1
|
Sharifi S, Dursun M, Şahin A, Turan S, Altun A, Özcan Ö, Kalkanlı A, Çefle K, Öztürk Ş, Palanduz Ş, Kadıoğlu A. Genetic insights into non-obstructive azoospermia: Implications for diagnosis and TESE outcomes. J Assist Reprod Genet 2025; 42:1223-1237. [PMID: 39932629 PMCID: PMC12055743 DOI: 10.1007/s10815-025-03409-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/20/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Non-obstructive azoospermia (NOA) is considered one of the most severe forms of male infertility. Despite the limited range of testicular phenotypes, NOA exhibits considerable genetic heterogeneity. The aim of this study was to uncover the etiopathogenesis of NOA and provide insights into the outcomes of testicular sperm extraction (TESE). MATERIAL METHOD To elucidate the potential causes of testicular pathogenesis, a cohort of 61 patients was analyzed. The genetic etiology was assessed using our developed gene panel, based on genes with prior functional studies conducted specifically in the context of testicular characterization. RESULTS Our analytical approach, built upon these findings, enabled us to explore the potential genetic causes of NOA and assess their relevance to TESE outcomes. A potential causal defect was identified in 14 genes across a total of 26 individuals (42%). Of these, three genes-MEIOB, TERB1, and USP26-had been previously described in men, while eight genes-SPO11, RBBP7, STS, RBMXL3, ZCCHC13, HUWE1, ESR1, and ABCD1-had been reported in prior studies. Additionally, three genes-CEP85, NAP1L3, and CENPI-had been previously described only in knockout (KO) phenotype studies, and this study represents the first identification of these genes in men. CONCLUSION Interestingly, the histological findings of meiotic arrest were strongly linked to genes involved in meiosis, reinforcing the clinical diagnosis of patients in this cohort. Additionally, our study underscores the importance of refining diagnostic strategies that focus on genes associated with testicular phenotypes, which could enhance the accuracy of TESE success predictions.
Collapse
Affiliation(s)
- Shahrashoub Sharifi
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul, Turkey.
| | - Murat Dursun
- Section of Andrology, Department of Urology, İstanbul Faculty of Medicine, İstanbul University, İstanbul, Turkey.
| | - Ayla Şahin
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul, Turkey
| | - Serdar Turan
- Section of Andrology, Department of Urology, İstanbul Faculty of Medicine, İstanbul University, İstanbul, Turkey
| | - Ayşe Altun
- Department of Obstetrics and Gynecology, İstanbul Faculty of Medicine, İstanbul University, Istanbul, Turkey
| | - Özden Özcan
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul, Turkey
| | - Arif Kalkanlı
- Department of Urology, Medical Park Gebze Hospital, Gebze, Kocaeli, Turkey
| | - Kıvanç Çefle
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul, Turkey
| | - Şükrü Öztürk
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul, Turkey
| | - Şükrü Palanduz
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul, Turkey
| | - Ateş Kadıoğlu
- Section of Andrology, Department of Urology, İstanbul Faculty of Medicine, İstanbul University, İstanbul, Turkey
| |
Collapse
|
2
|
Mishra PR, Purkait S, Manekar AA, Tripathy BB. Germ Cell Neoplasia In situ in Undescended Testis: A Myth or Reality? J Indian Assoc Pediatr Surg 2025; 30:66-69. [PMID: 39968261 PMCID: PMC11832094 DOI: 10.4103/jiaps.jiaps_182_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 02/20/2025] Open
Abstract
Background Untreated cryptorchid testes are in risk of intratubular germ cell neoplasia and subsequently may give rise to invasive germ cell tumors. Materials and Methods Tissue samples were obtained from patients undergoing orchidectomy or orchiopexy and were subjected to routine histopathological and immunohistochemical examinations. Results Forty-three patients were enrolled in this study out of which 30 samples were collected. The mean age of patients was 9.16 years. One case (6.7%) showed positivity of the germ cell neoplasia with anto placental alkaline phosphatase and Anto CD-117 positive. Other histopathological findings such as fibrocollagenous tissue and Leydig cell hyperplasia were reported. Conclusion Early surgical management is of importance for a better outcome in cases of undescended testes.
