety of external and internal cues and frequently vary among life-history stages. This suggests that changing glucocorticoids may coordinate life-history transitions. To explore this hypothesis, we asked if the time-course of stress-induced glucocorticoid levels differ between two life-history transitions (i.e., spring and fall migration) in female red-sided garter snakes (Thamnophis sirtalis parietalis). We collected non-migratory females from a communal den and migratory females from a road along the migration route and treated them with 4h of capture stress; plasma corticosterone was measured before, during and after capture stress. During the spring, den-collected females exhibited a stress-induced peak in corticosterone at an earlier sampling time than migrating, road-collected females. Because the pattern of corticosterone responses varied with migratory state, negative feedback on and/or sensitivity of the hypothalamus-pituitaryadrenal (HPA) axis may be linked to spring migration. During the fall, capture stress elicited an increase in corticosterone in den-collected females but not in migrating, road-collected females. Baseline corticosterone was higher and both maximal and integrated corticosterone responses were lower during the fall compared to spring, indicating that stress responses are smaller when baseline corticosterone is elevated, perhaps due to a "ceiling effect". These data suggest that HPA axis regulation changes during seasonal migration, possibly via altering negative feedback, HPA axis sensitivity, or some other mechanism. This study supports the hypothesis that glucocorticoids coordinate life-history events and suggests that examining a suite of stress response characteristics is most informative for understanding the function of HPA modulation.
Collapse
Affiliation(s)
- Catherine A Dayger
- Portland State University, Department of Biology, 1719 SW 10th Ave., Portland, OR 97201, United States.
| | - Deborah I Lutterschmidt
- Portland State University, Department of Biology, 1719 SW 10th Ave., Portland, OR 97201, United States.
| |
Collapse
|
29
|
Martínez-Miró S, Tecles F, Ramón M, Escribano D, Hernández F, Madrid J, Orengo J, Martínez-Subiela S, Manteca X, Cerón JJ. Causes, consequences and biomarkers of stress in swine: an update. BMC Vet Res 2016; 12:171. [PMID: 27543093 PMCID: PMC4992232 DOI: 10.1186/s12917-016-0791-8] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/03/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In recent decades there has been a growing concern about animal stress on intensive pig farms due to the undesirable consequences that stress produces in the normal physiology of pigs and its effects on their welfare and general productive performance. This review analyses the most important types of stress (social, environmental, metabolic, immunological and due to human handling), and their biological consequences for pigs. The physio-pathological changes associated with stress are described, as well as the negative effects of stress on pig production. In addition an update of the different biomarkers used for the evaluation of stress is provided. These biomarkers can be classified into four groups according to the physiological system or axis evaluated: sympathetic nervous system, hypothalamic-pituitary-adrenal axis, hypothalamic-pituitary-gonadal axis and immune system. CONCLUSIONS Stress it is a process with multifactorial causes and produces an organic response that generates negative effects on animal health and production. Ideally, a panel of various biomarkers should be used to assess and evaluate the stress resulting from diverse causes and the different physiological systems involved in the stress response. We hope that this review will increase the understanding of the stress process, contribute to a better control and reduction of potential stressful stimuli in pigs and, finally, encourage future studies and developments to better monitor, detect and manage stress on pig farms.
Collapse
Affiliation(s)
- Silvia Martínez-Miró
- Department of Animal Production, Campus of Excellence Mare Nostrum, Universidad de Murcia, 30100 Murcia, Spain
| | - Fernando Tecles
- Department of Animal Medicine and Surgery, Campus of Excellence Mare Nostrum, Universidad de Murcia, 30100 Murcia, Spain
| | - Marina Ramón
- Department of Animal Production, Campus of Excellence Mare Nostrum, Universidad de Murcia, 30100 Murcia, Spain
| | - Damián Escribano
- Department of Animal Medicine and Surgery, Campus of Excellence Mare Nostrum, Universidad de Murcia, 30100 Murcia, Spain
| | - Fuensanta Hernández
- Department of Animal Production, Campus of Excellence Mare Nostrum, Universidad de Murcia, 30100 Murcia, Spain
| | - Josefa Madrid
- Department of Animal Production, Campus of Excellence Mare Nostrum, Universidad de Murcia, 30100 Murcia, Spain
| | - Juan Orengo
- Department of Animal Production, Campus of Excellence Mare Nostrum, Universidad de Murcia, 30100 Murcia, Spain
| | - Silvia Martínez-Subiela
- Department of Animal Medicine and Surgery, Campus of Excellence Mare Nostrum, Universidad de Murcia, 30100 Murcia, Spain
| | - Xavier Manteca
- Department of Animal and Food Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - José Joaquín Cerón
- Department of Animal Medicine and Surgery, Campus of Excellence Mare Nostrum, Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
30
|
Hewagalamulage SD, Lee TK, Clarke IJ, Henry BA. Stress, cortisol, and obesity: a role for cortisol responsiveness in identifying individuals prone to obesity. Domest Anim Endocrinol 2016; 56 Suppl:S112-20. [PMID: 27345309 DOI: 10.1016/j.domaniend.2016.03.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 11/22/2022]
Abstract
There is a strong inter-relationship between activation of the hypothalamo-pituitary-adrenal axis and energy homeostasis. Patients with abdominal obesity have elevated cortisol levels. Furthermore, stress and glucocorticoids act to control both food intake and energy expenditure. In particular, glucocorticoids are known to increase the consumption of foods enriched in fat and sugar. It is well-known that, in all species, the cortisol response to stress or adrenocorticotropin is highly variable. It has now emerged that cortisol responsiveness is an important determinant in the metabolic sequelae to stress. Sheep that are characterized as high-cortisol responders (HRs) have greater propensity to weight gain and obesity than low-cortisol responders (LRs). This difference in susceptibility to become obese is associated with a distinct metabolic, neuroendocrine, and behavioral phenotype. In women and ewes, HR individuals eat more in response to stress than LR. Furthermore, HR sheep have impaired melanocortin signaling and reduced skeletal muscle thermogenesis. High-cortisol responder sheep exhibit reactive coping strategies, whereas LRs exhibit proactive coping strategies. This complex set of traits leads to increased food intake and reduced energy expenditure in HR and thus, predisposition to obesity. We predict that cortisol responsiveness may be used as a marker to identify individuals who are at risk of weight gain and subsequent obesity.
