1
|
da Silva Santana G, Ronchi-Teles B, dos Santos CM, Souza PGC, Farnezi PKB, de Assis Paes VL, Soares MA, da Silva RS. Risk analysis for Anastrepha suspensa (Diptera: Tephritidae) and potential areas for its biological control with Diachasmimorpha longicaudata (Hymenoptera: Braconidae) in the Americas. Heliyon 2023; 9:e18701. [PMID: 37609418 PMCID: PMC10440466 DOI: 10.1016/j.heliyon.2023.e18701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
The Caribbean fruit fly Anastrepha suspensa (Diptera: Tephritidae) is a polyphagous pest causing economic losses in Central America, the Caribbean and South Florida. The parasitoid wasp Diachasmimorpha longicaudata (Hymenoptera: Braconidae) is the main parasitoid of A. suspensa in biological control programs. In this study, by modeling with CLIMEX software, climatically suitable areas were projected according to historical climate data. Areas with overlapping optimal climatic suitability for the joint establishment of the pest and parasitoid were mapped, indicating large areas with host presence in North, Central, and South America, with cold stress being the main climatic factor limiting distribution for both species. Tropical regions have the most potential for invasion, with optimal suitability in many areas. Through the projected distributions, this study can target quarantine strategies in areas most susceptible to invasion and establishment of the pest in each country. In addition, classical biological control with the parasitoid in areas with climatic suitability is also recommended.
Collapse
Affiliation(s)
- Geovani da Silva Santana
- Instituto Nacional de Pesquisa da Amazônia, Av. André Araújo, 2936, Petrópolis, Manaus, AM, 69067-375, Brazil
| | - Beatriz Ronchi-Teles
- Instituto Nacional de Pesquisa da Amazônia, Av. André Araújo, 2936, Petrópolis, Manaus, AM, 69067-375, Brazil
| | - Cícero Manoel dos Santos
- Universidade Federal do Pará R. Cel. José Porfírio, 030 - Recreio, Altamira, PA, 68371-030, Brazil
| | - Philipe Guilherme Corcino Souza
- Universidade Federal dos Vales de Jequitinhonha e Mucuri. Rodovia MGT 367 – Km 583, nº 5000 - Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
| | - Priscila Kelly Barroso Farnezi
- Universidade Federal dos Vales de Jequitinhonha e Mucuri. Rodovia MGT 367 – Km 583, nº 5000 - Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
| | | | - Marcus Alvarenga Soares
- Universidade Federal dos Vales de Jequitinhonha e Mucuri. Rodovia MGT 367 – Km 583, nº 5000 - Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
| | - Ricardo Siqueira da Silva
- Universidade Federal dos Vales de Jequitinhonha e Mucuri. Rodovia MGT 367 – Km 583, nº 5000 - Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
| |
Collapse
|
2
|
Gálvez-Reyes N, Salvador-Figueroa M, Santini NS, Mastretta-Yanes A, Núñez-Farfán J, Piñero D. Nuclear genetic diversity and structure of Anastrepha ludens wild populations evidenced by microsatellite markers. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.948640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Mexican fruit fly, Anastrepha ludens, is an important pest that causes widespread damage to a number of fruit crops in Mexico. The sterile insect technique (SIT) is commonly used for its control. However, the existence of natural barriers can give rise to a population structure in neutral loci and possibly behavioral or adaptive traits that interfere with SIT. For this reason, it is important to understand the genetic diversity and structure of A. ludens populations and to better understand the evolutionary ecology and population processes in view of possible expansions and possible host shifts due to climate change. We genotyped nine nuclear DNA (nDNA) microsatellite loci among fruit fly populations collected from five biogeographic areas within Mexico, namely, the Mexican Plateau, the Northeastern Coastal Plain, the Pacific Coast, the Gulf Coast of Mexico, and the Soconusco, and a laboratory strain. The nuclear genetic diversity was moderate (from He = 0.34 to He = 0.39) within the wild mexfly population. We found that populations were clustered in three genetic groups (K = 3). The diversity and the genetic structure of A. ludens are determined by environmental and geological conditions, as well as local conditions like anthropogenic perturbation, which would produce population expansion and the existence of possible predators that would affect the population density. Gene flow showed recent migration among populations. The laboratory strain showed fewer diversity than the wild samples. Large values of current and ancestral population size suggest high resistance to climatic changes, probably due to biological attributes, such as its polyphagous, multivoltine, and high dispersal characteristics. In particular, ecosystem fragmentation and perturbation as well as the existence of new plant hosts would probably increase the abundance of flies.
