1
|
Gao S, Foolad MR. Identification and mapping of late blight resistance QTLs in the wild tomato accession PI 224710 ( Solanum pimpinellifolium). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:63. [PMID: 39295771 PMCID: PMC11405559 DOI: 10.1007/s11032-024-01498-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024]
Abstract
Late blight (LB), caused by oomycete Phytophthora infestans, is one of the most destructive diseases of the cultivated tomato, Solanum lycopersicum. Since new and aggressive clonal lineages of P. infestans, many of which overcoming formerly effective fungicides or host resistance genes, have continued to emerge, it is crucial to identify, characterize, and utilize new sources of host resistance in tomato breeding. A recent screening of tomato germplasm identified Solanum pimpinellifolium accession PI 224710 with very strong resistance to several current P. infestans clonal lineages. The present study aimed to identify and characterize QTLs associated with LB resistance in PI 224710. Disease screening of a large F2 population (n = 1721), derived from a cross between PI 224710 and LB-susceptible tomato breeding line Fla. 8059, followed by F3 progeny testing, resulted in the identification of 43 highly-resistant and 27 highly-susceptible F2 individuals. A selective genotyping approach, using 469 non-identical SNP markers, resulted in the construction of a genetic linkage map and identification of three LB-resistance QTLs on chromosomes 6, 9 and 10 of PI 224710. A comparison of the QTLs genomic locations with the tomato physical map resulted in the identification of several candidate genes, which might be underpinning the LB-resistance QTLs in PI 224710. The identified markers associated with the LB-resistance QTLs can be utilized in breeding programs to transfer resistance from PI 224710 into tomato breeding lines and hybrid cultivars via marker-assisted breeding; they also can be used to develop near-isogenic lines for fine mapping of the QTLs. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01498-1.
Collapse
Affiliation(s)
- Sihui Gao
- Department of Plant Science and the Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802 USA
- Present Address: Johnny’s Selected Seeds, 955 Benton Ave., Winslow, ME 04901 USA
| | - Majid R. Foolad
- Department of Plant Science and the Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|
2
|
Angmo D, Sharma SP, Kalia A. Breeding strategies for late blight resistance in potato crop: recent developments. Mol Biol Rep 2023; 50:7879-7891. [PMID: 37526862 DOI: 10.1007/s11033-023-08577-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/01/2023] [Indexed: 08/02/2023]
Abstract
Late blight (LB) is a serious disease that affects potato crop and is caused by Phytophthora infestans. Fungicides are commonly used to manage this disease, but this practice has led to the development of resistant strains and it also poses serious environmental and health risks. Therefore, breeding for resistance development can be the most effective strategies to control late blight. Various Solanum species have been utilized as a source of resistance genes to combat late blight disease. Several potential resistance genes and quantitative resistance loci (QRLs) have been identified and mapped through the application of molecular techniques. Furthermore, molecular markers closely linked to resistance genes or QRLs have been utilized to hasten the breeding process. However, the use of single-gene resistance can lead to the breakdown of resistance within a short period. To address this, breeding programs are now being focused on development of durable and broad-spectrum resistant cultivars by combining multiple resistant genes and QRLs using advanced molecular breeding tools such as marker-assisted selection (MAS) and cis-genic approaches. In addition to the strategies mentioned earlier, somatic hybridization has been utilized for the development and characterization of interspecific somatic hybrids. To further broaden the scope of late blight resistance breeding, approaches such as genomic selection, RNAi silencing, and various genome editing techniques can be employed. This study provides an overview of recent advances in various breeding strategies and their applications in improving the late blight resistance breeding program.
Collapse
Affiliation(s)
- Dechen Angmo
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, Punjab, India.
| | - Sat Pal Sharma
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| |
Collapse
|
3
|
Forbes E, Wulff-Vester AK, Hvoslef-Eide T(A. Will genetically modified late blight resistant potatoes be the first GM crops to be approved for commercial growing in Norway? FRONTIERS IN PLANT SCIENCE 2023; 14:1137598. [PMID: 36938038 PMCID: PMC10014530 DOI: 10.3389/fpls.2023.1137598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Last decade's advances in biotechnology, with the introduction of CRISPR, have challenged the regulatory framework for competent authorities all over the world. Hence, regulatory issues related to gene editing are currently high on the agenda both in the EU and in the European Economic Area (EEA) Agreement country of Norway, particularly with regards to sustainable agriculture. During the negotiations on the EEA Agreement, Norway was allowed to retain three extra aims in the Gene Technology Act: "That the production and use of GMO happens in an ethical way, is beneficial to society and is in accordance with the principle of sustainable development". We argue the case that taking sustainability into the decisions on regulating gene edited products could be easier in Norway than in the EU because of these extra aims. Late blight is our chosen example, as a devastating disease in potato that is controlled in Norway primarily by high levels of fungicide use. Also, many of these fungicides are being banned due to negative environmental and health effects. The costs of controlling late blight in Norway were calculated in 2006, and since then there have been new cultivars developed, inflation and an outbreak of war in Europe increasing farm input costs. A genetically modified (GM) cisgenic late blight resistant (LBR) potato presents a possible solution that could reduce fungicide use, but this could still be controversial. This paper aims to discuss the advantages and disadvantages of approving the commercial use of a GM LBR potato cultivar in Norway and compare these against currently used late blight management methods and conventional potato resistance breeding. We argue that a possible route for future regulatory framework could build upon the proposal by the Norwegian Biotechnology Advisory Board from 2019, also taking sustainability goals into account. This could favour a positive response from the Competent Authorities without breeching the European Economic Area (EEA) Agreement. Perhaps the EU could adopt a similar approach to fulfil their obligations towards a more sustainable agriculture?