Collapse
Affiliation(s)
| | - T K Lee
- Department of Physiology, Monash University, VIC 3800, Australia
| | - I J Clarke
- Department of Physiology, Monash University, VIC 3800, Australia
| | - B A Henry
- Department of Physiology, Monash University, VIC 3800, Australia.
| |
Collapse
|
31
|
A genome-wide association study to identify chromosomal regions influencing ovine cortisol response. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
Verdon M, Hansen CF, Rault JL, Jongman E, Hansen LU, Plush K, Hemsworth PH. Effects of group housing on sow welfare: a review. J Anim Sci 2016; 93:1999-2017. [PMID: 26020296 DOI: 10.2527/jas.2014-8742] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Factors that have been shown to impact the welfare of group-housed sows are discussed in this review. Floor space allowance markedly affects sow welfare. In addition to quantity of floor space, the quality of space is important: spatial separation between sows can be provided with visual or physical barriers and stalls. Whereas 1.4 m/sow is insufficient, further research is required to examine space effects in the range of 1.8 to 2.4 m/sow in more detail. The period immediately after mixing has the most pronounced effects on aggression and stress, and therefore, well-designed mixing pens offer the opportunity to reduce aggression, injury, and stress while allowing the social hierarchy to quickly form. Because hunger is likely to lead to competition for feed or access to feeding areas, strategies to reduce hunger between meals through higher feeding levels, dietary fiber, or foraging substrate should be examined. However, feeding systems, such as full-body feeding stalls, can also affect aggression and stress by providing protection at feeding, but deriving conclusions on this topic is difficult because research directly comparing floor feeding, feeding stalls, and electronic sow feeder systems has not been conducted. Familiar sows engage in less aggression, so mixing sows that have been housed together in the previous gestation may reduce aggression. Although there is evidence in other species that early experience may affect social skills later in life, there are few studies on the effects of early "socialization" on aggressive behavior of adult sows. Genetic selection has the potential to reduce aggression, and therefore, continued research on the opportunity to genetically select against aggressiveness and its broader implications is required. Most research to date has examined mixing sows after insemination and knowledge on grouping after weaning is limited.
Collapse
|
33
|
Dalvie S, Fabbri C, Ramesar R, Serretti A, Stein DJ. Glutamatergic and HPA-axis pathway genes in bipolar disorder comorbid with alcohol- and substance use disorders. Metab Brain Dis 2016; 31:183-9. [PMID: 26563126 DOI: 10.1007/s11011-015-9762-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 11/06/2015] [Indexed: 01/13/2023]
Abstract
Glutamatergic neurotransmission has been shown to be dysregulated in bipolar disorder (BD), alcohol use disorder (AUD) and substance use disorder (SUD). Similarly, disruption in the hypothalamic-pituitary-adrenal (HPA)-axis has also been observed in these conditions. BD is often comorbid with AUD and SUD. The effects of the glutamatergic and HPA systems have not been extensively examined in individuals with BD-AUD and BD-SUD comorbidity. The aim of this investigation was to determine whether variants in the glutamatergic pathway and HPA-axis are associated with BD-AUD and BD-SUD comorbidity. The research cohort consisted of 498 individuals with BD type I from the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD). A subset of the cohort had comorbid current AUD and current SUD. A total of 1935 SNPs from both the glutamatergic and HPA pathways were selected from the STEP-BD genome-wide dataset. To identify population stratification, IBS clustering was performed using the program Plink 1.07. Single SNP association and gene-based association testing were conducted using logistic regression. A pathway analysis of glutamatergic and HPA genes was performed, after imputation using IMPUTE2. No single SNP was associated with BD-AUD or BD-SUD comorbidity after correction for multiple testing. However, from the gene-based analysis, the gene PRKCI was significantly associated with BD-AUD. The pathway analysis provided overall negative findings, although several genes including GRIN2B showed high percentage of associated SNPs for BD-AUD. Even though the glutamatergic and HPA pathways may not be involved in BD-AUD and BD-SUD comorbidity, PRKCI deserves further investigation in BD-AUD.