Collapse
Affiliation(s)
- Pravash Ranjan Mishra
- Department of Anatomy, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Suvendu Purkait
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Aditya Arvind Manekar
- Department of Paediatric Surgery, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Bikasha Bihary Tripathy
- Department of Paediatric Surgery, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
3
|
Jin X, Zhang S, Ding T, Zhao P, Zhang C, Zhang Y, Li W. Testicular Lmcd1 regulates phagocytosis by Sertoli cells through modulation of NFAT1/Txlna signaling pathway. Aging Cell 2020; 19:e13217. [PMID: 32840323 PMCID: PMC7576262 DOI: 10.1111/acel.13217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 05/08/2020] [Accepted: 07/18/2020] [Indexed: 12/20/2022] Open
Abstract
Increased oxidative stress is well known to cause testicular dysfunction in aging males, but the detailed relationships between aging, oxidative stress, and testicular function remain to be elucidated. LIM and cysteine‐rich domains 1 (LMCD1) regulates fundamentally cellular process by interacting with transcription factors. A recent study has identified Lmcd1 as one of the most upregulated nuclear proteins associated with Sertoli cell (SC) differentiation, raising the possibility that testicular actions of LMCD1 are likely to take place. Herein, we reported that LMCD1 was exclusively expressed in the nuclei of SCs. This expression was regulated by TNF‐α signaling produced by apoptotic germ cells (GCs) and was suppressed by oxidative stress in a STAT3‐dependent manner. Ablation of endogenous LMCD1 expression caused lipid accumulation and senescence in GC co‐incubated SCs. Using a previously validated in vivo siRNA approach, we showed that LMCD1 depletion significantly impaired male fertility by inducing oligozoospermia and asthenospermia. Mechanistically, LMCD1 upregulation was associated with the nuclear enrichment of the nuclear factor of activated T cells 1 (NFAT1), a core component of Ca2+/calmodulin‐dependent pathway. LMCD1 facilitated the dephosphorylation and nuclear translocation of NFAT1, which consequently expedited the transactivation of Txlna, a binding partner of the syntaxin family essential for testicular phagocytosis, and thus promoted the removal of apoptotic GCs by phagocytic SCs. Collectively, LMCD1 may operate as a novel pretranscriptional integrator linking SC phagocytosis, lipid homeostasis, and cell senescence.
Collapse
Affiliation(s)
- Xiaohang Jin
- Department of Basic Medical Morphology Medical College Xijing University Xi'an China
| | - Sheng Zhang
- Department of Basic Medical Morphology Medical College Xijing University Xi'an China
| | - Tianbing Ding
- Department of Basic Functioning Medicine Medical College Xijing University Xi'an China
| | - Pengtao Zhao
- Department of Basic Medical Morphology Medical College Xijing University Xi'an China
| | - Chunli Zhang
- Department of Basic Medical Morphology Medical College Xijing University Xi'an China
| | - Yuxing Zhang
- Department of Basic Functioning Medicine Medical College Xijing University Xi'an China
| | - Wei Li
- Department of Human Anatomy, Histology and Embryology Fourth Military Medical University Xi'an China
| |
Collapse
|
4
|
Maezawa S, Sakashita A, Yukawa M, Chen X, Takahashi K, Alavattam KG, Nakata I, Weirauch MT, Barski A, Namekawa SH. Super-enhancer switching drives a burst in gene expression at the mitosis-to-meiosis transition. Nat Struct Mol Biol 2020; 27:978-988. [PMID: 32895557 PMCID: PMC8690596 DOI: 10.1038/s41594-020-0488-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/10/2020] [Indexed: 01/12/2023]
Abstract
Due to bursts in the expression of thousands of germline-specific genes, the testis has the most diverse and complex transcriptome of all organs. By analyzing the male germline of mice, we demonstrate that the genome-wide reorganization of super-enhancers (SEs) drives bursts in germline gene expression after the mitosis-to-meiosis transition. SE reorganization is regulated by two molecular events: the establishment of meiosis-specific SEs via A-MYB (MYBL1), a key transcription factor for germline genes, and the resolution of SEs in mitotically proliferating cells via SCML2, a germline-specific Polycomb protein required for spermatogenesis-specific gene expression. Prior to entry into meiosis, meiotic SEs are preprogrammed in mitotic spermatogonia to ensure the unidirectional differentiation of spermatogenesis. We identify key regulatory factors for both mitotic and meiotic enhancers, revealing a molecular logic for the concurrent activation of mitotic enhancers and suppression of meiotic enhancers in the somatic and/or mitotic proliferation phases.
Collapse
Affiliation(s)
- So Maezawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan. .,Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan.
