1
|
Tao Y, Zhang Y, Kong X, Zhang S, Xue Y, Ao W, Pang B, Dou H, Xue B. Record-setting cyanobacterial bloom in the largest freshwater lake in northern China caused by joint effects of hydrological variations and nutrient enrichment. ENVIRONMENTAL RESEARCH 2025; 268:120813. [PMID: 39798652 DOI: 10.1016/j.envres.2025.120813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Cyanobacterial blooms represent a significant environmental issue posing widespread threats to global aquatic ecological health. Climate and nutrient enrichment were the most studied factors modulating cyanobacterial blooms in eutrophic lakes. However, in many floodplain lakes, the importance of hydrological variation in driving and predicting cyanobacterial blooms is often overlooked and largely underestimated, which has hampered the effectiveness of lake management. Here, we use a process-based lake ecosystem model (GOTM-WET) to evaluate the potential drivers of the record-setting cyanobacterial bloom during summer 2022 (>70% of lake area) in the largest shallow lake in Northern China (Hulun Lake). The model was calibrated based on a comprehensive field dataset including both remote sensing (surface water temperature) and in-lake observations (water quality). We performed a scenario analysis with various combinations of nutrient loading, hydrological variations and climate change. Our modeling results unravel that the profound water level rise through 2021 to 2022 serves as the main trigger of the severe cyanobacterial bloom in summer 2022. Our model predicted a decrease of 60.5% in the annual average of cyanobacterial biomass when water level remained stable. In addition, water level change and nutrient concentration explains 72.5% of the variance in long-term maximum area of cyanobacterial blooms. Our model further reveals that the water level rise drives the cyanobacterial bloom via bringing in excessive nutrient to lake water column from the lake basin. Thus, our results suggest that continuous increase in water level across two years could serve as an early warning signal to cyanobacterial blooms in the consecutive summer. Our findings may be applicable to similar temperate shallow lakes in floodplain areas, especially for those located in agricultural and pasture regions with abundant nutrient legacy, thus may provide a new indicator for cyanobacterial blooms prediction.
Collapse
Affiliation(s)
- Yulong Tao
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China; Hulunbuir Academy of Inland Lakes in Northern Cold and Arid Areas, Hulunbuir, 021008, China; State Gauge and Research Station of Wetland Ecosystem, Hulun Lake, Inner Mongolia, China
| | - Yiran Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 211135, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 211135, China
| | - Xiangzhen Kong
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 211135, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 211135, China; Department of Lake Research, Helmholtz Centre for Environmental Research - UFZ, 39114, Magdeburg, Germany.
| | - Sheng Zhang
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| | - Yufei Xue
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 211135, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen Ao
- Hulunbuir Academy of Inland Lakes in Northern Cold and Arid Areas, Hulunbuir, 021008, China; State Gauge and Research Station of Wetland Ecosystem, Hulun Lake, Inner Mongolia, China
| | - Bo Pang
- State Gauge and Research Station of Wetland Ecosystem, Hulun Lake, Inner Mongolia, China; Hulun Lake National Nature Reserve Administration, China
| | - Huashan Dou
- State Gauge and Research Station of Wetland Ecosystem, Hulun Lake, Inner Mongolia, China; Hulun Lake National Nature Reserve Administration, China
| | - Bin Xue
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 211135, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 211135, China
| |
Collapse
|
2
|
Lin S. A decade of dinoflagellate genomics illuminating an enigmatic eukaryote cell. BMC Genomics 2024; 25:932. [PMID: 39367346 PMCID: PMC11453091 DOI: 10.1186/s12864-024-10847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Dinoflagellates are a remarkable group of protists, not only for their association with harmful algal blooms and coral reefs but also for their numerous characteristics deviating from the rules of eukaryotic biology. Genome research on dinoflagellates has lagged due to their immense genome sizes in most species (~ 1-250 Gbp). Nevertheless, the last decade marked a fruitful era of dinoflagellate genomics, with 27 genomes sequenced and many insights attained. This review aims to synthesize information from these genomes, along with other omic data, to reflect on where we are now in understanding dinoflagellates and where we are heading in the future. The most notable insights from the decade-long genomics work include: (1) dinoflagellate genomes have been expanded in multiple times independently, probably by a combination of rampant retroposition, accumulation of repetitive DNA, and genome duplication; (2) Symbiodiniacean genomes are highly divergent, but share about 3,445 core unigenes concentrated in 219 KEGG pathways; (3) Most dinoflagellate genes are encoded unidirectionally and are not intron-poor; (4) The dinoflagellate nucleus has undergone extreme evolutionary changes, including complete or nearly complete loss of nucleosome and histone H1, and acquisition of dinoflagellate viral nuclear protein (DVNP); (5) Major basic nuclear protein (MBNP), histone-like protein (HLP), and bacterial HU-like protein (HCc) belong to the same protein family, and MBNP can be the unifying name; (6) Dinoflagellate gene expression is regulated by poorly understood mechanisms, but microRNA and other epigenetic mechanisms are likely important; (7) Over 50% of dinoflagellate genes are "dark" and their functions remain to be deciphered using functional genetics; (8) Initial insights into the genomic basis of parasitism and mutualism have emerged. The review then highlights functionally unique and interesting genes. Future research needs to obtain a finished genome, tackle large genomes, characterize the unknown genes, and develop a quantitative molecular ecological model for addressing ecological questions.
Collapse
Affiliation(s)
- Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA.
| |
Collapse
|
3
|
Ahn SH, Glibert PM, Heil CA. In hot water: Interactions of temperature, nitrogen form and availability and photosynthetic and nitrogen uptake responses in natural Karenia brevis populations. HARMFUL ALGAE 2023; 129:102519. [PMID: 37951619 DOI: 10.1016/j.hal.2023.102519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/30/2023] [Accepted: 09/29/2023] [Indexed: 11/14/2023]
Abstract
During 2020-2021, an unusually prolonged bloom of the toxigenic dinoflagellate Karenia brevis persisted for more than 12 months along the Gulf coast of Florida, resulting in severe environmental effects. Motivated by the possibility that unusual nutrient conditions existed during summer 2021, the short-term interactions of temperature, nitrogen (N) forms (ammonium (NH4+), nitrate (NO3-), and urea) and availability on photosynthesis-irradiance responses and N uptake rates were examined in summer 2021 and compared to such responses from the earlier winter. Winter samples were exposed to temperatures of 15, 20, 25, 30 °C while summer samples were incubated at 15, 25, 30, 33 °C, representing the maximum range the cells might experience throughout the water column due to daytime surface heating or extreme weather events. Depending on thermal history of the cells, photosynthetic performance differed when cells were exposed to the same temperature, showing a capacity for thermal acclimation in this species. Although blooms generally do not persist throughout the summer, bloom biomass was remarkably higher in summer than during the winter. However, most of the photosynthetic parameters and N uptake rates, as well as total carbon (C) and N cell-1 were significantly lower in the summer populations, showing that the summer populations were photosynthetically and nutritionally stressed. When the summer cells were treated with urea, however, uptake rates and total C and N cell-1 were higher than with the other N substrates, especially in warmer waters, showing differential thermal responses depending on N forms.