Collapse
Affiliation(s)
- Shareefa Dalvie
- MRC/UCT Human Genetics Research Unit, Division of Human Genetics, University of Cape Town, Observatory, Cape Town, South Africa.
| | - Chiara Fabbri
- Institute of Psychiatry, University of Bologna, Viale Carlo Pepoli 5, Bologna, Italy
| | - Raj Ramesar
- MRC/UCT Human Genetics Research Unit, Division of Human Genetics, University of Cape Town, Observatory, Cape Town, South Africa
| | - Alessandro Serretti
- Institute of Psychiatry, University of Bologna, Viale Carlo Pepoli 5, Bologna, Italy
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Observatory, Cape Town, South Africa
| |
Collapse
|
34
|
Ponsuksili S, Zebunke M, Murani E, Trakooljul N, Krieter J, Puppe B, Schwerin M, Wimmers K. Integrated Genome-wide association and hypothalamus eQTL studies indicate a link between the circadian rhythm-related gene PER1 and coping behavior. Sci Rep 2015; 5:16264. [PMID: 26537429 PMCID: PMC4633681 DOI: 10.1038/srep16264] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/12/2015] [Indexed: 12/31/2022] Open
Abstract
Animal personality and coping styles are basic concepts for evaluating animal welfare. Struggling response of piglets in so-called backtests early in life reflects their coping strategy. Behavioral reactions of piglets in backtests have a moderate heritability, but their genetic basis largely remains unknown. Here, latency, duration and frequency of struggling attempts during one-minute backtests were repeatedly recorded of piglets at days 5, 12, 19, and 26. A genome-wide association study for backtest traits revealed 465 significant SNPs (FDR ≤ 0.05) mostly located in QTL (quantitative trait locus) regions on chromosome 3, 5, 12 and 16. In order to capture genes in these regions, 37 transcripts with significant SNPs were selected for expressionQTL analysis in the hypothalamus. Eight genes (ASGR1, CPAMD8, CTC1, FBXO39, IL19, LOC100511790, RAD51B, UBOX5) had cis- and five (RANGRF, PER1, PDZRN3, SH2D4B, LONP2) had trans-expressionQTL. In particular, for PER1, with known physiological implications for maintenance of circadian rhythms, a role in coping behavior was evidenced by confirmed association in an independent population. For CTC1 a cis-expression QTL and the consistent relationship of gene polymorphism, mRNA expression level and backtest traits promoted its link to coping style. GWAS and eQTL analyses uncovered positional and functional gene candidates for coping behavior.
Collapse
Affiliation(s)
- Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Manuela Zebunke
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Behavioral Physiology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Eduard Murani
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Joachim Krieter
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Kiel, Germany
| | - Birger Puppe
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Behavioral Physiology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Manfred Schwerin
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
35
|
Poleti MD, DeRijk RH, Rosa AF, Moncau CT, Oliveira PS, Coutinho LL, Eler JP, Balieiro JCC. Genetic variants in glucocorticoid and mineralocorticoid receptors are associated with concentrations of plasma cortisol, muscle glycogen content, and meat quality traits in male Nellore cattle. Domest Anim Endocrinol 2015; 51:105-13. [PMID: 25617989 DOI: 10.1016/j.domaniend.2014.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 11/23/2022]
Abstract
The glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) are key components in the regulation of the hypothalamic-pituitary-adrenal neuroendocrine axis and coordinate the physiological response to stress agents to reestablish homeostasis. Genetic variations of GR (NR3C1) and MR (NR3C2) genes could explain the alterations in animals to adapt to challenges, and therefore, their influence on production traits. The present study aimed to identify single-nucleotide polymorphisms (SNPs) in the bovine NR3C1 and NR3C2 genes and explore their associations to relevant traits of beef cattle production. Genotypes and phenotypes were collected from 241 male Nellore cattle (119 noncastrated and 122 castrated surgically) with an average of 24 ± 1.2 mo of age and live weight of 508 ± 39 kg. The traits evaluated were concentrations of plasma adrenocorticotropic hormone (ACTH) and cortisol, muscle glycogen and lactate content, and pH, color, cooking loss, and shear force of longissimus thoracis measured on the 1st, 7th, and 14th days postmortem. Five SNPs were identified, 2 in the NR3C1 gene and 3 in the NR3C2 gene. There was an associative relationship between the SNP NR3C1_1 g.3293A>G and postmortem plasma concentration of cortisol (P = 0.0008). The SNPs NR3C2_1 g.115T>C and NR3C2_2 g.570T>C were associated with muscle glycogen content (P = 0.0306 and P = 0.0158), postmortem plasma concentration of ACTH (P = 0.0118 and P = 0.0095), and cooking loss of the steak aged 1 d (P = 0.0398 and P = 0.0423). Haplotype analysis showed associations of GR haplotypes with postmortem plasma concentrations of cortisol and MR haplotypes with meat color, cooking losses, muscle glycogen content, and plasma concentrations of ACTH. The associations observed in the present study show that SNPs in GR and MR genes are related with changes of hypothalamic-pituitary-adrenal axis activity and metabolic profile in cattle, leading to individual variation in meat quality traits.