Collapse
|
3
|
Scannapieco AC, Conte CA, Rivarola M, Wulff JP, Muntaabski I, Ribone A, Milla F, Cladera JL, Lanzavecchia SB. Transcriptome analysis of Anastrepha fraterculus sp. 1 males, females, and embryos: insights into development, courtship, and reproduction. BMC Genet 2020; 21:136. [PMID: 33339505 PMCID: PMC7747455 DOI: 10.1186/s12863-020-00943-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Anastrepha fraterculus sp. 1 is considered a quarantine pest in several American countries. Since chemical control applied in an integrated pest management program is the only strategy utilized against this pest, the development of pesticide-free methods, such as the Sterile Insect Technique, is being considered. The search for genes involved in sex-determination and differentiation, and in metabolic pathways associated with communication and mating behaviour, contributes with key information to the development of genetic control strategies. The aims of this work were to perform a comprehensive analysis of A. fraterculus sp. 1 transcriptome and to obtain an initial evaluation of genes associated with main metabolic pathways by the expression analysis of specific transcripts identified in embryos and adults. RESULTS Sexually mature adults of both sexes and 72 h embryos were considered for transcriptome analysis. The de novo transcriptome assembly was fairly complete (62.9% complete BUSCO orthologs detected) with a total of 86,925 transcripts assembled and 28,756 GO annotated sequences. Paired-comparisons between libraries showed 319 transcripts differently expressed between embryos and females, 1242 between embryos and males, and 464 between sexes. Using this information and genes searches based on published studies from other tephritid species, we evaluated a set of transcripts involved in development, courtship and metabolic pathways. The qPCR analysis evidenced that the early genes serendipity alpha and transformer-2 displayed similar expression levels in the analyzed stages, while heat shock protein 27 is over-expressed in embryos and females in comparison to males. The expression of genes associated with courtship (takeout-like, odorant-binding protein 50a1) differed between males and females, independently of their reproductive status (virgin vs mated individuals). Genes associated with metabolic pathways (maltase 2-like, androgen-induced gene 1) showed differential expression between embryos and adults. Furthermore, 14,262 microsatellite motifs were identified, with 11,208 transcripts containing at least one simple sequence repeat, including 48% of di/trinucleotide motifs. CONCLUSION Our results significantly expand the available gene space of A. fraterculus sp. 1, contributing with a fairly complete transcript database of embryos and adults. The expression analysis of the selected candidate genes, along with a set of microsatellite markers, provides a valuable resource for further genetic characterization of A. fraterculus sp. 1 and supports the development of specific genetic control strategies.