Collapse
|
4
|
Paluchowska P, Śliwka J, Yin Z. Late blight resistance genes in potato breeding. PLANTA 2022; 255:127. [PMID: 35576021 PMCID: PMC9110483 DOI: 10.1007/s00425-022-03910-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Using late blight resistance genes targeting conservative effectors of Phytophthora infestans and the constructing gene pyramids may lead to durable, broad-spectrum resistance, which could be accelerated through genetic engineering. Potato (Solanum tuberosum L.) is one of the most important food crops worldwide. In 2020, potato production was estimated to be more than 359 million tons according to the Food and Agriculture Organization (FAO). Potato is affected by many pathogens, among which Phytophthora infestans, causing late blight, is of the most economic importance. Crop protection against late blight requires intensive use of fungicides, which has an impact on the environment and humans. Therefore, new potato cultivars have been bred using resistance genes against P. infestans (Rpi genes) that originate from wild relatives of potato. Such programmes were initiated 100 years ago, but the process is complex and long. The development of genetic engineering techniques has enabled the direct transfer of resistance genes from potato wild species to cultivars and easier pyramiding of multiple Rpi genes, which potentially increases the durability and spectrum of potato resistance to rapidly evolving P. infestans strains. In this review, we summarize the current knowledge concerning Rpi genes. We also discuss the use of Rpi genes in breeding as well as their detection in existing potato cultivars. Last, we review new sources of Rpi genes and new methods used to identify them and discuss interactions between P. infestans and host.
Collapse
Affiliation(s)
- Paulina Paluchowska
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland.
| | - Jadwiga Śliwka
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland
| | - Zhimin Yin
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland
| |
Collapse
|
5
|
Wang H, Trusch F, Turnbull D, Aguilera-Galvez C, Breen S, Naqvi S, Jones JDG, Hein I, Tian Z, Vleeshouwers V, Gilroy E, Birch PRJ. Evolutionarily distinct resistance proteins detect a pathogen effector through its association with different host targets. THE NEW PHYTOLOGIST 2021; 232:1368-1381. [PMID: 34339518 DOI: 10.1111/nph.17660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Knowledge of the evolutionary processes which govern pathogen recognition is critical to understanding durable disease resistance. We determined how Phytophthora infestans effector PiAVR2 is recognised by evolutionarily distinct resistance proteins R2 and Rpi-mcq1. We employed yeast two-hybrid, co-immunoprecipitation, virus-induced gene silencing, transient overexpression, and phosphatase activity assays to investigate the contributions of BSL phosphatases to R2- and Rpi-mcq1-mediated hypersensitive response (R2 HR and Rpi-mcq1 HR, respectively). Silencing PiAVR2 target BSL1 compromises R2 HR. Rpi-mcq1 HR is compromised only when BSL2 and BSL3 are silenced. BSL1 overexpression increases R2 HR and compromises Rpi-mcq1. However, overexpression of BSL2 or BSL3 enhances Rpi-mcq1 and compromises R2 HR. Okadaic acid, which inhibits BSL phosphatase activity, suppresses both recognition events. Moreover, expression of a BSL1 phosphatase-dead (PD) mutant suppresses R2 HR, whereas BSL2-PD and BSL3-PD mutants suppress Rpi-mcq1 HR. R2 interacts with BSL1 in the presence of PiAVR2, but not with BSL2 and BSL3, whereas no interactions were detected between Rpi-mcq1 and BSLs. Thus, BSL1 activity and association with R2 determine recognition of PiAVR2 by R2, whereas BSL2 and BSL3 mediate Rpi-mcq1 perception of PiAVR2. R2 and Rpi-mcq1 utilise distinct mechanisms to detect PiAVR2 based on association with different BSLs, highlighting central roles of these effector targets for both disease and disease resistance.
Collapse
Affiliation(s)
- Haixia Wang
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Rd, Invergowrie, Dundee, DD2 5DA, UK
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Franziska Trusch
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Rd, Invergowrie, Dundee, DD2 5DA, UK
| | - Dionne Turnbull
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Rd, Invergowrie, Dundee, DD2 5DA, UK
| | - Carolina Aguilera-Galvez
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands
| | - Susan Breen
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 DA, UK
- School of Life Sciences, The University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK
| | - Shaista Naqvi
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Rd, Invergowrie, Dundee, DD2 5DA, UK
| | | | - Ingo Hein
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Rd, Invergowrie, Dundee, DD2 5DA, UK
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 DA, UK
| | - Zhendong Tian
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Vivianne Vleeshouwers
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands
| | - Eleanor Gilroy
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 DA, UK
| | - Paul R J Birch
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Rd, Invergowrie, Dundee, DD2 5DA, UK
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 DA, UK
| |
Collapse
|
6
|
Janiszewska M, Sobkowiak S, Stefańczyk E, Śliwka J. Population Structure of Phytophthora infestans from a Single Location in Poland Over a Long Period of Time in Context of Weather Conditions. MICROBIAL ECOLOGY 2021; 81:746-757. [PMID: 33123759 PMCID: PMC7982385 DOI: 10.1007/s00248-020-01630-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Phytophthora infestans (Mont.) de Bary is a destructive potato pathogen. Changing weather conditions are among the factors that influence the pathogen population structure. In this study, 237 P. infestans isolates were collected from a single unprotected experimental field in an area with high late-blight pressure located in Boguchwała in the southeastern part of Poland during 15 growing seasons (2000-2014). The isolates were assessed for mating type, mitochondrial haplotype, resistance to metalaxyl, virulence, and polymorphism of 14 single-sequence repeat markers (SSRs). The results revealed 89 unique genotypes among the 237 P. infestans isolates. Eighty-seven isolates belonged to genotype 34_A1, which was detected in all the years of research except 2012. Isolates of P. infestans from individual years were very similar to each other, as shown by Nei's genetic identity based on 14 SSR markers. The obtained results on isolate characteristics were analyzed in terms of meteorological data (air temperature and precipitation) and indicated that frost, long winters, and hot, dry summers did not directly affect the P. infestans population structure. We described the variability in metalaxyl resistance and virulence among isolates of the P. infestans genotype 34_A1.