Collapse
Affiliation(s)
- M D Poleti
- Department of Basic Sciences, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Sao Paulo 13635-900, Brazil.
| | - R H DeRijk
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden University Medical Center, Leiden, The Netherlands; Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
| | - A F Rosa
- Department of Basic Sciences, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Sao Paulo 13635-900, Brazil
| | - C T Moncau
- Department of Basic Sciences, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Sao Paulo 13635-900, Brazil
| | - P S Oliveira
- Department of Basic Sciences, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Sao Paulo 13635-900, Brazil
| | - L L Coutinho
- Department of Animal Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, Sao Paulo 13418-900, Brazil
| | - J P Eler
- Department of Basic Sciences, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Sao Paulo 13635-900, Brazil
| | - J C C Balieiro
- Department of Basic Sciences, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Sao Paulo 13635-900, Brazil
| |
Collapse
|
36
|
Friedrich J, Brand B, Schwerin M. Genetics of cattle temperament and its impact on livestock production and breeding – a review. Arch Anim Breed 2015. [DOI: 10.5194/aab-58-13-2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. Cattle temperament, which describes individual behaviour differences with regard to a stressor or environmental challenge, is known for its impact on working safety, adaptability to new housing conditions, animal productivity and for evaluation of animal welfare. However, successful use of temperament in animal breeding and husbandry to improve keeping conditions in general or animal welfare in particular, requires the availability of informative and reproducible phenotypes and knowledge about the genetic modulation of these traits. However, the knowledge about genetic influences on cattle temperament is still limited. In this review, an outline is given for the interdependence between production systems and temperament as well as for the phenotyping of cattle temperament based on both behaviour tests and observations of behaviour under production conditions. In addition, the use of temperament as a selection criterion is discussed.
Collapse
|
37
|
Oster M, Muráni E, Ponsuksili S, D’Eath RB, Turner SP, Evans G, Thölking L, Kurt E, Klont R, Foury A, Mormède P, Wimmers K. Transcriptional responses of PBMC in psychosocially stressed animals indicate an alerting of the immune system in female but not in castrated male pigs. BMC Genomics 2014; 15:967. [PMID: 25380980 PMCID: PMC4233077 DOI: 10.1186/1471-2164-15-967] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 10/15/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brain and immune system are linked in a bi-directional manner. To date, it remained largely unknown why immune components become suppressed, enhanced, or remain unaffected in relation to psychosocial stress. Therefore, we mixed unfamiliar pigs with different levels of aggressiveness. We separated castrated male and female pigs into psychosocially high- and low- stressed animals by skin lesions, plasma cortisol level, and creatine kinase activity obtained from agonistic behaviour associated with regrouping. Peripheral blood mononuclear cells (PBMC) were collected post-mortem and differential gene expression was assessed using the Affymetrix platform (n = 16). RESULTS Relevant stress-dependent alterations were found only between female samples, but not between castrated male samples. Molecular routes related to TREM 1 signalling, dendritic cell maturation, IL-6 signalling, Toll-like receptor signalling, and IL-8 signalling were increased in high stressed females compared to low stressed females. This indicates a launch of immune effector molecules as a direct response. According to the shifts of transcripts encoding cell surface receptors (e.g. CD14, TLR2, TLR4, TREM1) the study highlights processes acting on pattern recognition, inflammation, and cell-cell communication. CONCLUSIONS The transcriptional response partly affected the degree of 'stress responsiveness', indicating that the high stressed females altered their signal transduction due to potential infections and injuries while fighting.