| | - Akihiko Sakashita
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Masashi Yukawa
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kazuki Takahashi
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kris G Alavattam
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ippo Nakata
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Matthew T Weirauch
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Artem Barski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
5
|
Melo TP, Fortes MRS, Fernandes Junior GA, Albuquerque LG, Carvalheiro R. RAPID COMMUNICATION: Multi-breed validation study unraveled genomic regions associated with puberty traits segregating across tropically adapted breeds1. J Anim Sci 2019; 97:3027-3033. [PMID: 30997484 DOI: 10.1093/jas/skz121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022] Open
Abstract
An efficient strategy to improve QTL detection power is performing across-breed validation studies. Variants segregating across breeds are expected to be in high linkage disequilibrium (LD) with causal mutations affecting economically important traits. The aim of this study was to validate, in a Tropical Composite cattle (TC) population, QTL associations identified for sexual precocity traits in a Nellore and Brahman meta-analysis genome-wide association study. In total, 2,816 TC, 8,001 Nellore, and 2,210 Brahman animals were available for the analysis. For that, genomic regions significantly associated with puberty traits in the meta-analysis study were validated for the following sexual precocity traits in TC: age at first corpus luteum (AGECL), first postpartum anestrus interval (PPAI), and scrotal circumference at 18 months of age (SC). We considered validated QTL those underpinned by significant markers from the Nellore and Brahman meta-analysis (P ≤ 10-4) that were also significant for a TC trait, i.e., presenting a P-value of ≤10-3 for AGECL, PPAI, or SC. We also considered as validated QTL those regions where significant markers in the reference population were at ±250 kb from significant markers in the validation population. Using this criteria, 49 SNP were validated for AGECL, 4 for PPAI, and 14 for SC, from which 5 were in common with AGECL, totaling 62 validated SNP for these traits and 30 candidate genes surrounding them. Considering just candidate genes closest to the top SNP of each chromosome, for AGECL 8 candidate genes were identified: COL8A1, PENK, ENSBTAG00000047425, BPNT1, ADAMTS17, CCHCR1, SUFU, and ENSBTAG00000046374. For PPAI, 3 genes emerged as candidates (PCBP3, KCNK10, and MRPS5), and for SC 8 candidate genes were identified (SNORA70, TRAC, ASS1, BPNT1, LRRK1, PKHD1, PTPRM, and ENSBTAG00000045690). Several candidate regions presented here were previously associated with puberty traits in cattle. The majority of emerging candidate genes are related to biological processes involved in reproductive events, such as maintenance of gestation, and some are known to be expressed in reproductive tissues. Our results suggested that some QTL controlling early puberty seem to be segregating across cattle breeds adapted to tropical conditions.
Collapse
Affiliation(s)
- Thaise P Melo
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Marina R S Fortes
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland, Australia.,The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, St Lucia, Queensland, Australia
| | - Gerardo A Fernandes Junior
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Lucia G Albuquerque
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil.,National Council for Scientific and Technological Development (CNPq), Brasília, Distrito Federal, Brazil
| | - Roberto Carvalheiro
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil.,National Council for Scientific and Technological Development (CNPq), Brasília, Distrito Federal, Brazil
| |
Collapse
|
6
|
Morais RDVS, Crespo D, Nóbrega RH, Lemos MS, van de Kant HJG, de França LR, Male R, Bogerd J, Schulz RW. Antagonistic regulation of spermatogonial differentiation in zebrafish (Danio rerio) by Igf3 and Amh. Mol Cell Endocrinol 2017. [PMID: 28645700 DOI: 10.1016/j.mce.2017.06.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fsh-mediated regulation of zebrafish spermatogenesis includes modulating the expression of testicular growth factors. Here, we study if and how two Sertoli cell-derived Fsh-responsive growth factors, anti-Müllerian hormone (Amh; inhibiting steroidogenesis and germ cell differentiation) and insulin-like growth factor 3 (Igf3; stimulating germ cell differentiation), cooperate in regulating spermatogonial development. In dose response and time course experiments with primary testis tissue cultures, Fsh up-regulated igf3 transcript levels and down-regulated amh transcript levels; igf3 transcript levels were more rapidly up-regulated and responded to lower Fsh concentrations than were required to decrease amh mRNA levels. Quantification of immunoreactive Amh and Igf3 on testis sections showed that Fsh increased slightly Igf3 staining but decreased clearly Amh staining. Studying the direct interaction of the two growth factors showed that Amh compromised Igf3-stimulated proliferation of type A (both undifferentiated [Aund] and differentiating [Adiff]) spermatogonia. Also the proliferation of those Sertoli cells associated with Aund spermatogonia was reduced by Amh. To gain more insight into how Amh inhibits germ cell development, we examined Amh-induced changes in testicular gene expression by RNA sequencing. The majority (69%) of the differentially expressed genes was down-regulated by Amh, including several stimulators of spermatogenesis, such as igf3 and steroidogenesis-related genes. At the same time, Amh increased the expression of inhibitory signals, such as inha and id3, or facilitated prostaglandin E2 (PGE2) signaling. Evaluating one of the potentially inhibitory signals, we indeed found in tissue culture experiments that PGE2 promoted the accumulation of Aund at the expense of Adiff and B spermatogonia. Our data suggest that an important aspect of Fsh bioactivity in stimulating spermatogenesis is implemented by restricting the different inhibitory effects of Amh and by counterbalancing them with stimulatory signals, such as Igf3.
Collapse
Affiliation(s)
- R D V S Morais
- Reproductive Biology Group (R.D.V.S.M., D.C., R.H.N., H.J.G.v.d.K., J.B., R.W.S.), Division of Developmental Biology, Institute for Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - D Crespo
- Reproductive Biology Group (R.D.V.S.M., D.C., R.H.N., H.J.G.v.d.K., J.B., R.W.S.), Division of Developmental Biology, Institute for Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - R H Nóbrega
- Reproductive Biology Group (R.D.V.S.M., D.C., R.H.N., H.J.G.v.d.K., J.B., R.W.S.), Division of Developmental Biology, Institute for Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands; Department of Morphology (R.H.N.), Institute of Bioscience, São Paulo State University, 18618-970 Botucatu, Brazil
| | - M S Lemos
- Laboratory of Cellular Biology (L.R.F., M.S.L.), Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - H J G van de Kant
- Reproductive Biology Group (R.D.V.S.M., D.C., R.H.N., H.J.G.v.d.K., J.B., R.W.S.), Division of Developmental Biology, Institute for Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - L R de França
- Laboratory of Cellular Biology (L.R.F., M.S.L.), Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil; National Institute of Amazonian Research (L.R.F.), Manaus, Brazil
| | - R Male
- Department of Molecular Biology (R.M.), University of Bergen, 5020 Bergen, Norway
| | - J Bogerd
- Reproductive Biology Group (R.D.V.S.M., D.C., R.H.N., H.J.G.v.d.K., J.B., R.W.S.), Division of Developmental Biology, Institute for Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands.