Collapse
Affiliation(s)
- M Janiszewska
- Plant Breeding and Acclimatization Institute - National Research Institute, Młochów Research Centre, Platanowa 19, 05-831, Młochów, Poland.
| | - S Sobkowiak
- Plant Breeding and Acclimatization Institute - National Research Institute, Młochów Research Centre, Platanowa 19, 05-831, Młochów, Poland
| | - E Stefańczyk
- Plant Breeding and Acclimatization Institute - National Research Institute, Młochów Research Centre, Platanowa 19, 05-831, Młochów, Poland
| | - J Śliwka
- Plant Breeding and Acclimatization Institute - National Research Institute, Młochów Research Centre, Platanowa 19, 05-831, Młochów, Poland
| |
Collapse
|
7
|
Gene Pyramiding for Sustainable Crop Improvement against Biotic and Abiotic Stresses. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10091255] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sustainable agricultural production is endangered by several ecological factors, such as drought, extreme temperatures, excessive salts, parasitic ailments, and insect pest infestation. These challenging environmental factors may have adverse effects on future agriculture production in many countries. In modern agriculture, conventional crop-breeding techniques alone are inadequate for achieving the increasing population’s food demand on a sustainable basis. The advancement of molecular genetics and related technologies are promising tools for the selection of new crop species. Gene pyramiding through marker-assisted selection (MAS) and other techniques have accelerated the development of durable resistant/tolerant lines with high accuracy in the shortest period of time for agricultural sustainability. Gene stacking has not been fully utilized for biotic stress resistance development and quality improvement in most of the major cultivated crops. This review emphasizes on gene pyramiding techniques that are being successfully deployed in modern agriculture for improving crop tolerance to biotic and abiotic stresses for sustainable crop improvement.
Collapse
|
8
|
Zoteyeva NM. LATE BLIGHT RESISTANCE OF WILD POTATO SPECIES UNDER FIELD CONDITIONS IN THE NORTHWEST OF RUSSIA. PROCEEDINGS ON APPLIED BOTANY, GENETICS AND BREEDING 2020. [DOI: 10.30901/2227-8834-2019-4-159-169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Background. Despite the great efforts made by breeders, late blight remains a paramount cause of significant potato harvest losses. Introgression of various resistance genes from wild Solanum L. species is the main method to increase the resistance in potato cultivars. Field resistance is considered to be more durable than those induced by the action of single R genes. To this end, resistance sources should be selected from а wide range of species under severe natural infection.Material and methods. As the material for evaluation, 1141 accessions of 99 wild potato species belonging to 15 taxonomic series according to the system of J. Hawkes were used. Each accession was assessed for 3–5 years. A 1–9 point scale was employed to score the damage of plants every week starting from the first symptoms of the disease, where 9 meant the absence of any symptoms, and 1 the entirely damaged plant. The plants scoring 6 to 9 points were considered resistant.Results and conclusions. As a result of the long-term field observations, wild potato species, represented in the current evaluation by numerous accessions, were characterized for foliar resistance to late blight; individual introductions resistant to late blight were also identified. Some of those studied in the 1980s showed high resistance in the end of the 1990s through the 2000s. The highest percentage of resistant accessions/species was identified among the species with areas of distribution in Mexico. A group of Central American species and large part of species with areas of distribution in South America expressed high level of interspecific polymorphism in foliar resistance to late blight.
Collapse
Affiliation(s)
- N. M. Zoteyeva
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| |
Collapse
|
9
|
Elnahal ASM, Li J, Wang X, Zhou C, Wen G, Wang J, Lindqvist-Kreuze H, Meng Y, Shan W. Identification of Natural Resistance Mediated by Recognition of Phytophthora infestans Effector Gene Avr3aEM in Potato. FRONTIERS IN PLANT SCIENCE 2020; 11:919. [PMID: 32636869 PMCID: PMC7318898 DOI: 10.3389/fpls.2020.00919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/05/2020] [Indexed: 05/13/2023]
Abstract
Late blight is considered the most renowned devastating potato disease worldwide. Resistance gene (R)-based resistance to late blight is the most effective method to inhibit infection by the causal agent Phytophthora infestans. However, the limited availability of resistant potato varieties and the rapid loss of R resistance, caused by P. infestans virulence variability, make disease control rely on fungicide application. We employed an Agrobacterium tumefaciens-mediated transient gene expression assay and effector biology approach to understand late blight resistance of Chinese varieties that showed years of promising field performance. We are particularly interested in PiAvr3aEM , the most common virulent allele of PiAvr3aKI that triggers a R3a-mediated hypersensitive response (HR) and late blight resistance. Through our significantly improved A. tumefaciens-mediated transient gene expression assay in potato using cultured seedlings, we characterized two dominant potato varieties, Qingshu9 and Longshu7, in China by transient expression of P. infestans effector genes. Transient expression of 10 known avirulence genes showed that PiAvr4 and PiAvr8 (PiAvrsmira2) could induce HR in Qingshu9, and PiAvrvnt1.1 in Longshu7, respectively. Our study also indicated that PiAvr3aEM is recognized by these two potato varieties, and is likely involved in their significant field performance of late blight resistance. The identification of natural resistance mediated by PiAvr3aEM recognition in Qingshu9 and Longshu7 will facilitate breeding for improved potato resistance against P. infestans.