Collapse
Affiliation(s)
- Alejandra Carla Scannapieco
- Instituto de Genética "E. A. Favret" (IGEAF) gv Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituo Nacional de Tecnología Agropecuaria (INTA) - Consejo de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Claudia Alejandra Conte
- Instituto de Genética "E. A. Favret" (IGEAF) gv Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituo Nacional de Tecnología Agropecuaria (INTA) - Consejo de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Máximo Rivarola
- Instituto de Biotecnología, IABIMO, INTA - CONICET, Hurlingham, Buenos Aires, Argentina
| | - Juan Pedro Wulff
- Instituto de Genética "E. A. Favret" (IGEAF) gv Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituo Nacional de Tecnología Agropecuaria (INTA) - Consejo de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Irina Muntaabski
- Instituto de Genética "E. A. Favret" (IGEAF) gv Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituo Nacional de Tecnología Agropecuaria (INTA) - Consejo de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Andrés Ribone
- Instituto de Biotecnología, IABIMO, INTA - CONICET, Hurlingham, Buenos Aires, Argentina
| | - Fabián Milla
- Instituto de Genética "E. A. Favret" (IGEAF) gv Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituo Nacional de Tecnología Agropecuaria (INTA) - Consejo de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Jorge Luis Cladera
- Instituto de Genética "E. A. Favret" (IGEAF) gv Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituo Nacional de Tecnología Agropecuaria (INTA) - Consejo de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Silvia Beatriz Lanzavecchia
- Instituto de Genética "E. A. Favret" (IGEAF) gv Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituo Nacional de Tecnología Agropecuaria (INTA) - Consejo de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Bartolini I, Rivera J, Nolazco N, Olórtegui A. Towards the implementation of a DNA barcode library for the identification of Peruvian species of Anastrepha (Diptera: Tephritidae). PLoS One 2020; 15:e0228136. [PMID: 32004351 PMCID: PMC6994132 DOI: 10.1371/journal.pone.0228136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 01/08/2020] [Indexed: 11/18/2022] Open
Abstract
The genus Anastrepha is a diverse lineage of fruit-damaging tephritid flies widespread across the Neotropical Region. Accurate taxonomic identification of these flies is therefore of paramount importance in agricultural contexts. DNA barcoding libraries are molecular-based tools based on a short sequence of the mitochondrial COI gene enabling rapid taxonomic identification of biological species. In this study, we evaluate the utility of this method for species identification of Peruvian species of Anastrepha and assemble a preliminary barcode profile for the group. We obtained 73 individual sequences representing the 15 most common species, 13 of which were either assigned to previously recognized or newly established BINs. Intraspecific genetic divergence between sampled species averaged 1.01% (range 0-3.3%), whereas maximum interspecific values averaged 8.67 (range 8.26-17.12%). DNA barcoding was found to be an effective method to discriminate between many Peruvian species of Anastrepha that were tested, except for most species of the fraterculus species group, which were all assigned to the same BIN as they shared similar and, in some cases, identical barcodes. We complemented this newly produced dataset with 86 published sequences to build a DNA barcoding library of 159 sequences representing 56 Peruvian species of Anastrepha (approx. 58% of species reported from that country). We conclude that DNA barcoding is an effective method to distinguish among Peruvian species of Anastrepha outside the fraterculus group, and that complementary methods (e.g., morphometrics, additional genetic markers) would be desirable to assist sensu stricto species identification for phytosanitary surveillance and management practices of this important group of pestiferous flies.
Collapse
Affiliation(s)
- Ida Bartolini
- Laboratorio de Biología Molecular, Servicio Nacional de Sanidad Agrícola, La Molina, Lima, Perú
| | - Julio Rivera
- Unidad de Investigación en Entomología y Medio Ambiente, Universidad San Ignacio de Loyola, La Molina, Lima, Perú
| | - Norma Nolazco
- Laboratorio de Entomología del Centro de Diagnóstico de Sanidad Vegetal, Servicio Nacional de Sanidad Agrícola, La Molina, Lima, Perú
| | - Arturo Olórtegui
- Laboratorio de Biología Molecular, Servicio Nacional de Sanidad Agrícola, La Molina, Lima, Perú
| |
Collapse
|
5
|