Collapse
Affiliation(s)
- Michael Oster
- />Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Eduard Muráni
- />Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Siriluck Ponsuksili
- />Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Richard B D’Eath
- />Animal & Veterinary Science Research Group, SRUC, West Mains Road, Edinburgh, EH9 3JG UK
| | - Simon P Turner
- />Animal & Veterinary Science Research Group, SRUC, West Mains Road, Edinburgh, EH9 3JG UK
| | - Gary Evans
- />PIC UK, 2 Kingston Business Park, Kingston Bagpuize, Oxfordshire, OX13 5FE UK
| | - Ludger Thölking
- />PIC Germany, PIC Deutschland GmbH, Ratsteich 31, 24837 Schleswig, Germany
| | - Esra Kurt
- />Optimeter, Oyaksitesi 1.kisim 11b blok da:4, Sefakoy, Istanbul, Turkey
| | - Ronald Klont
- />Vion Food Group, Boseind 10, 5281 RM Boxtel Postbus 1, 5280 AA Boxtel, The Netherlands
| | - Aline Foury
- />Université Victor Segalen Bordeaux 2, PsyNuGen, UMR 1286 INRA, 33076 Bordeaux, France
| | - Pierre Mormède
- />Université Victor Segalen Bordeaux 2, PsyNuGen, UMR 1286 INRA, 33076 Bordeaux, France
| | - Klaus Wimmers
- />Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
38
|
|
39
|
Lee TK, Lee C, Bischof R, Lambert GW, Clarke IJ, Henry BA. Stress-induced behavioral and metabolic adaptations lead to an obesity-prone phenotype in ewes with elevated cortisol responses. Psychoneuroendocrinology 2014; 47:166-77. [PMID: 25001966 DOI: 10.1016/j.psyneuen.2014.05.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/26/2014] [Accepted: 05/21/2014] [Indexed: 11/17/2022]
Abstract
The underlying cause of predisposition to obesity is complex but one marker is cortisol responsiveness. Selection of sheep for high (HR) or low (LR) cortisol responses to adrenocorticotropin shows that HR are more likely to become obese. Increased propensity to obesity is associated with reduced skeletal muscle thermogenesis. We sought to determine whether metabolic or behavioral responses to stress also contribute to altered propensity to obesity in LR and HR. Animals (n=5-10/group) were exposed to 3 stressors and we measured food intake and thermogenesis (recorded with dataloggers implanted into muscle). Stressors were hypoglycaemia (0.125 units/kg insulin, IV), a barking dog and immune challenge (200 ng/kg lipopolysaccharide--LPS, IV). LR animals showed a greater catabolic state in response to both immune and psychosocial stressors. LPS reduced (P<0.01) food intake in both groups but LR showed a greater (P<0.05) reduction in food intake and a more substantial (P<0.05) rise in muscle temperature. Introduction of the barking dog reduced (P<0.05) food intake in LR only. These metabolic differences coincided with differences in cortisol responsiveness, where HR animals had increased (P<0.05) cortisol in response to both immune and psychosocial stressors. We also assessed behavior in the following paradigms: 1, isolation in the open field test; 2, response to a human intruder; and 3, food competition. LR had greater (P<0.05) activity, reduced fearfulness and displayed a proactive coping style of behavior. Thus we demonstrate that high cortisol responsiveness identifies animals with stress-induced metabolic and behavioral traits that may contribute to susceptibility to obesity.
Collapse
Affiliation(s)
- T Kevin Lee
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | - Caroline Lee
- CSIRO Animal, Food and Health Sciences, Armidale, NSW 2350, Australia
| | - Robert Bischof
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | - Gavin W Lambert
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia; Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Iain J Clarke
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | - Belinda A Henry
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
40
|
Phillips CE, Farmer C, Anderson JE, Johnston LJ, Shurson GC, Deen J, Keisler DH, Conner AM, Li YZ. Preweaning mortality in group-housed lactating sows: Hormonal differences between high risk and low risk sows. J Anim Sci 2014; 92:2603-11. [DOI: 10.2527/jas.2014-7624] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- C. E. Phillips
- College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul 55108
| | - C. Farmer
- Agriculture and Agri-Food Canada, Dairy and Swine R & D Centre, Sherbrooke, QC, Canada J1M 0C8
| | | | - L. J. Johnston
- West Central Research and Outreach Center, University of Minnesota Morris, 56267
| | - G. C. Shurson
- College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul 55108
| | - J. Deen
- College of Veterinary Medicine, University of Minnesota, St. Paul 55108
| | - D. H. Keisler
- Division of Animal Science, University of Missouri, Columbia 65211
| | - A. M. Conner
- Division of Animal Science, University of Missouri, Columbia 65211
| | - Y. Z. Li
- West Central Research and Outreach Center, University of Minnesota Morris, 56267
| |
Collapse
|
41
|
Guillemin C, Provençal N, Suderman M, Côté SM, Vitaro F, Hallett M, Tremblay RE, Szyf M. DNA methylation signature of childhood chronic physical aggression in T cells of both men and women. PLoS One 2014; 9:e86822. [PMID: 24475181 PMCID: PMC3901708 DOI: 10.1371/journal.pone.0086822] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/10/2013] [Indexed: 01/08/2023] Open
Abstract
Background High frequency of physical aggression is the central feature of severe conduct disorder and is associated with a wide range of social, mental and physical health problems. We have previously tested the hypothesis that differential DNA methylation signatures in peripheral T cells are associated with a chronic aggression trajectory in males. Despite the fact that sex differences appear to play a pivotal role in determining the development, magnitude and frequency of aggression, most of previous studies focused on males, so little is known about female chronic physical aggression. We therefore tested here whether or not there is a signature of physical aggression in female DNA methylation and, if there is, how it relates to the signature observed in males. Methodology/Principal Findings Methylation profiles were created using the method of methylated DNA immunoprecipitation (MeDIP) followed by microarray hybridization and statistical and bioinformatic analyses on T cell DNA obtained from adult women who were found to be on a chronic physical aggression trajectory (CPA) between 6 and 12 years of age compared to women who followed a normal physical aggression trajectory. We confirmed the existence of a well-defined, genome-wide signature of DNA methylation associated with chronic physical aggression in the peripheral T cells of adult females that includes many of the genes similarly associated with physical aggression in the same cell types of adult males. Conclusions This study in a small number of women presents preliminary evidence for a genome-wide variation in promoter DNA methylation that associates with CPA in women that warrant larger studies for further verification. A significant proportion of these associations were previously observed in men with CPA supporting the hypothesis that the epigenetic signature of early life aggression in females is composed of a component specific to females and another common to both males and females.