Collapse
Affiliation(s)
- So Hyun Ahn
- Horn Point Laboratory, University of Maryland Center for Environmental Science, 2020 Horns Point Road, Cambridge, MD 21613, United States.
| | - Patricia M Glibert
- Horn Point Laboratory, University of Maryland Center for Environmental Science, 2020 Horns Point Road, Cambridge, MD 21613, United States
| | - Cynthia A Heil
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, United States
| |
Collapse
|
4
|
Wang Y, Zhou Y, Ye J, Jin C, Hu Y. Continuous Cropping Inhibits Photosynthesis of Polygonatum odoratum. PLANTS (BASEL, SWITZERLAND) 2023; 12:3374. [PMID: 37836114 PMCID: PMC10574191 DOI: 10.3390/plants12193374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
Polygonatum odoratum (Mill.) Druce possesses widespread medicinal properties; however, the continuous cropping (CC) often leads to a severe consecutive monoculture problem (CMP), ultimately causing a decline in yield and quality. Photosynthesis is the fundamental process for plant growth development. Improving photosynthesis is one of the most promising approaches to increase plant yields. To better understand how P. odoratum leaves undergo photosynthesis in response to CC, this study analyzed the physiochemical indexes and RNA-seq. The physiochemical indexes, such as the content of chlorophyll (chlorophyll a, b, and total chlorophyll), light response curves (LRCs), and photosynthetic parameters (Fv/Fm, Fv/F0, Fm/F0, Piabs, ABS/RC, TRo/RC, ETo/RC, and DIo/RC) were all changed in P. odoratum under the CC system. Furthermore, 13,798 genes that exhibited differential expression genes (DEGs) were identified in the P. odoratum leaves of CC and first cropping (FC) plants. Among them, 7932 unigenes were upregulated, while 5860 unigenes were downregulated. Here, the DEGs encoding proteins associated with photosynthesis and carbon assimilation showed a significant decrease in expression under the CC system, such as the PSII protein complex, PSI protein complex, Cytochorome b6/f complex, the photosynthetic electron transport chain, light-harvesting chlorophyll protein complex, and Calvin cycle, etc., -related gene. This study demonstrates that CC can suppress photosynthesis and carbon mechanism in P. odoratum, pinpointing potential ways to enhance photosynthetic efficiency in the CC of plants.
Collapse
Affiliation(s)
- Yan Wang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China; (Y.W.); (Y.Z.); (J.Y.)
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha 410082, China
| | - Yunyun Zhou
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China; (Y.W.); (Y.Z.); (J.Y.)
- Biodiversity Institute, Hunan Academy of Forestry, Changsha 410018, China
| | - Jing Ye
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China; (Y.W.); (Y.Z.); (J.Y.)
| | - Chenzhong Jin
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China; (Y.W.); (Y.Z.); (J.Y.)
| | - Yihong Hu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China; (Y.W.); (Y.Z.); (J.Y.)
| |
Collapse
|
5
|
Roussel A, Mériot V, Jauffrais T, Berteaux-Lecellier V, Lebouvier N. OMICS Approaches to Assess Dinoflagellate Responses to Chemical Stressors. BIOLOGY 2023; 12:1234. [PMID: 37759633 PMCID: PMC10525455 DOI: 10.3390/biology12091234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 09/29/2023]
Abstract
Dinoflagellates are important primary producers known to form Harmful Algae Blooms (HABs). In water, nutrient availability, pH, salinity and anthropogenic contamination constitute chemical stressors for them. The emergence of OMICs approaches propelled our understanding of dinoflagellates' responses to stressors. However, in dinoflagellates, these approaches are still biased, as transcriptomic approaches are largely conducted compared to proteomic and metabolomic approaches. Furthermore, integrated OMICs approaches are just emerging. Here, we report recent contributions of the different OMICs approaches to the investigation of dinoflagellates' responses to chemical stressors and discuss the current challenges we need to face to push studies further despite the lack of genomic resources available for dinoflagellates.
Collapse
Affiliation(s)
- Alice Roussel
- ISEA, EA7484, Campus de Nouville, Université de la Nouvelle Calédonie, Noumea 98851, New Caledonia; (A.R.); (V.M.)
| | - Vincent Mériot
- ISEA, EA7484, Campus de Nouville, Université de la Nouvelle Calédonie, Noumea 98851, New Caledonia; (A.R.); (V.M.)
- Ifremer, IRD, CNRS, Univ. de la Réunion, Univ. de la Nouvelle Calédonie, UMR 9220 ENTROPIE, 101 Promenade Roger Laroque, Noumea 98897, New Caledonia;
| | - Thierry Jauffrais
- Ifremer, IRD, CNRS, Univ. de la Réunion, Univ. de la Nouvelle Calédonie, UMR 9220 ENTROPIE, 101 Promenade Roger Laroque, Noumea 98897, New Caledonia;
| | - Véronique Berteaux-Lecellier
- CNRS, Ifremer, IRD, Univ. de la Réunion, Univ. de la Nouvelle Calédonie, UMR 9220 ENTROPIE, 101 Promenade Roger Laroque, Noumea 98897, New Caledonia;
| | - Nicolas Lebouvier
- ISEA, EA7484, Campus de Nouville, Université de la Nouvelle Calédonie, Noumea 98851, New Caledonia; (A.R.); (V.M.)
| |
Collapse
|
6
|
Kalinina V, Berdieva M, Aksenov N, Skarlato S. Phosphorus deficiency induces sexual reproduction in the dinoflagellate Prorocentrum cordatum. Sci Rep 2023; 13:14191. [PMID: 37648777 PMCID: PMC10468533 DOI: 10.1038/s41598-023-41339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023] Open
Abstract
Nitrogen (N) and phosphorus (P) are essential elements whose availability promotes successful growth of phytoplankton and governs aquatic primary productivity. In this study, we investigated the effect of N and/or P deficiency on the sexual reproduction of Prorocentrum cordatum, the dinoflagellate with the haplontic life cycle which causes harmful algal blooms worldwide. In P. cordatum cultures, N and the combined N and P deficiency led to the arrest of the cell cycle in the G0/G1 phases and attenuation of cell culture growth. We observed, that P, but not N deficiency triggered the transition in the life cycle of P. cordatum from vegetative to the sexual stage. This resulted in a sharp increase in percentage of cells with relative nuclear DNA content 2C (zygotes) and the appearance of cells with relative nuclear DNA content 4C (dividing zygotes). Subsequent supplementation with phosphate stimulated meiosis and led to a noticeable increase in the 4C cell number (dividing zygotes). Additionally, we performed transcriptomic data analysis and identified putative phosphate transporters and enzymes involved in the phosphate uptake and regulation of its metabolism by P. cordatum. These include high- and low-affinity inorganic phosphate transporters, atypical alkaline phosphatase, purple acid phosphatases and SPX domain-containing proteins.