Conte CA, Segura DF, Milla FH, Augustinos A, Cladera JL, Bourtzis K, Lanzavecchia SB. Wolbachia infection in Argentinean populations of Anastrepha fraterculus sp1: preliminary evidence of sex ratio distortion by one of two strains. BMC Microbiol 2019; 19:289. [PMID: 31870290 PMCID: PMC6929328 DOI: 10.1186/s12866-019-1652-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Wolbachia, one of the most abundant taxa of intracellular Alphaproteobacteria, is widespread among arthropods and filarial nematodes. The presence of these maternally inherited bacteria is associated with modifications of host fitness, including a variety of reproductive abnormalities, such as cytoplasmic incompatibility, thelytokous parthenogenesis, host feminization and male-killing. Wolbachia has attracted much interest for its role in biological, ecological and evolutionary processes as well as for its potential use in novel and environmentally-friendly strategies for the control of insect pests and disease vectors including a major agricultural pest, the South American fruit fly, Anastrepha fraterculus Wiedemann (Diptera: Tephritidae). Results We used wsp, 16S rRNA and a multilocus sequence typing (MLST) scheme including gatB, coxA, hcpA, fbpA, and ftsZ genes to detect and characterize the Wolbachia infection in laboratory strains and wild populations of A. fraterculus from Argentina. Wolbachia was found in all A. fraterculus individuals studied. Nucleotide sequences analysis of wsp gene allowed the identification of two Wolbachia nucleotide variants (named wAfraCast1_A and wAfraCast2_A). After the analysis of 76 individuals, a high prevalence of the wAfraCast2_A variant was found both, in laboratory (82%) and wild populations (95%). MLST analysis identified both Wolbachia genetic variants as sequence type 13. Phylogenetic analysis of concatenated MLST datasets clustered wAfraCast1/2_A in the supergroup A. Paired-crossing experiments among single infected laboratory strains showed a phenotype specifically associated to wAfraCast1_A that includes slight detrimental effects on larval survival, a female-biased sex ratio; suggesting the induction of male-killing phenomena, and a decreased proportion of females producing descendants that appears attributable to the lack of sperm in their spermathecae. Conclusions We detected and characterized at the molecular level two wsp gene sequence variants of Wolbachia both in laboratory and wild populations of A. fraterculus sp.1 from Argentina. Crossing experiments on singly-infected A. fraterculus strains showed evidence of a male killing-like mechanism potentially associated to the wAfraCast1_A - A. fraterculus interactions. Further mating experiments including antibiotic treatments and the analysis of early and late immature stages of descendants will contribute to our understanding of the phenotypes elicited by the Wolbachia variant wAfraCast1_A in A. fraterculus sp.1.
Collapse
Affiliation(s)
- Claudia Alejandra Conte
- Laboratorio de Insectos de Importancia Agronómica, IGEAF, Instituto nacional de Tecnología Agropecuaria (INTA) gv IABIMO-CONICET, Hurlingham, Buenos Aires, Argentina
| | - Diego Fernando Segura
- Laboratorio de Insectos de Importancia Agronómica, IGEAF, Instituto nacional de Tecnología Agropecuaria (INTA) gv IABIMO-CONICET, Hurlingham, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET), Ministerio de Ciencia, Tecnología e Innovación Productiva (MINCyT), Buenos Aires, Argentina
| | - Fabian Horacio Milla
- Laboratorio de Insectos de Importancia Agronómica, IGEAF, Instituto nacional de Tecnología Agropecuaria (INTA) gv IABIMO-CONICET, Hurlingham, Buenos Aires, Argentina
| | - Antonios Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Jorge Luis Cladera
- Laboratorio de Insectos de Importancia Agronómica, IGEAF, Instituto nacional de Tecnología Agropecuaria (INTA) gv IABIMO-CONICET, Hurlingham, Buenos Aires, Argentina
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Silvia Beatriz Lanzavecchia
- Laboratorio de Insectos de Importancia Agronómica, IGEAF, Instituto nacional de Tecnología Agropecuaria (INTA) gv IABIMO-CONICET, Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Augustinos AA, Moraiti CA, Drosopoulou E, Kounatidis I, Mavragani-Tsipidou P, Bourtzis K, Papadopoulos NT. Old residents and new arrivals of Rhagoletis species in Europe. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:701-712. [PMID: 30744707 DOI: 10.1017/s0007485319000063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The genus Rhagoletis (Diptera: Tephritidae) comprises more than 65 species distributed throughout Europe, Asia and America, including many species of high economic importance. Currently, there are three Rhagoletis species that infest fruits and nuts in Europe. The European cherry fruit fly, Rhagoletis cerasi (may have invaded Europe a long time ago from the Caucasian area of West Asia), and two invasive species (recently introduced from North America): the eastern American cherry fruit fly, R. cingulata, and the walnut husk fly, R. completa. The presence of different Rhagoletis species may enhance population dynamics and establish an unpredictable economic risk for several fruit and nut crops in Europe. Despite their excessive economic importance, little is known on population dynamics, genetics and symbiotic associations for making sound pest control decisions in terms of species-specific, environmental friendly pest control methods. To this end, the current paper (a) summarizes recently accumulated genetic and population data for the European Rhagoletis species and their association with the endosymbiont Wolbachia pipientis, and (b) explores the possibility of using the current knowledge for implementing the innovative biological control methods of sterile insect technique and incompatible insect technique.