Collapse
Affiliation(s)
- Claire Guillemin
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada ; Research Unit on Children's Psycho-Social Maladjustment and Ste-Justine Hospital Research Center, University of Montreal, Montreal, Quebec, Canada ; Sackler Program for Epigenetics and Psychobiology, McGill University, Montreal, Quebec, Canada
| | - Nadine Provençal
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada ; Research Unit on Children's Psycho-Social Maladjustment and Ste-Justine Hospital Research Center, University of Montreal, Montreal, Quebec, Canada ; Sackler Program for Epigenetics and Psychobiology, McGill University, Montreal, Quebec, Canada
| | - Matthew Suderman
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada ; Sackler Program for Epigenetics and Psychobiology, McGill University, Montreal, Quebec, Canada ; McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
| | - Sylvana M Côté
- Research Unit on Children's Psycho-Social Maladjustment and Ste-Justine Hospital Research Center, University of Montreal, Montreal, Quebec, Canada ; INSERM U669, Paris, France ; School of Social and Preventive Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Frank Vitaro
- Research Unit on Children's Psycho-Social Maladjustment and Ste-Justine Hospital Research Center, University of Montreal, Montreal, Quebec, Canada ; School of Psycho-Education, University of Montreal, Montreal, Quebec, Canada
| | - Michael Hallett
- McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
| | - Richard E Tremblay
- Research Unit on Children's Psycho-Social Maladjustment and Ste-Justine Hospital Research Center, University of Montreal, Montreal, Quebec, Canada ; Department of Psychology and Pediatrics, University of Montreal, Montreal, Quebec, Canada ; School of Public Health and Population Sciences, University College Dublin, Dublin, Ireland ; INSERM U669, Paris, France
| | - Moshe Szyf
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada ; Sackler Program for Epigenetics and Psychobiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
42
|
Lucion AB, Bortolini MC. Mother-pup interactions: rodents and humans. Front Endocrinol (Lausanne) 2014; 5:17. [PMID: 24616713 PMCID: PMC3935307 DOI: 10.3389/fendo.2014.00017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 02/08/2014] [Indexed: 12/14/2022] Open
Abstract
In order to survive after birth, mammalian infants need a caretaker, usually the mother. Several behavioral strategies have evolved to guarantee the transition from a period of intense caregiving to offspring independence. Here, we examine a selection of literature on the genetic, epigenetic, physiological, and behavioral factors relating to development and mother-infant interactions. We intend to show the utility of comparisons between rodent and human models for deepening knowledge regarding this key relationship. Particular attention is paid to the following factors: the distinct developmental stages of the mother-pup relationship as relating to behavior; examples of key genetic components of mammalian mother-infant interactions, specifically those coding for the hormones oxytocin and vasopressin; and the possible functions of gene imprinting in mediating interactions between genetics and environment in the mother-infant relationship. As early mother-infant attachment seems to establish the basic parameters for later social interactions, ongoing investigations in this area are essential. We propose the importance of interdisciplinary collaboration in order to better understand the network of genes, gene regulation, neuropeptide action, physiological processes, and feedback loops essential to understand the complex behaviors of mother-infant interaction.