| | - R W Schulz
- Reproductive Biology Group (R.D.V.S.M., D.C., R.H.N., H.J.G.v.d.K., J.B., R.W.S.), Division of Developmental Biology, Institute for Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands; Research Group Reproduction and Developmental Biology (R.W.S.), Institute of Marine Research, 5817 Bergen, Norway.
| |
Collapse
|
7
|
Genome-wide profiling of DNA 5-hydroxymethylcytosine during rat Sertoli cell maturation. Cell Discov 2017; 3:17013. [PMID: 28529766 PMCID: PMC5423031 DOI: 10.1038/celldisc.2017.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/24/2017] [Indexed: 01/04/2023] Open
Abstract
Sertoli cells have dual roles during the cells' lifetime. In the juvenile mammal, Sertoli cells proliferate and create the structure of the testis, and during puberty they cease to proliferate and take on the adult role of supporting germ cells through spermatogenesis. Accordingly, many genes expressed in Sertoli cells during testis formation are repressed during spermatogenesis. 5-Hydroxymethylcytosine (5hmC) is a DNA modification enzymatically generated from 5mC and present in all investigated mammalian tissues at varying levels. Using mass spectrometry and immunofluorescence staining we identified a substantial Sertoli cell-specific global 5hmC increase during rat puberty. Chemical labeling, pull-down and sequencing of 5hmC-containing genomic DNA from juvenile and adult rat Sertoli cells revealed that genes that lose or gain 5hmC belong to different functional pathways and mirror the functions of the cells in the two different states. Loss of 5hmC is associated with genes involved in development and cell structure, whereas gain of 5hmC is associated with genes involved in cellular pathways pertaining to the function of the adult Sertoli cells. This redistribution during maturation shows that 5hmC is a dynamic nucleotide modification, correlated to gene expression.
Collapse
|
8
|
Crespo D, Assis LHC, Furmanek T, Bogerd J, Schulz RW. Expression profiling identifies Sertoli and Leydig cell genes as Fsh targets in adult zebrafish testis. Mol Cell Endocrinol 2016; 437:237-251. [PMID: 27566230 DOI: 10.1016/j.mce.2016.08.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/27/2016] [Accepted: 08/22/2016] [Indexed: 11/26/2022]
Abstract
Spermatogonial stem cells are quiescent, undergo self-renewal or differentiating divisions, thereby forming the cellular basis of spermatogenesis. This cellular development is orchestrated by follicle-stimulating hormone (FSH), through the production of Sertoli cell-derived factors, and by Leydig cell-released androgens. Here, we investigate the transcriptional events induced by Fsh in a steroid-independent manner on the restart of zebrafish (Danio rerio) spermatogenesis ex vivo, using testis from adult males where type A spermatogonia were enriched by estrogen treatment in vivo. Under these conditions, RNA sequencing preferentially detected differentially expressed genes in somatic/Sertoli cells. Fsh-stimulated spermatogonial proliferation was accompanied by modulating several signaling systems (i.e. Tgf-β, Hedgehog, Wnt and Notch pathways). In silico protein-protein interaction analysis indicated a role for Hedgehog family members potentially integrating signals from different pathways during fish spermatogenesis. Moreover, Fsh had a marked impact on metabolic genes, such as lactate and fatty acid metabolism, or on Sertoli cell barrier components. Fish Leydig cells express the Fsh receptor and one of the most robust Fsh-responsive genes was insulin-like 3 (insl3), a Leydig cell-derived growth factor. Follow-up work showed that recombinant zebrafish Insl3 mediated pro-differentiation effects of Fsh on spermatogonia in an androgen-independent manner. Our experimental approach allowed focusing on testicular somatic genes in zebrafish and showed that the activity of signaling systems known to be relevant in stem cells was modulated by Fsh, providing promising leads for future work, as exemplified by the studies on Insl3.