Collapse
Affiliation(s)
- Ahmed S. M. Elnahal
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Jinyang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiaoxia Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Chenyao Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Guohong Wen
- Institute of Potato Research, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Jian Wang
- Institute of Biotechnology, Qinghai Academy of Agricultural Sciences, Xining, China
| | | | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
- *Correspondence: Weixing Shan,
| |
Collapse
|
10
|
Aguilera-Galvez C, Champouret N, Rietman H, Lin X, Wouters D, Chu Z, Jones J, Vossen J, Visser R, Wolters P, Vleeshouwers V. Two different R gene loci co-evolved with Avr2 of Phytophthora infestans and confer distinct resistance specificities in potato. Stud Mycol 2018; 89:105-115. [PMID: 29910517 PMCID: PMC6002340 DOI: 10.1016/j.simyco.2018.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Late blight, caused by the oomycete pathogen Phytophthora infestans, is the most devastating disease in potato. For sustainable management of this economically important disease, resistance breeding relies on the availability of resistance (R) genes. Such R genes against P. infestans have evolved in wild tuber-bearing Solanum species from North, Central and South America, upon co-evolution with cognate avirulence (Avr) genes. Here, we report how effectoromics screens with Avr2 of P. infestans revealed defense responses in diverse Solanum species that are native to Mexico and Peru. We found that the response to AVR2 in the Mexican Solanum species is mediated by R genes of the R2 family that resides on a major late blight locus on chromosome IV. In contrast, the response to AVR2 in Peruvian Solanum species is mediated by Rpi-mcq1, which resides on chromosome IX and does not belong to the R2 family. The data indicate that AVR2 recognition has evolved independently on two genetic loci in Mexican and Peruvian Solanum species, respectively. Detached leaf tests on potato cultivar 'Désirée' transformed with R genes from either the R2 or the Rpi-mcq1 locus revealed an overlapping, but distinct resistance profile to a panel of 18 diverse P. infestans isolates. The achieved insights in the molecular R - Avr gene interaction can lead to more educated exploitation of R genes and maximize the potential of generating more broad-spectrum, and potentially more durable control of the late blight disease in potato.
Collapse
Affiliation(s)
- C. Aguilera-Galvez
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - N. Champouret
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - H. Rietman
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - X. Lin
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - D. Wouters
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Z. Chu
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - J.D.G. Jones
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - J.H. Vossen
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - R.G.F. Visser
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - P.J. Wolters
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - V.G.A.A. Vleeshouwers
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| |
Collapse
|
11
|
Hara-Skrzypiec A, Śliwka J, Jakuczun H, Zimnoch-Guzowska E. QTL for tuber morphology traits in diploid potato. J Appl Genet 2018; 59:123-132. [PMID: 29492845 PMCID: PMC5895667 DOI: 10.1007/s13353-018-0433-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 11/24/2022]
Abstract
A diploid, potato mapping population consisting of 149 individuals was assessed in three consecutive years for important agronomic and quality traits: tuber shape, regularity of tuber shape, eye depth, mean tuber weight, and tuber flesh color. Analysis of variance showed that the genotype had the largest influence on the phenotypic scores but effect of the genotype × year interactions was also strong. Using this data and an existing genetic map, a quantitative trait loci (QTL) analysis was conducted. From four to seven QTL were detected for each trait except tuber flesh color, which was determined by a major QTL on chromosome III explaining 76.8% of the trait variance. Additionally, a minor QTL for flesh color was localized on chromosome II. For the other traits, significant QTL were detected: for tuber shape on chromosome X, for regularity of tuber shape on chromosome III, for eye depth on chromosome IV, and for tuber weight on chromosome I. Some detected QTL confirmed previous studies, but new ones were also identified.
Collapse
Affiliation(s)
- Agnieszka Hara-Skrzypiec
- Plant Breeding and Acclimatization Institute - National Research Institute, Platanowa 19, 05-831, Młochów, Poland.
| | - J Śliwka
- Plant Breeding and Acclimatization Institute - National Research Institute, Platanowa 19, 05-831, Młochów, Poland
| | - H Jakuczun
- Plant Breeding and Acclimatization Institute - National Research Institute, Platanowa 19, 05-831, Młochów, Poland
| | - E Zimnoch-Guzowska
- Plant Breeding and Acclimatization Institute - National Research Institute, Platanowa 19, 05-831, Młochów, Poland
| |
Collapse
|
12
|
Hara-Skrzypiec A, Śliwka J, Jakuczun H, Zimnoch-Guzowska E. Quantitative trait loci for tuber blackspot bruise and enzymatic discoloration susceptibility in diploid potato. Mol Genet Genomics 2017; 293:331-342. [PMID: 29080143 PMCID: PMC5854731 DOI: 10.1007/s00438-017-1387-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/19/2017] [Indexed: 12/19/2022]
Abstract
Tuber tissue discolorations caused by impact (blackspot bruising) and enzymatic discoloration (ED) after tuber cutting are crucial quality traits of the cultivated potato. To understand the complex genetics of the traits, quantitative trait locus (QTL) analysis using diploid mapping population and diversity array technology (DArT) markers was performed. The phenotypic assessment included the complex evaluation of blackspot bruising susceptibility through two methods: rotating drum (BRD) and falling bolt (BFB) in combination with the evaluation of enzymatic discoloration. Because of observed in-practice relationship between bruising susceptibility and tuber starch content (TSC), analysis of starch content-corrected bruising susceptibility (SCB) was performed. QTLs for bruising were detected on chromosomes I, V with both test methods. The rotating drum method enabled the detection of additional QTLs on chromosomes VIII and XII. Analysis of SCB enabled the identification of the major QTL on chromosome V and two weaker QTLs on chromosomes VIII and XII, independently of starch content. The QTL for bruising detected on chromosome I overlapped with the most significant QTL for tuber starch content. This QTL was not significant for starch content-corrected bruising susceptibility, and the effect of the QTL on chromosome V was enhanced for this trait. The QTL analysis of ED revealed the contribution of seven QTLs for the trait, located on six chromosomes, including these detected for the first time: a major locus on chromosome V and minor QTLs on chromosomes VII and X, which were specific for the trait. The QTL for ED on chromosome VIII was co-localized with the marker for polyphenol oxidase (POT32). The phenotypic correlation between bruising and ED was confirmed in QTL analyses of both traits, and the QTLs detected for these traits overlapped on chromosomes I, V, and VIII. Our results should provide a basis for further studies on candidate genes affecting blackspot bruise susceptibility and enzymatic discoloration.