Collapse
Affiliation(s)
- Aldo B. Lucion
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- *Correspondence: Aldo B. Lucion, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, Rio Grande do Sul 90050-170, Brazil e-mail:
| | - Maria Cátira Bortolini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
43
|
Rohrer G, Brown-Brandl T, Rempel L, Schneider J, Holl J. Genetic analysis of behavior traits in swine production. Livest Sci 2013. [DOI: 10.1016/j.livsci.2013.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Lee TK, Clarke IJ, John JS, Young IR, Leury BL, Rao A, Andrews ZB, Henry BA. High cortisol responses identify propensity for obesity that is linked to thermogenesis in skeletal muscle. FASEB J 2013; 28:35-44. [DOI: 10.1096/fj.13-238345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- T. Kevin Lee
- Department of PhysiologyMonash UniversityClaytonVictoriaAustralia
| | - Iain J. Clarke
- Department of PhysiologyMonash UniversityClaytonVictoriaAustralia
| | - Justin St. John
- Monash Institute of Medical ResearchMonash Medical CentreClaytonVictoriaAustralia
| | - I. Ross Young
- Department of PhysiologyMonash UniversityClaytonVictoriaAustralia
| | - Brian L. Leury
- Melbourne School of Land and EnvironmentUniversity of MelbourneMelbourneVictoriaAustralia
| | - Alexandra Rao
- Department of PhysiologyMonash UniversityClaytonVictoriaAustralia
| | - Zane B. Andrews
- Department of PhysiologyMonash UniversityClaytonVictoriaAustralia
| | - Belinda A. Henry
- Department of PhysiologyMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
45
|
Reyer H, Ponsuksili S, Wimmers K, Murani E. Association of N-terminal domain polymorphisms of the porcine glucocorticoid receptor with carcass composition and meat quality traits. Anim Genet 2013; 45:125-9. [DOI: 10.1111/age.12083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Henry Reyer
- Institute for Genome Biology; Leibniz Institute for Farm Animal Biology; Wilhelm-Stahl-Allee 2 18196 Dummerstorf Germany
| | - Siriluck Ponsuksili
- Research Group Functional Genome Analysis; Leibniz Institute for Farm Animal Biology; Wilhelm-Stahl-Allee 2 18196 Dummerstorf Germany
| | - Klaus Wimmers
- Institute for Genome Biology; Leibniz Institute for Farm Animal Biology; Wilhelm-Stahl-Allee 2 18196 Dummerstorf Germany
| | - Eduard Murani
- Institute for Genome Biology; Leibniz Institute for Farm Animal Biology; Wilhelm-Stahl-Allee 2 18196 Dummerstorf Germany
| |
Collapse
|
46
|
Reyer H, Ponsuksili S, Wimmers K, Murani E. Transcript variants of the porcine glucocorticoid receptor gene (NR3C1). Gen Comp Endocrinol 2013; 189:127-33. [PMID: 23684967 DOI: 10.1016/j.ygcen.2013.04.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/28/2013] [Indexed: 11/28/2022]
Abstract
Glucocorticoid receptor (GR) is a transcription factor activated by circulating glucocorticoids and mediates their effects on various biological functions in the body. The final cellular activity of GR is modulated by alternative splicing and cell-type specific expression of its encoding gene NR3C1. To enhance the current knowledge of alternative processing of NR3C1 in mammalian species and to facilitate future studies of its regulation in the pig we explored here structural diversity, and tissue-specific distribution of transcript variants of the porcine NR3C1, and the correlation between usage of alternative promoters and alternative splicing. We experimentally identified ten alternatively used untranslated first exons (1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1H2 and 1J) and four transcript variants encoding different GR subtypes (GR-alpha, GR-beta, GR-P and GR-gamma). Expression profiling of nine most important target tissues of glucocorticoids revealed that the promoter of exon 1C drives constitutive expression of the predominant GR-alpha subtype. We found compelling evidence that the occurrence of exon 1D influences abundance of the GR-P splice variant, while both seems to play an important role in regulating GR activity in neuroendocrine tissues. Exons 1A and 1B in turn appear to be important for the regulation of the expression of the porcine NR3C1 in liver and spleen. Our results demonstrate that tissue-specific actions of GR depend on the usage of alternative promoter regions that favour the processing of certain GR subtypes.
Collapse
Affiliation(s)
- Henry Reyer
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | | | | | | |
Collapse
|
47
|
Steinert T, Whittington R. A bio-psycho-social model of violence related to mental health problems. INTERNATIONAL JOURNAL OF LAW AND PSYCHIATRY 2013; 36:168-175. [PMID: 23391572 DOI: 10.1016/j.ijlp.2013.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
BACKGROUND Psychiatry is characterised by bio-psycho-social approaches and therapies. Thus there should be an interest in comprehensive theoretical models for didactic purposes. METHODS A narrative synthesis of key themes in the current literature on psychiatric aspects of violence was conducted with the aim of integrating biological, psychological and sociological ideas in this area. RESULTS Two didactical models are proposed for 1) individual disposition and for 2) acting in specific situations, each including available evidence-based knowledge. CONCLUSIONS The proposed models may be helpful for a comprehensive understanding of all relevant influencing factors in violent mentally ill people and for didactical purposes.