Collapse
Affiliation(s)
- Diego Crespo
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Luiz H C Assis
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Tomasz Furmanek
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Jan Bogerd
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Rüdiger W Schulz
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands; Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway.
| |
Collapse
|
9
|
Irminger-Finger I, Kargul J, Laurent GJ. Extra cellular matrix a modular soil for stem cells. Int J Biochem Cell Biol 2016; 81:164. [PMID: 27876673 DOI: 10.1016/j.biocel.2016.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Irmgard Irminger-Finger
- Laboratory of Molecular Gynecology & Obstetrics, Geneva University Hospitals, 2 Ch. Petit Bel-Air 2, CH-1225 Geneva, Switzerland.
| | - Joanna Kargul
- University of Warsaw, Centre of New Technologies, Banacha 2C, 02-097 Warsaw, Poland.
| | - Geoffrey J Laurent
- Centre for Cell Therapy and Regenerative Medicine and Lung Institute of Western Australia, University of Western Australia, Perth, Australia.
| |
Collapse
|
10
|
Zhu Y, Xu H, Li M, Gao Z, Huang J, Liu L, Huang X, Li Y. Daidzein impairs Leydig cell testosterone production and Sertoli cell function in neonatal mouse testes: An in vitro study. Mol Med Rep 2016; 14:5325-5333. [PMID: 27840926 DOI: 10.3892/mmr.2016.5896] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 09/26/2016] [Indexed: 11/06/2022] Open
Abstract
Isoflavone is a type of phytoestrogen that exists in soy‑based products. Previous studies have reported that certain foods containing isoflavones, particularly infant formula, may have potential adverse effects on male reproductive function. However, few studies have focused on the effects of isoflavones on testosterone biosynthesis and Sertoli cell function during the neonatal period. The aim of the present study was to investigate the influence of daidzein, a common isoflavone, on testosterone secretion and Sertoli cell function during the neonatal period. The organ culture method was used to assess the effects of daidzein on neonatal mouse testes. Cultured testes were treated with daidzein (0, 0.03, 0.3, 3 or 30 µmol/l) for 72 h. To verify the mechanism of action of daidzein on androgen production, Leydig cells were also treated with daidzein for 24 h. As anticipated, testosterone secretions were suppressed by daidzein (30 µmol/l) in cultured testes and Leydig cells. Further analysis demonstrated that the expression levels of steroidogenic acute regulatory protein (StAR), cholesterol side‑chain cleavage enzyme (P450scc) and 3β‑hydroxysteroid dehydrogenase (3β‑HSD), which are transport proteins and key enzymes in androgen biosynthesis, were suppressed in cultured neonatal mouse testes. In addition, the expression levels of StAR, P450scc, 3β‑HSD and 17α‑hydroxylase/20‑lyase were decreased in Leydig cells. Notably, proliferation of Sertoli cells was also inhibited by daidzein (30 µmol/l). Furthermore, the expression levels of vimentin were significantly suppressed in the testes following treatment with daidzein, whereas inhibin B expression exhibited no change. In conclusion, daidzein may suppress steroidogenic capability and impair Sertoli cell function in the neonatal period in vitro.
Collapse
Affiliation(s)
- Yanfeng Zhu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hua Xu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Min Li
- Department of Public Health, Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| | - Zhibin Gao
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jie Huang
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Linxi Liu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaoming Huang
- Department of Public Health, Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| | - Yun Li
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
11
|
Lee WY, Do JT, Park C, Kim JH, Chung HJ, Kim KW, Gil CH, Kim NH, Song H. Identification of Putative Biomarkers for the Early Stage of Porcine Spermatogonial Stem Cells Using Next-Generation Sequencing. PLoS One 2016; 11:e0147298. [PMID: 26800048 PMCID: PMC4723225 DOI: 10.1371/journal.pone.0147298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/02/2016] [Indexed: 01/15/2023] Open
Abstract
To identify putative biomarkers of porcine spermatogonial stem cells (pSSCs), total RNA sequencing (RNA-seq) analysis was performed on 5- and 180-day-old porcine testes and on pSSC colonies that were established under low temperature culture conditions as reported previously. In total, 10,184 genes were selected using Cufflink software, followed by a logarithm and quantile normalization of the pairwise scatter plot. The correlation rates of pSSCs compared to 5- and 180-day-old testes were 0.869 and 0.529, respectively and that between 5- and 180-day-old testes was 0.580. Hierarchical clustering data revealed that gene expression patterns of pSSCs were similar to 5-day-old testis. By applying a differential expression filter of four fold or greater, 607 genes were identified between pSSCs and 5-day-old testis, and 2118 genes were identified between the 5- and 180-day-old testes. Among these differentially expressed genes, 293 genes were upregulated and 314 genes were downregulated in the 5-day-old testis compared to pSSCs, and 1106 genes were upregulated and 1012 genes were downregulated in the 180-day-old testis compared to the 5-day-old testis. The following genes upregulated in pSSCs compared to 5-day-old testes were selected for additional analysis: matrix metallopeptidase 9 (MMP9), matrix metallopeptidase 1 (MMP1), glutathione peroxidase 1 (GPX1), chemokine receptor 1 (CCR1), insulin-like growth factor binding protein 3 (IGFBP3), CD14, CD209, and Kruppel-like factor 9 (KLF9). Expression levels of these genes were evaluated in pSSCs and in 5- and 180-day-old porcine testes. In addition, immunohistochemistry analysis confirmed their germ cell-specific expression in 5- and 180-day-old testes. These finding may not only be useful in facilitating the enrichment and sorting of porcine spermatogonia, but may also be useful in the study of the early stages of spermatogenic meiosis.