Collapse
Affiliation(s)
- Agnieszka Hara-Skrzypiec
- Plant Breeding and Acclimatization Institute, National Research Institute, Młochów, Platanowa 19, 05-831, Młochów, Poland.
| | - J Śliwka
- Plant Breeding and Acclimatization Institute, National Research Institute, Młochów, Platanowa 19, 05-831, Młochów, Poland
| | - H Jakuczun
- Plant Breeding and Acclimatization Institute, National Research Institute, Młochów, Platanowa 19, 05-831, Młochów, Poland
| | - E Zimnoch-Guzowska
- Plant Breeding and Acclimatization Institute, National Research Institute, Młochów, Platanowa 19, 05-831, Młochów, Poland
| |
Collapse
|
13
|
Zhang H, Mittal N, Leamy LJ, Barazani O, Song B. Back into the wild-Apply untapped genetic diversity of wild relatives for crop improvement. Evol Appl 2017; 10:5-24. [PMID: 28035232 PMCID: PMC5192947 DOI: 10.1111/eva.12434] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
Deleterious effects of climate change and human activities, as well as diverse environmental stresses, present critical challenges to food production and the maintenance of natural diversity. These challenges may be met by the development of novel crop varieties with increased biotic or abiotic resistance that enables them to thrive in marginal lands. However, considering the diverse interactions between crops and environmental factors, it is surprising that evolutionary principles have been underexploited in addressing these food and environmental challenges. Compared with domesticated cultivars, crop wild relatives (CWRs) have been challenged in natural environments for thousands of years and maintain a much higher level of genetic diversity. In this review, we highlight the significance of CWRs for crop improvement by providing examples of CWRs that have been used to increase biotic and abiotic stress resistance/tolerance and overall yield in various crop species. We also discuss the surge of advanced biotechnologies, such as next-generation sequencing technologies and omics, with particular emphasis on how they have facilitated gene discovery in CWRs. We end the review by discussing the available resources and conservation of CWRs, including the urgent need for CWR prioritization and collection to ensure continuous crop improvement for food sustainability.
Collapse
Affiliation(s)
- Hengyou Zhang
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
| | - Neha Mittal
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
| | - Larry J. Leamy
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
| | - Oz Barazani
- The Institute for Plant SciencesIsrael Plant Gene BankAgricultural Research OrganizationBet DaganIsrael
| | - Bao‐Hua Song
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
| |
Collapse
|
14
|
Smyda-Dajmund P, Śliwka J, Wasilewicz-Flis I, Jakuczun H, Zimnoch-Guzowska E. Genetic composition of interspecific potato somatic hybrids and autofused 4x plants evaluated by DArT and cytoplasmic DNA markers. PLANT CELL REPORTS 2016; 35:1345-58. [PMID: 26993327 PMCID: PMC4869754 DOI: 10.1007/s00299-016-1966-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/01/2016] [Indexed: 05/24/2023]
Abstract
Using DArT analysis, we demonstrated that all Solanum × michoacanum (+) S. tuberosum somatic hybrids contained all parental chromosomes. However, from 13.9 to 29.6 % of the markers from both parents were lost in the hybrids. Somatic hybrids are an interesting material for research of nucleus-cytoplasm interaction and sources of new nuclear and cytoplasmic combinations. Analyses of genomes of somatic hybrids are essential for studies on genome compatibility between species, its evolution and are important for their efficient exploitation. Diversity array technology (DArT) permits analysis of the composition of nuclear DNA of somatic hybrids. The nuclear genome compositions of 97 Solanum × michoacanum (+) S. tuberosum [mch (+) tbr] somatic hybrids from five fusion combinations and 11 autofused 4x mch were analyzed for the first time based on DArT markers. Out of 5358 DArT markers generated in a single assay, greater than 2000 markers were polymorphic between parents, of which more than 1500 have a known chromosomal location on potato genetic or physical map. DArT markers were distributed along the entire length of 12 chromosomes. We noticed elimination of markers of wild and tbr fusion components. The nuclear genome of individual somatic hybrids was diversified. Mch is a source of resistance to Phytophthora infestans. From 97 mch (+) tbr somatic hybrids, two hybrids and all 11 autofused 4x mch were resistant to P. infestans. The analysis of the structure of particular hybrids' chromosomes indicated the presence of markers from both parental genomes as well as missing markers spread along the full length of the chromosome. Markers specific to chloroplast DNA and mitochondrial DNA were used for analysis of changes within the organellar genomes of somatic hybrids. Random and non-random segregations of organellar DNA were noted.
Collapse
Affiliation(s)
- Paulina Smyda-Dajmund
- Plant Breeding and Acclimatization Institute - National Research Institute, Młochów Research Center, Platanowa 19, 05-831, Młochów, Poland.