Collapse
Affiliation(s)
- Vera Kalinina
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology of the Russian Academy of Sciences, St.-Petersburg, 194064, Russia.
| | - Mariia Berdieva
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology of the Russian Academy of Sciences, St.-Petersburg, 194064, Russia
| | - Nikolay Aksenov
- Laboratory of Intracellular Membrane Dynamics, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - Sergei Skarlato
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology of the Russian Academy of Sciences, St.-Petersburg, 194064, Russia
| |
Collapse
|
7
|
Rosic N, Climstein M, Boyle GM, Thanh Nguyen D, Feng Y. Exploring Mycosporine-like Amino Acid UV-Absorbing Natural Products for a New Generation of Environmentally Friendly Sunscreens. Mar Drugs 2023; 21:md21040253. [PMID: 37103392 PMCID: PMC10142268 DOI: 10.3390/md21040253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Human skin needs additional protection from damaging ultraviolet radiation (UVR: 280-400 nm). Harmful UVR exposure leads to DNA damage and the development of skin cancer. Available sunscreens offer chemical protection from detrimental sun radiation to a certain extent. However, many synthetic sunscreens do not provide sufficient UVR protection due to the lack of photostability of their UV-absorbing active ingredients and/or the lack of ability to prevent the formation of free radicals, inevitably leading to skin damage. In addition, synthetic sunscreens may negatively affect human skin, causing irritation, accelerating skin aging and even resulting in allergic reactions. Beyond the potential negative effect on human health, some synthetic sunscreens have been shown to have a harmful impact on the environment. Consequently, identifying photostable, biodegradable, non-toxic, and renewable natural UV filters is imperative to address human health needs and provide a sustainable environmental solution. In nature, marine, freshwater, and terrestrial organisms are protected from harmful UVR through several important photoprotective mechanisms, including the synthesis of UV-absorbing compounds such as mycosporine-like amino acids (MAAs). Beyond MAAs, several other promising, natural UV-absorbing products could be considered for the future development of natural sunscreens. This review investigates the damaging impact of UVR on human health and the necessity of using sunscreens for UV protection, specifically UV-absorbing natural products that are more environmentally friendly than synthetic UV filters. Critical challenges and limitations related to using MAAs in sunscreen formulations are also evaluated. Furthermore, we explain how the genetic diversity of MAA biosynthetic pathways may be linked to their bioactivities and assess MAAs' potential for applications in human health.
Collapse
Affiliation(s)
- Nedeljka Rosic
- Faculty of Health, Southern Cross University, Gold Coast, QLD 4225, Australia
- Marine Ecology Research Centre, Southern Cross University, Lismore, NSW 2480, Australia
| | - Mike Climstein
- Physical Activity, Sport and Exercise Research (PASER) Theme, Faculty of Health, Southern Cross University, Gold Coast, QLD 4225, Australia
- Physical Activity, Lifestyle, Ageing and Wellbeing, Faculty Research Group, Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2000, Australia
| | - Glen M Boyle
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| | - Duy Thanh Nguyen
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Yunjiang Feng
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
8
|
Hano T, Tomaru Y. Chronological age-related metabolome responses in the dinoflagellate Karenia mikimotoi, can predict future bloom demise. Commun Biol 2023; 6:273. [PMID: 36922623 PMCID: PMC10017670 DOI: 10.1038/s42003-023-04646-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
Karenia mikimotoi is a common harmful algal bloom (HAB)-forming dinoflagellate and has caused severe financial loss in aquaculture. There are limited metabolomic studies on dinoflagellate biology. Here, we examined alterations in metabolic profiles over the growth curve of K. mikimotoi under nitrogen or phosphorus deficiency and further explored a key criterion for the diagnosis of late stationary phase to identify when the dinoflagellate cells will enter bloom demise. The results demonstrate the differential expression of metabolites for coping with chronological aging or nutrient deprivation. Furthermore, an increase in the glucose to glycine ratio in the late stationary phase was indicative of dinoflagellate cells entering bloom demise; this was also detected in the cultured diatom, Chaetoceros tenuissimus, indicating that this may be the general criterion for phytoplankton species. Our findings provide insights regarding chronological aging and the criterion for the prediction of phytoplankton bloom demise.
Collapse
Affiliation(s)
- Takeshi Hano
- Environment Conservation Division, Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima, 739-0452, Japan.
| | - Yuji Tomaru
- Environment Conservation Division, Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima, 739-0452, Japan
| |
Collapse
|
9
|
Zaheri B, Morse D. An overview of transcription in dinoflagellates. Gene 2022; 829:146505. [PMID: 35447242 DOI: 10.1016/j.gene.2022.146505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 02/18/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022]
Abstract
Dinoflagellates are a vital diverse family of unicellular algae widespread in various aquatic environments. Typically large genomes and permanently condensed chromosomes without histones make these organisms unique among eukaryotes in terms of chromatin structure and gene expression. Genomic and transcriptomic sequencing projects have provided new insight into the genetic foundation of dinoflagellate behaviors. Genes in tandem arrays, trans-splicing of mRNAs and lower levels of transcriptional regulation compared to other eukaryotes all contribute to the differences seen. Here we present a general overview of transcription in dinoflagellates based on previously described work.
Collapse
Affiliation(s)
- Bahareh Zaheri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, 4101 Sherbrooke est, Université de Montréal, Montréal H1X 2B2, Canada
| | - David Morse
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, 4101 Sherbrooke est, Université de Montréal, Montréal H1X 2B2, Canada.
| |
Collapse
|
10
|
Abassi S, Ki JS. Increased nitrate concentration differentially affects cell growth and expression of nitrate transporter and other nitrogen-related genes in the harmful dinoflagellate Prorocentrum minimum. CHEMOSPHERE 2022; 288:132526. [PMID: 34637868 DOI: 10.1016/j.chemosphere.2021.132526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The molecular mechanisms through which dinoflagellates adapt to nitrate fluctuations in aquatic environments remain poorly understood. Here, we sequenced the full-length cDNA of a nitrate transporter (NRT) gene from the harmful marine dinoflagellate Prorocentrum minimum Schiller. The cDNA length was 2431 bp. It encoded a 529-amino acid protein, which was phylogenetically clustered with proteins from other dinoflagellates. Nitrate supply promoted cell growth up to a certain concentration (∼1.76 mM) but inhibited it at higher concentrations. Interestingly, at the inhibitory concentrations, nitrite levels in the medium were considerably increased. Nitrate concentration affected the expression of PmNRT, nitrite transporter (PmNiRT), nitrate reductase (PmNR), and nitrite reductase (PmNiR). Specifically, PmNRT was upregulated after 24 h, with ∼6-fold change compared with the control level, in both nitrate-depleted and nitrate-repleted cultures. In addition, PmNR transcript levels increased to the maximum of 4-fold at 48 h but decreased thereafter. In contrast, PmNiR levels remained unchanged in both nitrate-repleted and nitrate-depleted cultures. Therefore, P. minimum likely copes with nitrate fluctuations in its environment by regulating a set of genes responsible for nitrate uptake.
Collapse
Affiliation(s)
- Sofia Abassi
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea.
| |
Collapse
|
11
|
Plouviez M, Fernández E, Grossman AR, Sanz-Luque E, Sells M, Wheeler D, Guieysse B. Responses of Chlamydomonas reinhardtii during the transition from P-deficient to P-sufficient growth (the P-overplus response): The roles of the vacuolar transport chaperones and polyphosphate synthesis. JOURNAL OF PHYCOLOGY 2021; 57:988-1003. [PMID: 33778959 DOI: 10.1111/jpy.13145] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Phosphorus (P) assimilation and polyphosphate (polyP) synthesis were investigated in Chlamydomonas reinhardtii by supplying phosphate (PO43- ; 10 mg P·L-1 ) to P-depleted cultures of wildtypes, mutants with defects in genes involved in the vacuolar transporter chaperone (VTC) complex, and VTC-complemented strains. Wildtype C. reinhardtii assimilated PO43- and stored polyP within minutes of adding PO43- to cultures that were P-deprived, demonstrating that these cells were metabolically primed to assimilate and store PO43- . In contrast, vtc1 and vtc4 mutant lines assayed under the same conditions never accumulated polyP, and PO43- assimilation was considerably decreased in comparison with the wildtypes. In addition, to confirm the bioinformatics inferences and previous experimental work that the VTC complex of C. reinhardtii has a polyP polymerase function, these results evidence the influence of polyP synthesis on PO43- assimilation in C. reinhardtii. RNA-sequencing was carried out on C. reinhardtii cells that were either P-depleted (control) or supplied with PO43- following P depletion (treatment) in order to identify changes in the levels of mRNAs correlated with the P status of the cells. This analysis showed that the levels of VTC1 and VTC4 transcripts were strongly reduced at 5 and 24 h after the addition of PO43- to the cells, although polyP granules were continuously synthesized during this 24 h period. These results suggest that the VTC complex remains active for at least 24 h after supplying the cells with PO43- . Further bioassays and sequence analyses suggest that inositol phosphates may control polyP synthesis via binding to the VTC SPX domain.