Collapse
Affiliation(s)
- A A Augustinos
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - C A Moraiti
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, N. Ionia (Volos), Magnesia, Greece
| | - E Drosopoulou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - I Kounatidis
- Cell Biology, Development, and Genetics Laboratory, Department of Biochemistry, University of Oxford, South Park Road, Oxford OX1 3QU, UK
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - P Mavragani-Tsipidou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - K Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - N T Papadopoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, N. Ionia (Volos), Magnesia, Greece
| |
Collapse
|
7
|
Dias N, Cagliari D, Kremer FS, Rickes LN, Nava DE, Smagghe G, Zotti M. The South American Fruit Fly: An Important Pest Insect With RNAi-Sensitive Larval Stages. Front Physiol 2019; 10:794. [PMID: 31316391 PMCID: PMC6610499 DOI: 10.3389/fphys.2019.00794] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/06/2019] [Indexed: 01/04/2023] Open
Abstract
RNA interference (RNAi) technology has been used in the development of approaches for pest control. The presence of some essential genes, the so-called “core genes,” in the RNAi machinery is crucial for its efficiency and robust response in gene silencing. Thus, our study was designed to examine whether the RNAi machinery is functional in the South American (SA) fruit fly Anastrepha fraterculus (Diptera: Tephritidae) and whether the sensitivity to the uptake of double-stranded RNA (dsRNA) could generate an RNAi response in this fruit fly species. To prepare a transcriptome database of the SA fruit fly, total RNA was extracted from all the life stages for later cDNA synthesis and Illumina sequencing. After the de novo transcriptome assembly and gene annotation, the transcriptome was screened for RNAi pathway genes, as well as the duplication or loss of genes and novel target genes to dsRNA delivery bioassays. The dsRNA delivery assay by soaking was performed in larvae to evaluate the gene-silencing of V-ATPase, and the upregulation of Dicer-2 and Argonaute-2 after dsRNA delivery was analyzed to verify the activation of siRNAi machinery. We tested the stability of dsRNA using dsGFP with an in vitro incubation of larvae body fluid (hemolymph). We identified 55 genes related to the RNAi machinery with duplication and loss for some genes and selected 143 different target genes related to biological processes involved in post-embryonic growth/development and reproduction of A. fraterculus. Larvae soaked in dsRNA (dsV-ATPase) solution showed a strong knockdown of V-ATPase after 48 h, and the expression of Dicer-2 and Argonaute-2 responded with an increase upon the exposure to dsRNA. Our data demonstrated the existence of a functional RNAi machinery in the SA fruit fly, and we present an easy and robust physiological bioassay with the larval stages that can further be used for screening of target genes at in vivo organisms’ level for RNAi-based control of fruit fly pests. This is the first study that provides evidence of a functional siRNA machinery in the SA fruit fly.
Collapse
Affiliation(s)
- Naymã Dias
- Molecular Entomology and Applied Bioinformatics Laboratory, Faculty of Agronomy, Department of Crop Protection, Federal University of Pelotas, Pelotas, Brazil
| | - Deise Cagliari
- Molecular Entomology and Applied Bioinformatics Laboratory, Faculty of Agronomy, Department of Crop Protection, Federal University of Pelotas, Pelotas, Brazil
| | - Frederico Schmitt Kremer
- Bioinformatics and Proteomics Laboratory, Technological Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Leticia Neutzling Rickes
- Molecular Entomology and Applied Bioinformatics Laboratory, Faculty of Agronomy, Department of Crop Protection, Federal University of Pelotas, Pelotas, Brazil
| | - Dori Edson Nava
- Entomology Laboratory, Embrapa Clima Temperado, Pelotas, Brazil
| | - Guy Smagghe
- Faculty of Bioscience Engineering, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Moisés Zotti
- Molecular Entomology and Applied Bioinformatics Laboratory, Faculty of Agronomy, Department of Crop Protection, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
8
|
Schutze MK, Virgilio M, Norrbom A, Clarke AR. Tephritid Integrative Taxonomy: Where We Are Now, with a Focus on the Resolution of Three Tropical Fruit Fly Species Complexes. ANNUAL REVIEW OF ENTOMOLOGY 2017; 62:147-164. [PMID: 27813666 DOI: 10.1146/annurev-ento-031616-035518] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Accurate species delimitation underpins good taxonomy. Formalization of integrative taxonomy in the past decade has provided a framework for using multidisciplinary data to make species delimitation hypotheses more rigorous. We address the current state of integrative taxonomy by using as a case study an international project targeted at resolving three important tephritid species complexes: Bactrocera dorsalis complex, Anastrepha fraterculus complex, and Ceratitis FAR (C. fasciventris, C. anonae, C. rosa) complex. The integrative taxonomic approach has helped deliver significant advances in resolving these complexes: It has been used to identify some taxa as belonging to the same biological species as well as to confirm hidden cryptic diversity under a single taxonomic name. Nevertheless, the general application of integrative taxonomy has not been without issue, revealing challenges that must be considered when undertaking an integrative taxonomy project. Scrutiny of this international case study provides a unique opportunity to document lessons learned for the benefit of not only tephritid taxonomists, but also the wider taxonomic community.