Collapse
Affiliation(s)
- Won-Young Lee
- Department of Food Bioscience, Research Institute for Biomedical & Health Science, College of Biomedical & Health Science, Konkuk University, Chung-ju 380–701, Republic of Korea
| | - Jeong Tae Do
- Department of Animal Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143–701, Republic of Korea
| | - Chankyu Park
- Department of Animal Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143–701, Republic of Korea
| | - Jin Hoi Kim
- Department of Animal Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143–701, Republic of Korea
| | - Hak-Jae Chung
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju-gun 565–851, Republic of Korea
| | - Kyung-Woon Kim
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju-gun 565–851, Republic of Korea
| | - Chang-Hyun Gil
- School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143–701, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Science, College of Agriculture, Chungbuk National University, Choung-ju 361–763, Republic of Korea
| | - Hyuk Song
- Department of Animal Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143–701, Republic of Korea
- * E-mail:
| |
Collapse
|
12
|
Mu H, Li N, Wu J, Zheng L, Zhai Y, Li B, Song W, Wang J, Zhu H, Li G, Hua J. PLZF-Induced Upregulation of CXCR4 Promotes Dairy Goat Male Germline Stem Cell Proliferation by Targeting Mir146a. J Cell Biochem 2015; 117:844-52. [PMID: 26365432 DOI: 10.1002/jcb.25371] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/10/2015] [Indexed: 02/03/2023]
Abstract
Previous studies have shown that promyelocytic leukemia zinc finger (PLZF), chemokine (C-X-C motif) receptor 4 (CXCR4) and mir146a were associated with the self-renewal of mouse spermatogonial stem cells (SSCs); however, there is little information on their effects on the fate of livestock SSCs. Here, we have identified a regulatory pathway in dairy goat mGSCs, involving PLZF, mir146a and the SDF-1 receptor CXCR4. PLZF overexpression downregulated mir146a and simultaneously upregulated the expression of CXCR4 protein, whereas PLZF knockdown (siPLZF) induced the specifically opposite effects. The in vitro assays demonstrated that PLZF specifically interacts with and suppresses the mir146a promoter, and mir146a targets CXCR4 to impede its translation. The levels of ERK1/2 phosphorylation in the mGSCs overexpressed CXCR4 and PLZF were upregulated, respectively, whereas mir146a expression was decreased and CXCR4 protein was increased. Mir146a overexpression and siPLZF impaired mGSC proliferation and differentiation, however, Mir146a knockdown induced the opposite effects. The effects of PLZF and mir146a were mediated regulation by mir146a and CXCR4, respectively. Overexpression of CXCR4 or addition of CXCL12 in cultures of dairy goat mGSCs resulted in the upregulation of their signaling, and the phosphorylation of ERK1/2 was increased. Collectively, these findings indicate that PLZF is an important transcription factor in the regulation of the expression of CXCR4 to promote dairy goat mGSC proliferation by targeting mir146a.
Collapse
Affiliation(s)
- Hailong Mu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Shaanxi, 712100, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Shaanxi, 712100, China
| | - Jiang Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Shaanxi, 712100, China.,College of Agriculture, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Liming Zheng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Shaanxi, 712100, China
| | - Yuanxin Zhai
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Shaanxi, 712100, China
| | - Bo Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Shaanxi, 712100, China
| | - Wencong Song
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Shaanxi, 712100, China
| | - Jinglu Wang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Shaanxi, 712100, China
| | - Haijing Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Shaanxi, 712100, China.,College of Life Science, Yulin University, Yulin, Shaanxi, 719000, China
| | - Guangpeng Li
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Shaanxi, 712100, China
| |
Collapse
|
13
|
Zhang Y, Luo F, Wu S, Yu B, Liu T, Wu Y. Tribbles homolog 3 expression in spermatogonial stem cells of rat testes. Cell Biol Int 2014; 38:1403-7. [DOI: 10.1002/cbin.10338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/28/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Yan Zhang
- Key Laboratory of Education Ministry of China for Mammalian Reproductive Biology and Biotechnology; Inner Mongolia University; Hohhot China
- School of Basic Medical Sciences; Inner Mongolia Medical University; Hohhot China
| | - Fenhua Luo
- Key Laboratory of Education Ministry of China for Mammalian Reproductive Biology and Biotechnology; Inner Mongolia University; Hohhot China
| | - Sachula Wu
- Key Laboratory of Education Ministry of China for Mammalian Reproductive Biology and Biotechnology; Inner Mongolia University; Hohhot China
| | - Boyang Yu
- Key Laboratory of Education Ministry of China for Mammalian Reproductive Biology and Biotechnology; Inner Mongolia University; Hohhot China
| | - Taodi Liu
- School of Basic Medical Sciences; Inner Mongolia Medical University; Hohhot China
| | - Yingji Wu
- Key Laboratory of Education Ministry of China for Mammalian Reproductive Biology and Biotechnology; Inner Mongolia University; Hohhot China
| |
Collapse
|
14
|
Tajiri N, Duncan K, Borlongan MC, Pabon M, Acosta S, de la Pena I, Hernadez-Ontiveros D, Lozano D, Aguirre D, Reyes S, Sanberg PR, Eve DJ, Borlongan CV, Kaneko Y. Adult stem cell transplantation: is gender a factor in stemness? Int J Mol Sci 2014; 15:15225-43. [PMID: 25170809 PMCID: PMC4200754 DOI: 10.3390/ijms150915225] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/19/2014] [Accepted: 08/25/2014] [Indexed: 01/23/2023] Open
Abstract