Collapse
Affiliation(s)
- Maxence Plouviez
- School of Food and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Emilio Fernández
- Department of Biochemistry and Molecular Biology, University of Cordoba, Cordoba, 14071, Spain
| | - Arthur Robert Grossman
- Department of Plant Biology, The Carnegie Institution for Science, 260 Panama Street, Stanford, California, 94305, USA
- Department of Biology, Stanford University, Stanford, California, 94305, USA
| | - Emanuel Sanz-Luque
- Department of Biochemistry and Molecular Biology, University of Cordoba, Cordoba, 14071, Spain
- Department of Plant Biology, The Carnegie Institution for Science, 260 Panama Street, Stanford, California, 94305, USA
| | - Matthew Sells
- School of Food and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - David Wheeler
- New South Wales Department of Primary Industries, 161 Kite St, Orange, New South Wales, 2800, Australia
| | - Benoit Guieysse
- School of Food and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| |
Collapse
|
12
|
Hattenrath-Lehmann TK, Nanjappa D, Zhang H, Yu L, Goleski JA, Lin S, Gobler CJ. Transcriptomic and isotopic data reveal central role of ammonium in facilitating the growth of the mixotrophic dinoflagellate, Dinophysis acuminata. HARMFUL ALGAE 2021; 104:102031. [PMID: 34023078 DOI: 10.1016/j.hal.2021.102031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Dinophysis spp. are mixotrophs that are dependent on specific prey, but are also potentially reliant on dissolved nutrients. The extent to which Dinophysis relies on exogenous N and the specific biochemical pathways important for supporting its autotrophic and heterotrophic growth are unknown. Here, the nutritional ecology of Dinophysis was explored using two approaches: 1) 15N tracer experiments were conducted to quantify the concentration-dependent uptake rates and associated kinetics of various N compounds (nitrate, ammonium, urea) of Dinophysis cultures and 2) the transcriptomic responses of Dinophysis cultures grown with multiple combinations of prey and nutrients were assessed via dinoflagellate spliced leader-based transcriptome profiling. Of the N compounds examined, ammonium had the highest Vmax and affinity coefficient, and lowest Ks for both pre-starved and pre-fed cultures, collectively demonstrating the preference of Dinophysis for this N source while little-to-no nitrate uptake was observed. During the transcriptome experiments, Dinophysis grown with nitrate and without prey had the largest number of genes with lower transcript abundances, did not increase abundance of transcripts associated with nitrate/nitrite uptake or reduction, and displayed no cellular growth, suggesting D. acuminata is not capable of growing on nitrate. When offered prey, the transcriptomic response of Dinophysis included the production of phagolysosomes, enzymes involved in protein and lipid catabolism, and N acquisition through amino acid degradation pathways. Compared with cultures only offered ammonium or prey, cultures offered both ammonium and prey had the largest number of genes with increased transcript abundances, the highest growth rate, and the unique activation of multiple pathways involved in cellular catabolism, further evidencing the ability of Dinophysis to grow optimally as a mixotroph. Collectively, this study evidences the key role ammonium plays in the mixotrophic growth of Dinophysis and reveals the precise biochemical pathways that facilitate its mixotrophic growth.
Collapse
Affiliation(s)
- Theresa K Hattenrath-Lehmann
- Stony Brook University, School of Marine and Atmospheric Sciences, 239 Montauk Hwy, Southampton, NY 11968, United States
| | - Deepak Nanjappa
- Stony Brook University, School of Marine and Atmospheric Sciences, 239 Montauk Hwy, Southampton, NY 11968, United States
| | - Huan Zhang
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, United States
| | - Liying Yu
- State Key Laboratory of Marine Environmental Science and Marine Biodiversity and Global Change Research Center, Xiamen University, Xiamen 361101, China
| | - Jennifer A Goleski
- Stony Brook University, School of Marine and Atmospheric Sciences, 239 Montauk Hwy, Southampton, NY 11968, United States
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, United States; State Key Laboratory of Marine Environmental Science and Marine Biodiversity and Global Change Research Center, Xiamen University, Xiamen 361101, China
| | - Christopher J Gobler
- Stony Brook University, School of Marine and Atmospheric Sciences, 239 Montauk Hwy, Southampton, NY 11968, United States.
| |
Collapse
|
13
|
Shi X, Xiao Y, Liu L, Xie Y, Ma R, Chen J. Transcriptome responses of the dinoflagellate Karenia mikimotoi driven by nitrogen deficiency. HARMFUL ALGAE 2021; 103:101977. [PMID: 33980427 DOI: 10.1016/j.hal.2021.101977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
The availability of ambient N nutrient is often correlated with the occurrences of harmful algal bloom formed by certain dinoflagellates, making it important to understand how these species might be responding to such conditions. Here, transcriptome sequencing of Karenia mikimotoi was conducted to understand the underlying molecular mechanisms by which this dinoflagellate copes with nitrogen (N) deficiency. Transcriptomic analysis revealed 8802 unigenes (3.56%) that were differentially expressed with ≥ 2-fold change. Under N-depleted conditions, genes involved in glycolysis, fatty acid metabolism, and the tricarboxylic acid (TCA) cycle as well as lipid accumulation were significantly upregulated. The elevated expression of enzymes used in protein degradation and turnover suggests possible metabolic reconfiguration towards accelerated N recycling. Moreover, a significant increase in urea transporter was observed, indicating increased assimilation of organic nitrogen resources as an alternative in N-depleted cultures of K. mikimotoi. The down-regulated glutamate synthase genes were also identified under N deficiency, suggesting suppression of primary amino acid synthesis to save N resource. Taken together, results of this study show enhanced multiple N resource acquisition and reuse of multiple N resources constitute a comprehensive strategy to cope with N deficiency in a dinoflagellate.
Collapse
Affiliation(s)
- Xinguo Shi
- Fujian Engineering Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian 350116, China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fujian 350116, China.
| | - Yuchun Xiao
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fujian 350116, China
| | - Lemian Liu
- Fujian Engineering Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian 350116, China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fujian 350116, China
| | - Youping Xie
- Fujian Engineering Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian 350116, China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fujian 350116, China
| | - Ruijuan Ma
- Fujian Engineering Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian 350116, China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fujian 350116, China
| | - Jianfeng Chen
- Fujian Engineering Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian 350116, China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fujian 350116, China.
| |
Collapse
|
14
|
Dinoflagellates alter their carbon and nutrient metabolic strategies across environmental gradients in the central Pacific Ocean. Nat Microbiol 2021; 6:173-186. [PMID: 33398100 DOI: 10.1038/s41564-020-00814-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 10/13/2020] [Indexed: 01/28/2023]
Abstract
Marine microeukaryotes play a fundamental role in biogeochemical cycling through the transfer of energy to higher trophic levels and vertical carbon transport. Despite their global importance, microeukaryote physiology, nutrient metabolism and contributions to carbon cycling across offshore ecosystems are poorly characterized. Here, we observed the prevalence of dinoflagellates along a 4,600-km meridional transect extending across the central Pacific Ocean, where oligotrophic gyres meet equatorial upwelling waters rich in macronutrients yet low in dissolved iron. A combined multi-omics and geochemical analysis provided a window into dinoflagellate metabolism across the transect, indicating a continuous taxonomic dinoflagellate community that shifted its functional transcriptome and proteome as it extended from the euphotic to the mesopelagic zone. In euphotic waters, multi-omics data suggested that a combination of trophic modes were utilized, while mesopelagic metabolism was marked by cytoskeletal investments and nutrient recycling. Rearrangement in nutrient metabolism was evident in response to variable nitrogen and iron regimes across the gradient, with no associated change in community assemblage. Total dinoflagellate proteins scaled with particulate carbon export, with both elevated in equatorial waters, suggesting a link between dinoflagellate abundance and total carbon flux. Dinoflagellates employ numerous metabolic strategies that enable broad occupation of central Pacific ecosystems and play a dual role in carbon transformation through both photosynthetic fixation in the euphotic zone and remineralization in the mesopelagic zone.