| | - Jadwiga Śliwka
- Plant Breeding and Acclimatization Institute - National Research Institute, Młochów Research Center, Platanowa 19, 05-831, Młochów, Poland
| | - Iwona Wasilewicz-Flis
- Plant Breeding and Acclimatization Institute - National Research Institute, Młochów Research Center, Platanowa 19, 05-831, Młochów, Poland
| | - Henryka Jakuczun
- Plant Breeding and Acclimatization Institute - National Research Institute, Młochów Research Center, Platanowa 19, 05-831, Młochów, Poland
| | - Ewa Zimnoch-Guzowska
- Plant Breeding and Acclimatization Institute - National Research Institute, Młochów Research Center, Platanowa 19, 05-831, Młochów, Poland
| |
Collapse
|
15
|
Brylińska M, Sobkowiak S, Stefańczyk E, Śliwka J. Potato cultivation system affects population structure of Phytophthora infestans. FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2016.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Śliwka J, Sołtys-Kalina D, Szajko K, Wasilewicz-Flis I, Strzelczyk-Żyta D, Zimnoch-Guzowska E, Jakuczun H, Marczewski W. Mapping of quantitative trait loci for tuber starch and leaf sucrose contents in diploid potato. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:131-40. [PMID: 26467474 PMCID: PMC4703618 DOI: 10.1007/s00122-015-2615-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/29/2015] [Indexed: 05/11/2023]
Abstract
Most QTL for leaf sucrose content map to positions that are similar to positions of QTL for tuber starch content in diploid potato. In the present study, using a diploid potato mapping population and Diversity Array Technology (DArT) markers, we identified twelve quantitative trait loci (QTL) for tuber starch content on seven potato chromosomes: I, II, III, VIII, X, XI, and XII. The most important QTL spanned a wide region of chromosome I (42.0–104.6 cM) with peaks at 63 and 84 cM which explained 17.6 and 19.2% of the phenotypic variation, respectively. ADP-glucose pyrophosphorylase (AGPase) is the key enzyme for starch biosynthesis. The gene encoding the large subunit of this enzyme, AGPaseS-a, was localized to chromosome I at 102.3 cM and accounted for 15.2% of the variance in tuber starch content. A more than 100-fold higher expression of this gene was observed in RT-qPCR assay in plants with the marker allele AGPaseS-a1334. This study is the first to report QTL for sucrose content in potato leaves. QTL for sucrose content in leaves were located on eight potato chromosomes: I, II, III, V, VIII, IX, X and XII. In 5-week-old plants, only one QTL for leaf sucrose content was detected after 8 h of darkness; four QTL were detected after 8 h of illumination. In 11-week-old plants, 6 and 3 QTL were identified after dark and light phases, respectively. Of fourteen QTL for leaf sucrose content, eleven mapped to positions that were similar to QTL for tuber starch content. These results provide genetic information for further research examining the relationships between metabolic carbon molecule sources and sinks in potato plants.
Collapse
Affiliation(s)
- Jadwiga Śliwka
- Plant Breeding and Acclimatization Institute, National Research Institute, Młochów, Platanowa 19, 05-831 Młochów, Poland
| | - Dorota Sołtys-Kalina
- Plant Breeding and Acclimatization Institute, National Research Institute, Młochów, Platanowa 19, 05-831 Młochów, Poland
| | - Katarzyna Szajko
- Plant Breeding and Acclimatization Institute, National Research Institute, Młochów, Platanowa 19, 05-831 Młochów, Poland
| | - Iwona Wasilewicz-Flis
- Plant Breeding and Acclimatization Institute, National Research Institute, Młochów, Platanowa 19, 05-831 Młochów, Poland
| | - Danuta Strzelczyk-Żyta
- Plant Breeding and Acclimatization Institute, National Research Institute, Młochów, Platanowa 19, 05-831 Młochów, Poland
| | - Ewa Zimnoch-Guzowska
- Plant Breeding and Acclimatization Institute, National Research Institute, Młochów, Platanowa 19, 05-831 Młochów, Poland
| | - Henryka Jakuczun
- Plant Breeding and Acclimatization Institute, National Research Institute, Młochów, Platanowa 19, 05-831 Młochów, Poland
| | - Waldemar Marczewski
- Plant Breeding and Acclimatization Institute, National Research Institute, Młochów, Platanowa 19, 05-831 Młochów, Poland
| |
Collapse
|
17
|
Machida-Hirano R. Diversity of potato genetic resources. BREEDING SCIENCE 2015; 65:26-40. [PMID: 25931978 PMCID: PMC4374561 DOI: 10.1270/jsbbs.65.26] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/03/2015] [Indexed: 05/05/2023]
Abstract
A considerable number of highly diverse species exist in genus Solanum. Because they can adapt to a broad range of habitats, potato wild relatives are promising sources of desirable agricultural traits. Potato taxonomy is quite complex because of introgression, interspecific hybridization, auto- and allopolyploidy, sexual compatibility among many species, a mixture of sexual and asexual reproduction, possible recent species divergence, phenotypic plasticity, and the consequent high morphological similarity among species. Recent researchers using molecular tools have contributed to the identification of genes controlling several types of resistance as well as to the revision of taxonomical relationships among potato species. Historically, primitive forms of cultivated potato and its wild relatives have been used in breeding programs and there is still an enormous and unimaginable potential for discovering desirable characteristics, particularly in wild species Different methods have been developed to incorporate useful alleles from these wild species into the improved cultivars. Potato germplasm comprising of useful alleles for different breeding objectives is preserved in various gene banks worldwide. These materials, with their invaluable information, are accessible for research and breeding purposes. Precise identification of species base on the new taxonomy is essential for effective use of the germplasm collection.
Collapse
Affiliation(s)
- Ryoko Machida-Hirano
- Gene Research Center, University of Tsukuba,
1-1-1, Tennodai, Tsukuba, Ibaraki 305-3572,
Japan
| |
Collapse
|
18
|
Sołtys-Kalina D, Szajko K, Sierocka I, Śliwka J, Strzelczyk-Żyta D, Wasilewicz-Flis I, Jakuczun H, Szweykowska-Kulinska Z, Marczewski W. Novel candidate genes AuxRP and Hsp90 influence the chip color of potato tubers. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2015; 35:224. [PMID: 26612975 PMCID: PMC4648990 DOI: 10.1007/s11032-015-0415-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/11/2015] [Indexed: 05/11/2023]
Abstract
Potato (Solanum tuberosum L.) tubers exhibit significant variation in reducing sugar content directly after harvest, cold storage and reconditioning. Here, we performed QTL analysis for chip color, which is strongly influenced by reducing sugar content, in a diploid potato mapping population. Two QTL on chromosomes I and VI were detected for chip color after harvest and reconditioning. Only one region on chromosome VI was linked with cold-induced sweetening. Using the RT-PCR technique, we showed differential expression of the auxin-regulated protein (AuxRP) gene. The AuxRP transcript was presented in light chip color parental clone DG 97-952 and the RNA progeny of the bulk sample consisting of light chip color phenotypes after cold storage. This amplicon was absent in dark chip parental clone DG 08-26/39 and the RNA bulk sample of dark chip progeny. Genetic variation of AuxRP explained up to 16.6 and 15.2 % of the phenotypic variance after harvest and 3 months of storage at 4 °C, respectively. Using an alternative approach, the RDA-cDNA method was used to recognize 25 gene sequences, of which 11 could be assigned to potato chromosome VI. One of these genes, Heat-shock protein 90 (Hsp90), demonstrated higher mRNA and protein expression in RT-qPCR and western blotting assays in the dark chip color progeny bulk sample compared with the light chip color progeny bulk sample. Our study, for the first time, suggests that the AuxRP and Hsp90 genes are novel candidate genes capable of influencing the chip color of potato tubers.