Cell therapy now constitutes an important area of regenerative medicine. The aging of the population has mandated the discovery and development of new and innovative therapeutic modalities to combat devastating disorders such as stroke. Menstrual blood and Sertoli cells represent two sources of viable transplantable cells that are gender-specific, both of which appear to have potential as donor cells for transplantation in stroke. During the subacute phase of stroke, the use of autologous cells offers effective and practical clinical application and is suggestive of the many benefits of using the aforementioned gender-specific cells. For example, in addition to being exceptionally immunosuppressive, testis-derived Sertoli cells secrete many growth and trophic factors and have been shown to aid in the functional recovery of animals transplanted with fetal dopaminergic cells. Correspondingly, menstrual blood cells are easily obtainable and exhibit angiogenic characteristics, proliferative capability, and pluripotency. Of further interest is the ability of menstrual blood cells, following transplantation in stroke models, to migrate to the infarct site, secrete neurotrophic factors, regulate the inflammatory response, and be steered towards neural differentiation. From cell isolation to transplantation, we emphasize in this review paper the practicality and relevance of the experimental and clinical use of gender-specific stem cells, such as Sertoli cells and menstrual blood cells, in the treatment of stroke.
Collapse
Affiliation(s)
- Naoki Tajiri
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Kelsey Duncan
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Mia C Borlongan
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Mibel Pabon
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Sandra Acosta
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Ike de la Pena
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Diana Hernadez-Ontiveros
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Diego Lozano
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Daniela Aguirre
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Stephanny Reyes
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Paul R Sanberg
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA. psanberg@.usf.edu
| | - David J Eve
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Cesar V Borlongan
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Yuji Kaneko
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
15
|
Kaneko Y, Dailey T, Weinbren NL, Rizzi J, Tamboli C, Allickson JG, Kuzmin-Nichols N, Sanberg PR, Eve DJ, Tajiri N, Borlongan CV. The battle of the sexes for stroke therapy: female- versus male-derived stem cells. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2014; 12:405-412. [PMID: 23469849 DOI: 10.2174/1871527311312030013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/10/2012] [Accepted: 09/14/2012] [Indexed: 12/14/2022]
Abstract
Cell therapy is a major discipline of regenerative medicine that has been continually growing over the last two decades. The aging of the population necessitates discovery of therapeutic innovations to combat debilitating disorders, such as stroke. Menstrual blood and Sertoli cells are two gender-specific sources of viable transplantable cells for stroke therapy. The use of autologous cells for the subacute phase of stroke offers practical clinical application. Menstrual blood cells are readily available, display proliferative capacity, pluripotency and angiogenic features, and, following transplantation in stroke models, have the ability to migrate to the infarct site, regulate the inflammatory response, secrete neurotrophic factors, and have the possibility to differentiate into neural lineage. Similarly, the testis-derived Sertoli cells secrete many growth and trophic factors, are highly immunosuppressive, and exert neuroprotective effects in animal models of neurological disorders. We highlight the practicality of experimental and clinical application of menstrual blood cells and Sertoli cells to treat stroke, from cell isolation and cryopreservation to administration.
Collapse
Affiliation(s)
- Yuji Kaneko
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Travis Dailey
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Nathan L Weinbren
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Jessica Rizzi
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Cyrus Tamboli
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | | | | | - Paul R Sanberg
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - David J Eve
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Naoki Tajiri
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| |
Collapse
|
16
|
Laiho A, Kotaja N, Gyenesei A, Sironen A. Transcriptome profiling of the murine testis during the first wave of spermatogenesis. PLoS One 2013; 8:e61558. [PMID: 23613874 PMCID: PMC3629203 DOI: 10.1371/journal.pone.0061558] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/11/2013] [Indexed: 12/05/2022] Open
Abstract
Correct gene expression patterns form the basis for male germ cell differentiation and male fertility. Although previous studies have elucidated the importance of testis specific gene expression, the exact transcripts and comprehensive gene expression patterns remain unknown. Large scale sequencing techniques have enabled cost effective analysis of gene expression and isoform studies. Using the SOLiD 4 next-generation sequencing platform we have investigated the gene expression patterns at five different time points during the first wave on murine spermatogenesis. Our results highlight the upregulation of spermatogenesis related biological processes and associated cellular components. Elucidation of differential gene expression at important time points during the sperm development emphasizes the importance of correct timing of gene expression within biological processes. Differential gene level expression was analyzed with R/Bioconductor’s Limma package and isoform analysis was conducted with the Cufflinks pipeline. At gene level total of 2494 differentially expressed genes were identified and Cufflinks characterized over 160 000 gene isoforms, of which 29% were novel transcripts assigned to known genes. Isoforms were detected for 57% of expressed genes and in a total over 26 000 genes were expressed in the testis. Differential promoter and transcription start site usage appears also to play a role in regulation of gene expression during spermatogenesis. Furthermore, we identified 947 upregulated long non-coding RNAs during the first wave of spermatogenesis. These RNAs appeared to be highly specific to different time points. Transcriptomic analysis of testis tissue samples is highly informative due to the large number of expressed genes and identified isoforms. Our study provides a very valuable basis for investigation of gene isoforms and regulation and factors contributing to male fertility.