Collapse
|
15
|
Zhang P, Xin Y, Zhong X, Yan Z, Jin Y, Yan M, Liu T. Integrated effects of Ulva prolifera bloom and decay on nutrients inventory and cycling in marginal sea of China. CHEMOSPHERE 2021; 264:128389. [PMID: 33038757 DOI: 10.1016/j.chemosphere.2020.128389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/02/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Ulva prolifera blooms occur annually in the Yellow Sea. Most studies focus on how U. prolifera blooming is influenced by nitrogen chemical forms and concentrations, while little concern goes to how U. prolifera bloom-decay cycle would impact local seawater nutrients structure. Therefore, we use 15N-labeled NO3 tracers and transcriptome analysis to determine N uptake, metabolism, and interconversion during U. prolifera growth and decay, so that we can quantify the conversions rate and fluxes of different nitrogen chemical forms. U. prolifera absorbes 17.37 μmol g-1·d-1 NO3-N during growth. NO3-N predominates (73.75-92.15%) in the dissolved inorganic nitrogen (DIN) in U. prolifera. During decay, NH4-N accountes for 60.87-92.13% of the in-cell DIN. The decomposing U. prolifera releases considerable amounts of NH4-N and dissolved organic nitrogen (DON) (63.8-98.2% < 1 kDa fraction and 1.8-36.2% is > 1 kDa fraction) into the ambient environment. The high DON release rate (59.57 μmol g-1 d-1) indicates active DON biosynthesis in U. prolifera. The isotope 15NO3-N tracer showes that 73.6% of the 15NO3-N is transformed to DON. The <1 kDa and the >1 kDa fractions account for 67.46-90.86% and 9.14-32.54% of the DON, respectively. The high efficiency of U. prolifera in utilizing NO3-N is explained by the responsive nitrate/nitrite transporter in cell membrane, and the DON biosynthesized capability is attributed to the up-regulated glutamine synthetase. Our study highlights the unique role of U. prolifera as a "Nitrogen-Pump" in converting nitrogen chemical forms during its bloom-decay cycle and quantifies its impacts on local N-nutrients inventory.
Collapse
Affiliation(s)
- Pengyan Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266005, China.
| | - Yu Xin
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Xiaosong Zhong
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Zhenwei Yan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Yuemei Jin
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266005, China.
| | - Maojun Yan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Tao Liu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266005, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
16
|
Li T, Chen X, Lin S. Physiological and transcriptomic responses to N-deficiency and ammonium: Nitrate shift in Fugacium kawagutii (Symbiodiniaceae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141906. [PMID: 32890873 DOI: 10.1016/j.scitotenv.2020.141906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Symbiodiniaceae are the source of essential coral symbionts of reef building corals. The growth and density of endosymbiotic Symbiodiniaceae within the coral host is dependent on nutrient availability, yet little is known about how Symbiodiniaceae respond to the dynamics of the nutrients, including switch between different chemical forms and changes in abundance. In this study, we investigated physiological, cytometric, and transcriptomic responses in Fugacium kawagutii to nitrogen (N)-nutrient deficiency and different chemical N forms (nitrate and ammonium) in batch culture conditions. We mainly found that ammonium was consumed faster than nitrate when provided separately, and was preferentially utilized over nitrate when both N compounds were supplied at 1:2, 1:1 and 2:1 molarity ratios. Besides, N-deficiency caused decreases in growth, energy production, antioxidative capacity and investment in photosynthate transport but increased energy consumption. Growing on ammonium produced a similar cell yield as nitrate, but with a reduced investment in nutrient transport and assimilation; yet at high concentrations ammonium exhibited inhibitory effects. These findings together have important implications in N-nutrient regulation of coral symbiosis. In addition, we identified ten highly and stably expressed genes as candidate reference genes, which will be potentially useful for gene expression studies in the future.
Collapse
Affiliation(s)
- Tangcheng Li
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| | - Xibei Chen
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao 266237, China; Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA.
| |
Collapse
|
17
|
De novo Transcriptome of the Non-saxitoxin Producing Alexandrium tamutum Reveals New Insights on Harmful Dinoflagellates. Mar Drugs 2020; 18:md18080386. [PMID: 32722301 PMCID: PMC7460133 DOI: 10.3390/md18080386] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Many dinoflagellates species, especially of the Alexandrium genus, produce a series of toxins with tremendous impacts on human and environmental health, and tourism economies. Alexandrium tamutum was discovered for the first time in the Gulf of Naples, and it is not known to produce saxitoxins. However, a clone of A. tamutum from the same Gulf showed copepod reproduction impairment and antiproliferative activity. In this study, the full transcriptome of the dinoflagellate A. tamutum is presented in both control and phosphate starvation conditions. RNA-seq approach was used for in silico identification of transcripts that can be involved in the synthesis of toxic compounds. Phosphate starvation was selected because it is known to induce toxin production for other Alexandrium spp. Results showed the presence of three transcripts related to saxitoxin synthesis (sxtA, sxtG and sxtU), and others potentially related to the synthesis of additional toxic compounds (e.g., 44 transcripts annotated as "polyketide synthase"). These data suggest that even if this A. tamutum clone does not produce saxitoxins, it has the potential to produce toxic metabolites, in line with the previously observed activity. These data give new insights into toxic microalgae, toxin production and their potential applications for the treatment of human pathologies.
Collapse
|
18
|
Wang H, Ki JS. Molecular identification, differential expression and protective roles of iron/manganese superoxide dismutases in the green algae Closterium ehrenbergii against metal stress. Eur J Protistol 2020; 74:125689. [DOI: 10.1016/j.ejop.2020.125689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/05/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
|
19
|
Zhou Y, Li X, Xia Q, Dai R. Transcriptomic survey on the microcystins production and growth of Microcystis aeruginosa under nitrogen starvation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134501. [PMID: 31689655 DOI: 10.1016/j.scitotenv.2019.134501] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/15/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Cyanobacteria are a vital component of freshwater phytoplankton, and many species are recognized for their ability to produce toxins and harmful algal blooms (HABs). Nitrogen is an essential element of all the complex macromolecules in algal cells. However, the underlying molecular mechanism of the changes in transcriptomic patterns and physiological responses in response to N starvation is poorly understood. The transcriptomes were generated via RNA-sequencing (RNA-Seq) technology to study the major metabolic pathway under N starvation. The results shed light on the mechanism of toxin production and physiological adaptations in Microcystis aeruginosa (M. aeruginosa). The cell density gradually increased during the first two days then declined over time and was finally stable at (15.50 ± 0.5) × 105 cell mL-1 after 6 days. The chlorophyll-a content and phycocyanin content of M. aeruginosa increased during the first two days and subsequently decreased markedly over time under N starvation. The variable to maximum chlorophyll fluorescence ratio (Fv/Fm ratio) decreased with time under N starvation. Most photosynthesis genes have similarity decreasing trends with growth physiological changes. The microcystins (MCs) levels generally increased first, reaching a peak value with 1.35 pg cell-1 on the fifth day, and then remained roughly constant. The genes involved in N metabolism-related gene expression were upregulated to maintain normal biological activity, while the genes involved in photosynthesis-related gene expression were downregulated to save energy. All genes encoding algae toxin synthesis were upregulated under N starvation. The observed expression patterns demonstrate that all MCs genes respond similarly to MCs production within the cell. Our results indicate the response mechanism of M. aeruginosa under N starvation and provide a comprehensive understanding of N-controlling cyanobacteria and MCs synthesis.