Collapse
Affiliation(s)
- Mark K Schutze
- School of Earth, Environmental, and Biological Sciences, Queensland University of Technology, Brisbane, 4001 Queensland, Australia;
| | - Massimiliano Virgilio
- Department of Biology, Royal Museum for Central Africa, B3080 Tervuren, Belgium
- Joint Experimental Molecular Unit, Royal Museum for Central Africa, B3080 Tervuren, Belgium ;
| | - Allen Norrbom
- Systematic Entomology Laboratory, United States Department of Agriculture, c/o National Museum of Natural History, Washington, DC 20560;
| | - Anthony R Clarke
- School of Earth, Environmental, and Biological Sciences, Queensland University of Technology, Brisbane, 4001 Queensland, Australia;
- Plant Biosecurity Cooperative Research Centre, University of Canberra, Bruce, Australian Capital Territory 2617, Australia;
| |
Collapse
|
9
|
Hendrichs J, Vera MT, De Meyer M, Clarke AR. Resolving cryptic species complexes of major tephritid pests. Zookeys 2015; 540:5-39. [PMID: 26798252 PMCID: PMC4714062 DOI: 10.3897/zookeys.540.9656] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 11/06/2015] [Indexed: 11/12/2022] Open
Abstract
An FAO/IAEA Co-ordinated Research Project (CRP) on "Resolution of Cryptic Species Complexes of Tephritid Pests to Overcome Constraints to SIT Application and International Trade" was conducted from 2010 to 2015. As captured in the CRP title, the objective was to undertake targeted research into the systematics and diagnostics of taxonomically challenging fruit fly groups of economic importance. The scientific output was the accurate alignment of biological species with taxonomic names; which led to the applied outcome of assisting FAO and IAEA Member States in overcoming technical constraints to the application of the Sterile Insect Technique (SIT) against pest fruit flies and the facilitation of international agricultural trade. Close to 50 researchers from over 20 countries participated in the CRP, using coordinated, multidisciplinary research to address, within an integrative taxonomic framework, cryptic species complexes of major tephritid pests. The following progress was made for the four complexes selected and studied: Anastrepha fraterculus complex - Eight morphotypes and their geographic and ecological distributions in Latin America were defined. The morphotypes can be considered as distinct biological species on the basis of differences in karyotype, sexual incompatibility, post-mating isolation, cuticular hydrocarbon, pheromone, and molecular analyses. Discriminative taxonomic tools using linear and geometric morphometrics of both adult and larval morphology were developed for this complex. Bactrocera dorsalis complex - Based on genetic, cytogenetic, pheromonal, morphometric, and behavioural data, which showed no or only minor variation between the Asian/African pest fruit flies Bactrocera dorsalis, Bactrocera papayae, Bactrocera philippinensis and Bactrocera invadens, the latter three species were synonymized with Bactrocera dorsalis. Of the five target pest taxa studied, only Bactrocera dorsalis and Bactrocera carambolae remain as scientifically valid names. Molecular and pheromone markers are now available to distinguish Bactrocera dorsalis from Bactrocera carambolae. Ceratitis FAR Complex (Ceratitis fasciventris, Ceratitis anonae, Ceratitis rosa) - Morphology, morphometry, genetic, genomic, pheromone, cuticular