Collapse
Affiliation(s)
- Asta Laiho
- The Finnish Microarray and Sequencing Centre, Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, Turku, Finland
| | - Noora Kotaja
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Attila Gyenesei
- The Finnish Microarray and Sequencing Centre, Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, Turku, Finland
| | - Anu Sironen
- Agrifood Research Finland, Biotechnology and Food Research, Animal Genomics, Jokioinen, Finland
- * E-mail:
| |
Collapse
|
17
|
Abstract
The failure of testicular descent or cryptorchidism is the most common defect in newborn boys. The descent of the testes during development is controlled by insulin-like 3 peptide and steroid hormones produced in testicular Leydig cells, as well as by various genetic and developmental factors. While in some cases the association with genetic abnormalities and environmental causes has been shown, the etiology of cryptorchidism remains uncertain. Cryptorchidism is an established risk factor for infertility and testicular germ cell tumors (TGCT). Experimental animal models suggest a causative role for an abnormal testicular position on the disruption of spermatogenesis however the link between cryptorchidism and TGCT is less clear. The most common type of TGCT in cryptorchid testes is seminoma, believed to be derived from pluripotent prenatal germ cells. Recent studies have shown that seminoma cells and their precursor carcinoma in situ cells express a number of spermatogonial stem cell (SSC) markers suggesting that TGCTs might originate from adult stem cells. We review here the data on changes in the SSC somatic cell niche observed in cryptorchid testes of mouse models and in human patients. We propose that the misregulation of growth factors' expression may alter the balance between SSC self-renewal and differentiation and shift stem cells toward neoplastic transformation.
Collapse
Affiliation(s)
- Lydia Ferguson
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International UniversityMiami, FL, USA
| | - Alexander I. Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International UniversityMiami, FL, USA
- *Correspondence: Alexander I. Agoulnik, Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, HLSI 419B, Miami, FL 33199, USA. e-mail:
| |
Collapse
|
18
|
Gómez M, Manzano A, Figueras A, Viñals F, Ventura F, Rosa JL, Bartrons R, Navarro-Sabaté À. Sertoli-secreted FGF-2 induces PFKFB4 isozyme expression in mouse spermatogenic cells by activation of the MEK/ERK/CREB pathway. Am J Physiol Endocrinol Metab 2012; 303:E695-707. [PMID: 22811469 DOI: 10.1152/ajpendo.00381.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Sertoli cells play a central role in the control and maintenance of spermatogenesis by secreting growth factors, in response to hormonal stimulation, that participate in the paracrine regulation of this process. In this study, we investigated how the hormonal regulation of spermatogenesis modulates 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB) isozyme expression in two mouse spermatogenic cell lines, GC-1 spg and GC-2 spd (ts). For this purpose, TM4 Sertoli cells were used to obtain conditioned medium that was treated or not with dihydrotestosterone for 2 days [dihydrotestosterone conditioned medium (TCM) and basal conditioned medium (BCM), respectively]. We observed an increase in the expression of PFKFB4 along with a decrease in PFKFB3 in spermatogenic cell lines treated with TCM. These effects were inhibited by the antiandrogen drug flutamide and by heat-inactivated TCM, indicating the protein nature of the TCM mediator and its dependence on Sertoli cell stimulation by dihydrotestosterone. In addition, adult rat testes treated with the GnRH antagonist Degarelix exhibited a reduction in the expression of PFKFB4 in germ cells. Addition of exogenous FGF-2 mimicked the changes in the Pfkfb gene expression, whereas neutralizing antibodies against FGF-2 abolished them. Interestingly, similar effects on Pfkfb gene expression were observed using different MAPK inhibitors (U-0126, PD-98059, and H-89). Luciferase analysis of Pfkfb4 promoter constructs demonstrated that a putative CRE-binding sequence located at -1,463 relative to the transcription start site is required to control Pfkfb4 gene expression after TCM treatment. Pulldown assays showed the binding of the CREB transcription factor to this site. Altogether, these results show how the paracrine regulation orchestrated by Sertoli cells in response to testosterone controls glycolysis in germ cells.
Collapse
Affiliation(s)
- Marta Gómez
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Universitat de Barcelona, Feixa Llarga s/n, E-08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu TD, Yu BY, Luo FH, Zhang XL, Wu SCL, Liu LH, Wu YJ. Gene Expression Profiling of Rat Testis Development During the Early Post-Natal Stages. Reprod Domest Anim 2011; 47:724-31. [DOI: 10.1111/j.1439-0531.2011.01950.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|