Collapse
Affiliation(s)
- Dorota Sołtys-Kalina
- />Plant Breeding and Acclimatization Institute, National Research Institute, Młochów, Platanowa 19, 05-831 Młochów, Poland
| | - Katarzyna Szajko
- />Plant Breeding and Acclimatization Institute, National Research Institute, Młochów, Platanowa 19, 05-831 Młochów, Poland
| | - Izabela Sierocka
- />Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Jadwiga Śliwka
- />Plant Breeding and Acclimatization Institute, National Research Institute, Młochów, Platanowa 19, 05-831 Młochów, Poland
| | - Danuta Strzelczyk-Żyta
- />Plant Breeding and Acclimatization Institute, National Research Institute, Młochów, Platanowa 19, 05-831 Młochów, Poland
| | - Iwona Wasilewicz-Flis
- />Plant Breeding and Acclimatization Institute, National Research Institute, Młochów, Platanowa 19, 05-831 Młochów, Poland
| | - Henryka Jakuczun
- />Plant Breeding and Acclimatization Institute, National Research Institute, Młochów, Platanowa 19, 05-831 Młochów, Poland
| | - Zofia Szweykowska-Kulinska
- />Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Waldemar Marczewski
- />Plant Breeding and Acclimatization Institute, National Research Institute, Młochów, Platanowa 19, 05-831 Młochów, Poland
| |
Collapse
|
19
|
Iorizzo M, Gao L, Mann H, Traini A, Chiusano ML, Kilian A, Aversano R, Carputo D, Bradeen JM. A DArT marker-based linkage map for wild potato Solanum bulbocastanum facilitates structural comparisons between Solanum A and B genomes. BMC Genet 2014; 15:123. [PMID: 25403706 PMCID: PMC4240817 DOI: 10.1186/s12863-014-0123-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/29/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Wild potato Solanum bulbocastanum is a rich source of genetic resistance against a variety of pathogens. It belongs to a taxonomic group of wild potato species sexually isolated from cultivated potato. Consistent with genetic isolation, previous studies suggested that the genome of S. bulbocastanum (B genome) is structurally distinct from that of cultivated potato (A genome). However, the genome architecture of the species remains largely uncharacterized. The current study employed Diversity Arrays Technology (DArT) to generate a linkage map for S. bulbocastanum and compare its genome architecture with those of potato and tomato. RESULTS Two S. bulbocastanum parental linkage maps comprising 458 and 138 DArT markers were constructed. The integrated map comprises 401 non-redundant markers distributed across 12 linkage groups for a total length of 645 cM. Sequencing and alignment of DArT clones to reference physical maps from tomato and cultivated potato allowed direct comparison of marker orders between species. A total of nine genomic segments informative in comparative genomic studies were identified. Seven genome rearrangements correspond to previously-reported structural changes that have occurred since the speciation of tomato and potato. We also identified two S. bulbocastanum genomic regions that differ from cultivated potato, suggesting possible chromosome divergence between Solanum A and B genomes. CONCLUSIONS The linkage map developed here is the first medium density map of S. bulbocastanum and will assist mapping of agronomical genes and QTLs. The structural comparison with potato and tomato physical maps is the first genome wide comparison between Solanum A and B genomes and establishes a foundation for further investigation of B genome-specific structural chromosome rearrangements.
Collapse
Affiliation(s)
- Massimo Iorizzo
- Department of Horticulture, University of Wisconsin, 1575 Linden Drive, Madison, WI, 53706, USA.
- Department of Plant Pathology, University of Minnesota, 495 Borlaug Hall/1991 Upper Buford Circle, St. Paul, MN, 55108, USA.
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy.
| | - Liangliang Gao
- Department of Plant Pathology, University of Minnesota, 495 Borlaug Hall/1991 Upper Buford Circle, St. Paul, MN, 55108, USA.
| | - Harpartap Mann
- Department of Plant Pathology, University of Minnesota, 495 Borlaug Hall/1991 Upper Buford Circle, St. Paul, MN, 55108, USA.
| | - Alessandra Traini
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, London, United Kingdom.
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy.
| | - Andrzej Kilian
- Diversity Arrays Technology, Pty. Ltd., University of Canberra, Kirinari Street, Bruce, ACT 2617, Canberra, Australia.
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy.
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy.
| | - James M Bradeen
- Department of Plant Pathology, University of Minnesota, 495 Borlaug Hall/1991 Upper Buford Circle, St. Paul, MN, 55108, USA.