hydrocarbon, ecology, behaviour, and developmental physiology data provide evidence for the existence of five different entities within this fruit fly complex from the African region. These are currently recognised as Ceratitis anonae, Ceratitis fasciventris (F1 and F2), Ceratitis rosa and a new species related to Ceratitis rosa (R2). The biological limits within Ceratitis fasciventris (i.e. F1 and F2) are not fully resolved. Microsatellites markers and morphological identification tools for the adult males of the five different FAR entities were developed based on male leg structures. Zeugodacus cucurbitae (formerly Bactrocera (Zeugodacus) cucurbitae) - Genetic variability was studied among melon fly populations throughout its geographic range in Africa and the Asia/Pacific region and found to be limited. Cross-mating studies indicated no incompatibility or sexual isolation. Host preference and genetic studies showed no evidence for the existence of host races. It was concluded that the melon fly does not represent a cryptic species complex, neither with regard to geographic distribution nor to host range. Nevertheless, the higher taxonomic classification under which this species had been placed, by the time the CRP was started, was found to be paraphyletic; as a result the subgenus Zeugodacus was elevated to genus level.
Collapse
Affiliation(s)
- Jorge Hendrichs
- Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - M. Teresa Vera
- Cátedra Terapéutica Vegetal, Facultad de Agronomía y Zootecnia (FAZ), Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán; Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Marc De Meyer
- Royal Museum for Central Africa, Invertebrates Unit, Leuvensesteenweg 13, B3080 Tervuren, Belgium
| | - Anthony R. Clarke
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, QLD 4001, Australia
| |
Collapse
|
10
|
Manni M, Lima KM, Guglielmino CR, Lanzavecchia SB, Juri M, Vera T, Cladera J, Scolari F, Gomulski L, Bonizzoni M, Gasperi G, Silva JG, Malacrida AR. Relevant genetic differentiation among Brazilian populations of Anastrepha fraterculus (Diptera, Tephritidae). Zookeys 2015:157-73. [PMID: 26798258 PMCID: PMC4714068 DOI: 10.3897/zookeys.540.6713] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 11/12/2022] Open
Abstract
We used a population genetic approach to detect the presence of genetic diversity among six populations of Anastrephafraterculus across Brazil. To this aim, we used Simple Sequence Repeat (SSR) markers, which may capture the presence of differentiative processes across the genome in distinct populations. Spatial analyses of molecular variance were used to identify groups of populations that are both genetically and geographically homogeneous while also being maximally differentiated from each other. The spatial analysis of genetic diversity indicates that the levels of diversity among the six populations vary significantly on an eco-geographical basis. Particularly, altitude seems to represent a differentiating adaptation, as the main genetic differentiation is detected between the two populations present at higher altitudes and the other four populations at sea level. The data, together with the outcomes from different cluster analyses, identify a genetic diversity pattern that overlaps with the distribution of the known morphotypes in the Brazilian area.