Collapse
Affiliation(s)
- Yanping Zhou
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xuan Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qiongqiong Xia
- North China Municipal Engineering Design & Research Institute Co. Ltd., Tianjin 300074, China
| | - Ruihua Dai
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
20
|
Hennon GMM, Dyhrman ST. Progress and promise of omics for predicting the impacts of climate change on harmful algal blooms. HARMFUL ALGAE 2020; 91:101587. [PMID: 32057337 DOI: 10.1016/j.hal.2019.03.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 06/10/2023]
Abstract
Climate change is predicted to increase the severity and prevalence of harmful algal blooms (HABs). In the past twenty years, omics techniques such as genomics, transcriptomics, proteomics and metabolomics have transformed that data landscape of many fields including the study of HABs. Advances in technology have facilitated the creation of many publicly available omics datasets that are complementary and shed new light on the mechanisms of HAB formation and toxin production. Genomics have been used to reveal differences in toxicity and nutritional requirements, while transcriptomics and proteomics have been used to explore HAB species responses to environmental stressors, and metabolomics can reveal mechanisms of allelopathy and toxicity. In this review, we explore how omics data may be leveraged to improve predictions of how climate change will impact HAB dynamics. We also highlight important gaps in our knowledge of HAB prediction, which include swimming behaviors, microbial interactions and evolution that can be addressed by future studies with omics tools. Lastly, we discuss approaches to incorporate current omics datasets into predictive numerical models that may enhance HAB prediction in a changing world. With the ever-increasing omics databases, leveraging these data for understanding climate-driven HAB dynamics will be increasingly powerful.
Collapse
Affiliation(s)
- Gwenn M M Hennon
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States; College of Fisheries and Ocean Sciences University of Alaska Fairbanks Fairbanks, AK, United States
| | - Sonya T Dyhrman
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States; Department of Earth and Environmental Sciences, Columbia University, New York, NY, United States.
| |
Collapse
|
21
|
Maor‐Landaw K, van Oppen MJH, McFadden GI. Symbiotic lifestyle triggers drastic changes in the gene expression of the algal endosymbiont Breviolum minutum (Symbiodiniaceae). Ecol Evol 2020; 10:451-466. [PMID: 31993121 PMCID: PMC6972872 DOI: 10.1002/ece3.5910] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/25/2019] [Accepted: 11/18/2019] [Indexed: 01/13/2023] Open
Abstract
Coral-dinoflagellate symbiosis underpins the evolutionary success of corals reefs. Successful exchange of molecules between the cnidarian host and the Symbiodiniaceae algae enables the mutualistic partnership. The algae translocate photosynthate to their host in exchange for nutrients and shelter. The photosynthate must traverse multiple membranes, most likely facilitated by transporters. Here, we compared gene expression profiles of cultured, free-living Breviolum minutum with those of the homologous symbionts freshly isolated from the sea anemone Exaiptasia diaphana, a widely used model for coral hosts. Additionally, we assessed expression levels of a list of candidate host transporters of interest in anemones with and without symbionts. Our transcriptome analyses highlight the distinctive nature of the two algal life stages, with many gene expression level changes correlating to the different morphologies, cell cycles, and metabolisms adopted in hospite versus free-living. Morphogenesis-related genes that likely underpin the metamorphosis process observed when symbionts enter a host cell were up-regulated. Conversely, many down-regulated genes appear to be indicative of the protective and confined nature of the symbiosome. Our results emphasize the significance of transmembrane transport to the symbiosis, and in particular of ammonium and sugar transport. Further, we pinpoint and characterize candidate transporters-predicted to be localized variously to the algal plasma membrane, the host plasma membrane, and the symbiosome membrane-that likely serve pivotal roles in the interchange of material during symbiosis. Our study provides new insights that expand our understanding of the molecular exchanges that underpin the cnidarian-algal symbiotic relationship.
Collapse
Affiliation(s)
- Keren Maor‐Landaw
- School of BioSciencesThe University of MelbourneMelbourneVic.Australia
| | - Madeleine J. H. van Oppen
- School of BioSciencesThe University of MelbourneMelbourneVic.Australia
- Australian Institute of Marine ScienceTownsvilleQldAustralia
| | | |
Collapse
|
22
|
Zhang SF, Yuan CJ, Chen Y, Lin L, Wang DZ. Transcriptomic response to changing ambient phosphorus in the marine dinoflagellate Prorocentrum donghaiense. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:1037-1047. [PMID: 31539936 DOI: 10.1016/j.scitotenv.2019.07.291] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Dinoflagellates represent major contributors to the harmful algal blooms in the oceans. Phosphorus (P) is an essential macronutrient that limits the growth and proliferation of dinoflagellates. However, the specific molecular mechanisms involved in the P acclimation of dinoflagellates remain poorly understood. Here, the transcriptomes of a dinoflagellate Prorocentrum donghaiense grown under inorganic P-replete, P-deficient, and inorganic- and organic P-resupplied conditions were compared. Genes encoding low- and high-affinity P transporters were significantly down-regulated in the P-deficient cells, while organic P utilization genes were significantly up-regulated, indicating strong ability of P. donghaiense to utilize organic P. Up-regulation of membrane phospholipid catabolism and endocytosis provided intracellular and extracellular organic P for the P-deficient cells. Physiological responses of P. donghaiense to dissolved inorganic P (DIP) or dissolved organic P (DOP) resupply exhibited insignificant differences. However, the corresponding transcriptomic responses significantly differed. Although the expression of multiple genes was significantly altered after DIP resupplementation, few biological processes varied. In contrast, various metabolic processes associated with cell growth, such as translation, transport, nucleotide, carbohydrate and lipid metabolisms, were significantly altered in the DOP-resupplied cells. Our results indicated that P. donghaiense evolved diverse DOP utilization strategies to adapt to low P environments, and that DOPs might play critical roles in the P. donghaiense bloom formation.