Collapse
|
48
|
Terenina E, Babigumira BM, Le Mignon G, Bazovkina D, Rousseau S, Salin F, Bendixen C, Mormede P. Association study of molecular polymorphisms in candidate genes related to stress responses with production and meat quality traits in pigs. Domest Anim Endocrinol 2013; 44:81-97. [PMID: 23063408 DOI: 10.1016/j.domaniend.2012.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/07/2012] [Accepted: 09/12/2012] [Indexed: 10/27/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis exerts a large range of effects on metabolism, the immune system, inflammatory processes, and brain functions. Together with the sympathetic nervous system, it is also the most important stress-responsive neuroendocrine system. Both systems influence production traits, carcass composition, and meat quality. The HPA axis may be a critical target for genetic selection of more robust animals. Indeed, numerous studies in various species have demonstrated the importance of genetic factors in shaping the individual HPA axis phenotype, and genetic polymorphism can be found at each level of the axis, including hormone production by the adrenal cortices under stimulation by adrenocorticotropic hormone (ACTH), hormone bioavailability, or receptor and postreceptor mechanisms. The aim of the present experiment was to extend these findings to the brain neurochemical systems involved in stress responses. To this end, a number of candidate genes were sequenced for molecular polymorphisms and their association was studied with stress neuroendocrine and production traits in a genetically diverse population consisting of 100 female pigs from an advanced intercross (F10-F12) between 2 highly divergent breeds, Large White (LW) and Meishan (MS). The LW breed has a high production potential for lean meat and a low HPA axis activity, and the MS breed has low growth rate, fat carcasses-but large litters of highly viable piglets-and a high HPA axis activity. Candidate genes were chosen in the catecholaminergic and serotonergic pathways, in the pituitary control of cortisol production, among genes previously demonstrated to be differentially expressed in ACTH-stimulated adrenal glands from LW and MS pigs, and in cortisol receptors. Sixty new polymorphisms were found. The association study with carcass and meat quality traits and with endocrine traits showed a number of significant results, such as monoamine oxidase (MAOA) polymorphisms with growth rate (P = 0.01); lean content and intramuscular fat (P < 0.01), which are the most important traits for carcass value; dopamine receptor D3 (DRD3) with carcass composition (P < 0.05); and vasopressin receptor 1B (AVPR1B) with meat quality traits (P ≤ 0.05). The effect of these polymorphisms on neuroendocrine parameters (eg DRD3 and HPA axis or AVPR1B and catecholamines) indicates information regarding their biological mechanism of action.
Collapse
Affiliation(s)
- E Terenina
- INRA, UMR444, Laboratory for Cellular Genetics, Castanet-Tolosan, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Zai CC, Muir KE, Nowrouzi B, Shaikh SA, Choi E, Berall L, Trépanier MO, Beitchman JH, Kennedy JL. Possible genetic association between vasopressin receptor 1B and child aggression. Psychiatry Res 2012; 200:784-8. [PMID: 22910476 DOI: 10.1016/j.psychres.2012.07.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 07/09/2012] [Accepted: 07/19/2012] [Indexed: 11/15/2022]
Abstract
BACKGROUND Studies on animal models have implicated arginine vasopressin signalling pathway in aggressive behaviour. The role of arginine vasopressin in childhood onset aggression is unclear. METHODS We investigated 11 single-nucleotide polymorphisms in the genes coding for arginine vasopressin and its receptors in our sample of 177 aggressive child cases paired with adult controls matched for sex and ethnicity. RESULTS We found the non-synonymous polymorphism AVPR1B_rs35369693 to be associated with child aggression in our sample (P=0.007). We also found two-marker haplotype window containing AVPR1B_rs35369693 and AVPR1B_rs28676508 to be associated (P=0.003). The haplotype findings survived multiple-testing adjusted significance threshold of 0.0063. CONCLUSIONS This is the first report of a genetic association between vasopressin receptor 1B and child aggression. Replication in independent samples are required to confirm these findings.
Collapse
Affiliation(s)
- Clement C Zai
- Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Behavioural adaptation of farm animals to environmental changes contributes to high levels of production under a wide range of farming conditions, from highly controlled indoor systems to harsh outdoor systems. The genetic variation in livestock behaviour is considerable. Animals and genotypes with a larger behavioural capacity for adaptation may cope more readily with varying farming conditions than those with a lower capacity for adaptation. This capacity should be exploited when the aim is to use a limited number of species extensively across the world. The genetics of behavioural traits is understood to some extent, but it is seldom accounted for in breeding programmes. This review summarizes the estimates of genetic parameters for behavioural traits in cattle, pigs, poultry and fish. On the basis of the major studies performed in the last two decades, we focus the review on traits of common interest in the four species. These concern the behavioural responses to both acute and chronic stressors in the physical environment (feed, temperature, etc.) and those in the social environment (other group members, progeny, humans). The genetic strategies used to improve the behavioural capacity for adaptation of animals differ between species. There is a greater emphasis on responses to acute environmental stress in fish and birds, and on responses to chronic social stress in mammals.
Collapse
|