Collapse
Affiliation(s)
- Mosè Manni
- Department of Biology & Biotechnology, University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| | - Kátia Manuela Lima
- Department of Biology & Biotechnology, University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| | | | - Silvia Beatriz Lanzavecchia
- Instituto Genética EA Favret, Instituto Nacional de Tecnología Agropecuaria, 1686 Hurlingham, Provincia Buenos Aires, Argentina
| | - Marianela Juri
- Instituto Genética EA Favret, Instituto Nacional de Tecnología Agropecuaria, 1686 Hurlingham, Provincia Buenos Aires, Argentina
| | - Teresa Vera
- Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, Buenos Aires, Argentina; Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Florentino Ameghino s/n (4000), Tucumán, Argentina
| | - Jorge Cladera
- Instituto Genética EA Favret, Instituto Nacional de Tecnología Agropecuaria, 1686 Hurlingham, Provincia Buenos Aires, Argentina
| | - Francesca Scolari
- Department of Biology & Biotechnology, University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| | - Ludvik Gomulski
- Department of Biology & Biotechnology, University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| | - Mariangela Bonizzoni
- Department of Biology & Biotechnology, University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| | - Giuliano Gasperi
- Department of Biology & Biotechnology, University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| | - Janisete Gomes Silva
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado km 16, 45650-000 - Ilhéus, Bahia, Brazil
| | - Anna Rodolfa Malacrida
- Department of Biology & Biotechnology, University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
11
|
Bourtzis K, Hendrichs J. Preface: development and evaluation of improved strains of insect pests for sterile insect technique (SIT) applications. BMC Genet 2014; 15 Suppl 2:I1. [PMID: 25472848 PMCID: PMC4255763 DOI: 10.1186/1471-2156-15-s2-i1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
12
|
Parreño MA, Scannapieco AC, Remis MI, Juri M, Vera MT, Segura DF, Cladera JL, Lanzavecchia SB. Dynamics of genetic variability in Anastrepha fraterculus (Diptera: Tephritidae) during adaptation to laboratory rearing conditions. BMC Genet 2014; 15 Suppl 2:S14. [PMID: 25471362 PMCID: PMC4255785 DOI: 10.1186/1471-2156-15-s2-s14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Anastrepha fraterculus is one of the most important fruit fly plagues in the American continent and only chemical control is applied in the field to diminish its population densities. A better understanding of the genetic variability during the introduction and adaptation of wild A. fraterculus populations to laboratory conditions is required for the development of stable and vigorous experimental colonies and mass-reared strains in support of successful Sterile Insect Technique (SIT) efforts. Methods The present study aims to analyze the dynamics of changes in genetic variability during the first six generations under artificial rearing conditions in two populations: a) a wild population recently introduced to laboratory culture, named TW and, b) a long-established control line, named CL. Results Results showed a declining tendency of genetic variability in TW. In CL, the relatively high values of genetic variability appear to be maintained across generations and could denote an intrinsic capacity to avoid the loss of genetic diversity in time. Discussion The impact of evolutionary forces on this species during the adaptation process as well as the best approach to choose strategies to introduce experimental and mass-reared A. fraterculus strains for SIT programs are discussed.
Collapse
|
13
|
Cladera JL, Vilardi JC, Juri M, Paulin LE, Giardini MC, Gómez Cendra PV, Segura DF, Lanzavecchia SB. Genetics and biology of Anastrepha fraterculus: research supporting the use of the sterile insect technique (SIT) to control this pest in Argentina. BMC Genet 2014; 15 Suppl 2:S12. [PMID: 25471175 PMCID: PMC4255781 DOI: 10.1186/1471-2156-15-s2-s12] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two species of true fruit flies (taxonomic family Tephritidae) are considered pests of fruit and vegetable production in Argentina: the cosmopolitan Mediterranean fruit fly (Ceratitis capitata Wiedemann) and the new world South American fruit fly (Anastrepha fraterculus Wiedemann). The distribution of these two species in Argentina overlaps north of the capital, Buenos Aires. Regarding the control of these two pests, the varied geographical fruit producing regions in Argentina are in different fly control situations. One part is under a programme using the sterile insect technique (SIT) for the eradication of C. capitata, because A. fraterculus is not present in this area. The application of the SIT to control C. capitata north of the present line with the possibility of A. fraterculus occupying the niche left vacant by C. capitata becomes a cause of much concern. Only initial steps have been taken to investigate the genetics and biology of A. fraterculus. Consequently, only fragmentary information has been recorded in the literature regarding the use of SIT to control this species. For these reasons, the research to develop a SIT protocol to control A. fraterculus is greatly needed. In recent years, research groups have been building a network in Argentina in order to address particular aspects of the development of the SIT for Anastrepha fraterculus. The problems being addressed by these groups include improvement of artificial diets, facilitation of insect mass rearing, radiation doses and conditions for insect sterilisation, basic knowledge supporting the development of males-only strains, reduction of male maturation time to facilitate releases, identification and isolation of chemical communication signals, and a good deal of population genetic studies. This paper is the product of a concerted effort to gather all this knowledge scattered in numerous and often hard-to-access reports and papers and summarize their basic conclusions in a single publication.
Collapse
|