Collapse
Affiliation(s)
- Shu-Feng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Chun-Juan Yuan
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Ying Chen
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
23
|
Wang X, Niu X, Chen Y, Sun Z, Han A, Lou X, Ge J, Li X, Yang Y, Jian J, Gonçalves RJ, Guan W. Transcriptome sequencing of a toxic dinoflagellate, Karenia mikimotoi subjected to stress from solar ultraviolet radiation. HARMFUL ALGAE 2019; 88:101640. [PMID: 31582153 DOI: 10.1016/j.hal.2019.101640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Solar ultraviolet radiation (UVR) is a stress factor in aquatic environments and may act directly or indirectly on orgnisms in the upper layers of the water column. However, UVR effects are usually species-specific and difficult to extrapolate. Here we use the HAB-forming, toxic dinoflagellate Karenia mikimotoi (which was found to be relatively resistant in previous studies) to investigate its transcriptional responses to a one-week UVR exposure. For this, batch cultures of K. mikimotoi were grown with and without UVR, and their transcriptomes (generated via RNAseq technology) were compared. RNA-seq generated 45.31 million reads, which were further assembled to 202600 unigenes (>300bp). Among these, ca. 61% were annotated with NCBI, NR, GO, KOG, PFAM, Swiss-Prot, and KEGG database. Transcriptomic analysis revealed 722 differentially expressed unigenes (DEGs, defined as being within a |log2 fold change| ≥ 2 and padj < 0.05) responding to solar UVR, which were only 0.36% of all unigenes. 716 unigenes were down-regulated, and only 6 unigenes were up-regulated in the UVR compared to non-UVR treatment. KEGG pathway further analysis revealed DEGs were involved in the different pathway; genes involved in the ribosome, endocytosis and steroid biosynthesis pathways were highly down-regulated, but this was not the case for those involved in the energy metabolisms (including photosynthesis, oxidative phosphorylation) which may contribute to the sustainable growth observed in UVR treatment. The up-regulated expression of both zinc-finger proteins (ZFPs) and ribosomal protein L11 (RPL11) may be one of the acclimated mechanisms against UVR. In addition, this work identified down-regulated genes involved in fatty acid degradation and the hydrophobic branched chain amino acids (e.g., Valine, leucine, and isoleucine), which act as structural components of cell membranes modulating lipid homeostasis or turnover. In conclusion, the present study suggests that the toxic dinoflagellate K. mikimotoi has limited transcriptomic regulation but confirms that it appears as a tolerant species in response to solar UVR. These findings expand current knowledge of gene expression in HAB-forming species in response to natural environment factors such as solar radiation.
Collapse
Affiliation(s)
- Xinjie Wang
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China; Marine Biology Institute, Shantou University, Shantou, Guangdong 515063 China
| | - Xiaoqin Niu
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Yiji Chen
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Zhewei Sun
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Axiang Han
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Xiayuan Lou
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Jingke Ge
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Xuanwen Li
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Yuqian Yang
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Jianbo Jian
- Marine Biology Institute, Shantou University, Shantou, Guangdong 515063 China
| | - Rodrigo J Gonçalves
- Laboratorio de Oceanografía Biológica (LOBio), Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). U9120ACD, Puerto Madryn, Argentina
| | - Wanchun Guan
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China.
| |
Collapse
|
24
|
Omics Analysis for Dinoflagellates Biology Research. Microorganisms 2019; 7:microorganisms7090288. [PMID: 31450827 PMCID: PMC6780300 DOI: 10.3390/microorganisms7090288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/13/2023] Open
Abstract
Dinoflagellates are important primary producers for marine ecosystems and are also responsible for certain essential components in human foods. However, they are also notorious for their ability to form harmful algal blooms, and cause shellfish poisoning. Although much work has been devoted to dinoflagellates in recent decades, our understanding of them at a molecular level is still limited owing to some of their challenging biological properties, such as large genome size, permanently condensed liquid-crystalline chromosomes, and the 10-fold lower ratio of protein to DNA than other eukaryotic species. In recent years, omics technologies, such as genomics, transcriptomics, proteomics, and metabolomics, have been applied to the study of marine dinoflagellates and have uncovered many new physiological and metabolic characteristics of dinoflagellates. In this article, we review recent application of omics technologies in revealing some of the unusual features of dinoflagellate genomes and molecular mechanisms relevant to their biology, including the mechanism of harmful algal bloom formations, toxin biosynthesis, symbiosis, lipid biosynthesis, as well as species identification and evolution. We also discuss the challenges and provide prospective further study directions and applications of dinoflagellates.
Collapse
|
25
|
Zaheri B, Dagenais-Bellefeuille S, Song B, Morse D. Assessing Transcriptional Responses to Light by the Dinoflagellate Symbiodinium. Microorganisms 2019; 7:microorganisms7080261. [PMID: 31416260 PMCID: PMC6723345 DOI: 10.3390/microorganisms7080261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 11/16/2022] Open
Abstract
The control of transcription is poorly understood in dinoflagellates, a group of protists whose permanently condensed chromosomes are formed without histones. Furthermore, while transcriptomes contain a number of proteins annotated as transcription factors, the majority of these are cold shock domain proteins which are also known to bind RNA, meaning the number of true transcription factors is unknown. Here we have assessed the transcriptional response to light in the photosynthetic species Symbiodinium kawagutii. We find that three genes previously reported to respond to light using qPCR do not show differential expression using northern blots or RNA-Seq. Interestingly, global transcript profiling by RNA-Seq at LD 0 (dawn) and LD 12 (dusk) found only seven light-regulated genes (FDR = 0.1). qPCR using three randomly selected genes out of the seven was only able to validate differential expression of two. We conclude that there is likely to be less light regulation of gene expression in dinoflagellates than previously thought and suggest that transcriptional responses to other stimuli should also be more thoroughly evaluated in this class of organisms.
Collapse
Affiliation(s)
- Bahareh Zaheri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, QC H1X 2B2, Canada
| | - Steve Dagenais-Bellefeuille
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, QC H1X 2B2, Canada
| | - Bo Song
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - David Morse
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, QC H1X 2B2, Canada.
| |
Collapse
|
26
|
Wang H, Kim H, Lim WA, Ki JS. Molecular cloning and oxidative-stress responses of a novel manganese superoxide dismutase (MnSOD) gene in the dinoflagellate Prorocentrum minimum. Mol Biol Rep 2019; 46:5955-5966. [PMID: 31407247 DOI: 10.1007/s11033-019-05029-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/07/2019] [Indexed: 10/26/2022]
Abstract
Dinoflagellate algae are microeukaryotes that have distinct genomes and gene regulation systems, making them an interesting model for studying protist evolution and genomics. In the present study, we discovered a novel manganese superoxide dismutase (PmMnSOD) gene from the marine dinoflagellate Prorocentrum minimum, examined its molecular characteristics, and evaluated its transcriptional responses to the oxidative stress-inducing contaminants, CuSO4 and NaOCl. Its cDNA was 1238 bp and contained a dinoflagellate spliced leader sequence, a 906 bp open reading frame (301 amino acids), and a poly (A) tail. The gene was coded on the nuclear genome with one 174 bp intron; signal peptide analysis showed that it might be localized to the mitochondria. Real-time PCR analysis revealed an increase in gene expression of MnSOD and SOD activity when P. minimum cells were separately exposed to CuSO4 and NaOCl. In addition, both contaminants considerably decreased chlorophyll autofluorescence, and increased intracellular reactive oxygen species. These results suggest that dinoflagellate MnSOD may be involved in protecting cells against oxidative damage.