- Stakman-Borlaug Center for Sustainable Plant Health, 495 Borlaug Hall/1991 Upper Buford Circle, St. Paul, MN 55108, USA.
| |
Collapse
|
20
|
Hackett CA, Bradshaw JE, Bryan GJ. QTL mapping in autotetraploids using SNP dosage information. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1885-904. [PMID: 24981609 PMCID: PMC4145212 DOI: 10.1007/s00122-014-2347-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 06/07/2014] [Indexed: 05/23/2023]
Abstract
Dense linkage maps derived by analysing SNP dosage in autotetraploids provide detailed information about the location of, and genetic model at, quantitative trait loci. Recent developments in sequencing and genotyping technologies enable researchers to generate high-density single nucleotide polymorphism (SNP) genotype data for mapping studies. For polyploid species, the SNP genotypes are informative about allele dosage, and Hackett et al. (PLoS ONE 8:e63939, 2013) presented theory about how dosage information can be used in linkage map construction and quantitative trait locus (QTL) mapping for an F1 population in an autotetraploid species. Here, QTL mapping using dosage information is explored for simulated phenotypic traits of moderate heritability and possibly non-additive effects. Different mapping strategies are compared, looking at additive and more complicated models, and model fitting as a single step or by iteratively re-weighted modelling. We recommend fitting an additive model without iterative re-weighting, and then exploring non-additive models for the genotype means estimated at the most likely position. We apply this strategy to re-analyse traits of high heritability from a potato population of 190 F1 individuals: flower colour, maturity, height and resistance to late blight (Phytophthora infestans (Mont.) de Bary) and potato cyst nematode (Globodera pallida), using a map of 3839 SNPs. The approximate confidence intervals for QTL locations have been improved by the detailed linkage map, and more information about the genetic model at each QTL has been revealed. For several of the reported QTLs, candidate SNPs can be identified, and used to propose candidate trait genes. We conclude that the high marker density is informative about the genetic model at loci of large effects, but that larger populations are needed to detect smaller QTLs.
Collapse
|
21
|
Jupe F, Witek K, Verweij W, Śliwka J, Pritchard L, Etherington GJ, Maclean D, Cock PJ, Leggett RM, Bryan GJ, Cardle L, Hein I, Jones JDG. Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:530-44. [PMID: 23937694 PMCID: PMC3935411 DOI: 10.1111/tpj.12307] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/02/2013] [Accepted: 08/06/2013] [Indexed: 05/02/2023]
Abstract
RenSeq is a NB-LRR (nucleotide binding-site leucine-rich repeat) gene-targeted, Resistance gene enrichment and sequencing method that enables discovery and annotation of pathogen resistance gene family members in plant genome sequences. We successfully applied RenSeq to the sequenced potato Solanum tuberosum clone DM, and increased the number of identified NB-LRRs from 438 to 755. The majority of these identified R gene loci reside in poorly or previously unannotated regions of the genome. Sequence and positional details on the 12 chromosomes have been established for 704 NB-LRRs and can be accessed through a genome browser that we provide. We compared these NB-LRR genes and the corresponding oligonucleotide baits with the highest sequence similarity and demonstrated that ~80% sequence identity is sufficient for enrichment. Analysis of the sequenced tomato S. lycopersicum 'Heinz 1706' extended the NB-LRR complement to 394 loci. We further describe a methodology that applies RenSeq to rapidly identify molecular markers that co-segregate with a pathogen resistance trait of interest. In two independent segregating populations involving the wild Solanum species S. berthaultii (Rpi-ber2) and S. ruiz-ceballosii (Rpi-rzc1), we were able to apply RenSeq successfully to identify markers that co-segregate with resistance towards the late blight pathogen Phytophthora infestans. These SNP identification workflows were designed as easy-to-adapt Galaxy pipelines.
Collapse
Affiliation(s)
- Florian Jupe
- The Sainsbury LaboratoryNorwich Research Park, NR4 7UH, Norwich, UK
| | - Kamil Witek
- The Sainsbury LaboratoryNorwich Research Park, NR4 7UH, Norwich, UK
| | - Walter Verweij
- The Sainsbury LaboratoryNorwich Research Park, NR4 7UH, Norwich, UK
- The Genome Analysis CentreNorwich Research Park, NR4 7UH, Norwich, UK
| | - Jadwiga Śliwka
- The Plant Breeding and Acclimatization Institute, Research Center MłochówPlatanowa 19, 05-831, Młochów, Poland
| | - Leighton Pritchard
- Information and Computational Sciences, James Hutton InstituteDD2 5DA, Dundee, UK
| | | | - Dan Maclean
- The Sainsbury LaboratoryNorwich Research Park, NR4 7UH, Norwich, UK
| | - Peter J Cock
- Information and Computational Sciences, James Hutton InstituteDD2 5DA, Dundee, UK
| | - Richard M Leggett
- The Genome Analysis CentreNorwich Research Park, NR4 7UH, Norwich, UK
| | - Glenn J Bryan
- Cell and Molecular Sciences, James Hutton InstituteDD2 5DA, Dundee, UK
| | - Linda Cardle
- Information and Computational Sciences, James Hutton InstituteDD2 5DA, Dundee, UK
| | - Ingo Hein
- Cell and Molecular Sciences, James Hutton InstituteDD2 5DA, Dundee, UK
- *For correspondence (e-mails ; )
| | - Jonathan DG Jones
- The Sainsbury LaboratoryNorwich Research Park, NR4 7UH, Norwich, UK
- *For correspondence (e-mails ; )
| |
Collapse
|
22
|
Rodewald J, Trognitz B. Solanum resistance genes against Phytophthora infestans and their corresponding avirulence genes. MOLECULAR PLANT PATHOLOGY 2013; 14:740-57. [PMID: 23710878 PMCID: PMC6638693 DOI: 10.1111/mpp.12036] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Resistance genes against Phytophthora infestans (Rpi genes), the most important potato pathogen, are still highly valued in the breeding of Solanum spp. for enhanced resistance. The Rpi genes hitherto explored are localized most often in clusters, which are similar between the diverse Solanum genomes. Their distribution is not independent of late maturity traits. This review provides a summary of the most recent important revelations on the genomic position and cloning of Rpi genes, and the structure, associations, mode of action and activity spectrum of Rpi and corresponding avirulence (Avr) proteins. Practical implications for research into and application of Rpi genes are deduced and combined with an outlook on approaches to address remaining issues and interesting questions. It is evident that the potential of Rpi genes has not been exploited fully.
Collapse
Affiliation(s)
- Jan Rodewald
- Department of Health and Environment, Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria.
| | | |
Collapse
|