Collapse
Affiliation(s)
- Hui Wang
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea
| | - Hansol Kim
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea
| | - Weol-Ae Lim
- Ocean Climate and Ecology Research Division, National Institute of Fisheries Science (NIFS), Busan, 46083, South Korea
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea.
| |
Collapse
|
27
|
Verma A, Barua A, Ruvindy R, Savela H, Ajani PA, Murray SA. The Genetic Basis of Toxin Biosynthesis in Dinoflagellates. Microorganisms 2019; 7:E222. [PMID: 31362398 PMCID: PMC6722697 DOI: 10.3390/microorganisms7080222] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/23/2019] [Accepted: 07/27/2019] [Indexed: 02/07/2023] Open
Abstract
In marine ecosystems, dinoflagellates can become highly abundant and even dominant at times, despite their comparatively slow growth rates. One factor that may play a role in their ecological success is the production of complex secondary metabolite compounds that can have anti-predator, allelopathic, or other toxic effects on marine organisms, and also cause seafood poisoning in humans. Our knowledge about the genes involved in toxin biosynthesis in dinoflagellates is currently limited due to the complex genomic features of these organisms. Most recently, the sequencing of dinoflagellate transcriptomes has provided us with valuable insights into the biosynthesis of polyketide and alkaloid-based toxin molecules in dinoflagellate species. This review synthesizes the recent progress that has been made in understanding the evolution, biosynthetic pathways, and gene regulation in dinoflagellates with the aid of transcriptomic and other molecular genetic tools, and provides a pathway for future studies of dinoflagellates in this exciting omics era.
Collapse
Affiliation(s)
- Arjun Verma
- Climate Change Cluster, University of Technology Sydney, Sydney 2007, Australia.
| | - Abanti Barua
- Climate Change Cluster, University of Technology Sydney, Sydney 2007, Australia
- Department of Microbiology, Noakhali Science and Technology University, Chittagong 3814, Bangladesh
| | - Rendy Ruvindy
- Climate Change Cluster, University of Technology Sydney, Sydney 2007, Australia
| | - Henna Savela
- Finnish Environment Institute, Marine Research Centre, 00790 Helsinki, Finland
| | - Penelope A Ajani
- Climate Change Cluster, University of Technology Sydney, Sydney 2007, Australia
| | - Shauna A Murray
- Climate Change Cluster, University of Technology Sydney, Sydney 2007, Australia
| |
Collapse
|
28
|
Wang H, Niu X, Feng X, Gonçalves RJ, Guan W. Effects of ocean acidification and phosphate limitation on physiology and toxicity of the dinoflagellate Karenia mikimotoi. HARMFUL ALGAE 2019; 87:101621. [PMID: 31349890 DOI: 10.1016/j.hal.2019.101621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/17/2019] [Accepted: 05/29/2019] [Indexed: 06/10/2023]
Abstract
This work demonstrated a 10-day batch culture experiment to test the physiology and toxicity of harmful dinoflagellate Karenia mikimotoi in response to ocean acidification (OA) under two different phosphate concentrations. Cells were previously acclimated in OA (pH = 7.8 and CO2 = 1100 μatm) condition for about three months before testing the responses of K. mikimotoi cells to a two-factorial combinations experimentation. This work measured the variation in physiological parameters (growth, rETR) and toxicity (hemolytic activity and its toxicity to zebrafish embryos) in four treatments, representing two factorial combinations of CO2 (450 and 1100 μatm) and phosphate concentration (37.75 and 4.67 umol l-1). Results: OA stimulated the faster growth, and the highest rETRmax in high phosphate (HP) treatment, low phosphate (LP) and a combination of high CO2 and low phosphate (HC*LP) inhibited the growth and Ek in comparison to low CO2*high phosphate (LCHP) treatment. The embryotoxicity of K. mikimotoi cells enhanced in all high CO2 (HC) conditions irrespective of phosphate concentration, but the EC50 of hemolytic activity increased in all high CO2 (HC) and low phosphate (LP) treatments in comparison of LCHP. Ocean acidification (high CO2 and lower pH) was probably the main factor that affected the rETRmax, hemolytic activity and embryotoxicity, but low phosphate was the main factor that affected the growth, α, and Ek. There were significant interactive effects of OA and low phosphate (LP) on growth, rETRmax, and hemolytic activity, but there were no significant effects on α, Ek, and embryotoxicity. If these results are extrapolated to the aquatic environment, it can be hypothesized that the K. mikimotoi cells were impacted significantly by future changing ocean (e.g., ocean acidification and nutrient stoichiometry).
Collapse
Affiliation(s)
- Hong Wang
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Medical Laboratory Technology, Xinyang Vocational and Technical College, Xinyang, Henan, 464000, China
| | - Xiaoqin Niu
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xinqian Feng
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Rodrigo J Gonçalves
- Laboratorio de Oceanografía Biológica (LOBio), Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). U9120ACD Puerto Madryn, Argentina
| | - Wanchun Guan
- Department of Marine Biotechnology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
29
|
Marine Natural Products from Microalgae: An -Omics Overview. Mar Drugs 2019; 17:md17050269. [PMID: 31067655 PMCID: PMC6562964 DOI: 10.3390/md17050269] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/30/2019] [Accepted: 05/04/2019] [Indexed: 12/19/2022] Open
Abstract
Over the last decade, genome sequences and other -omics datasets have been produced for a wide range of microalgae, and several others are on the way. Marine microalgae possess distinct and unique metabolic pathways, and can potentially produce specific secondary metabolites with biological activity (e.g., antipredator, allelopathic, antiproliferative, cytotoxic, anticancer, photoprotective, as well as anti-infective and antifouling activities). Because microalgae are very diverse, and adapted to a broad variety of environmental conditions, the chances to find novel and unexplored bioactive metabolites with properties of interest for biotechnological and biomedical applications are high. This review presents a comprehensive overview of the current efforts and of the available solutions to produce, explore and exploit -omics datasets, with the aim of identifying species and strains with the highest potential for the identification of novel marine natural products. In addition, funding efforts for the implementation of marine microalgal -omics resources and future perspectives are presented as well.
Collapse
|
30
|
Ogura A, Akizuki Y, Imoda H, Mineta K, Gojobori T, Nagai S. Comparative genome and transcriptome analysis of diatom, Skeletonema costatum, reveals evolution of genes for harmful algal bloom. BMC Genomics 2018; 19:765. [PMID: 30348078 PMCID: PMC6198448 DOI: 10.1186/s12864-018-5144-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/05/2018] [Indexed: 12/28/2022] Open
Abstract
Background Diatoms play a great role in carbon fixation with about 20% of the whole fixation in the world. However, harmful algal bloom as known as red tide is a major problem in environment and fishery industry. Even though intensive studies have been conducted so far, the molecular mechanism behind harmful algal bloom was not fully understood. There are two major diatoms have been sequenced, but more diatoms should be examined at the whole genome level, and evolutionary genome studies were required to understand the landscape of molecular mechanism of the harmful algal bloom. Results Here we sequenced the genome of Skeletonema costatum, which is the dominant diatom in Japan causing a harmful algal bloom, and also performed RNA-sequencing analysis for conditions where harmful algal blooms often occur. As results, we found that both evolutionary genomic and comparative transcriptomic studies revealed genes for oxidative stress response and response to cytokinin is a key for the proliferation of the diatom. Conclusions Diatoms causing harmful algal blooms have gained multi-copy of genes related to oxidative stress response and response to cytokinin and obtained an ability to intensive gene expression at the blooms. Electronic supplementary material The online version of this article (10.1186/s12864-018-5144-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Atsushi Ogura
- Nagahama Institute of Bioscience and Technology, 1266 Tamura, Nagahama, Shiga, 5260829, Japan.
| | - Yuki Akizuki
- Nagahama Institute of Bioscience and Technology, 1266 Tamura, Nagahama, Shiga, 5260829, Japan
| | - Hiroaki Imoda
- Nagahama Institute of Bioscience and Technology, 1266 Tamura, Nagahama, Shiga, 5260829, Japan
| | - Katsuhiko Mineta
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Satoshi Nagai
- National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan.
| |
Collapse
|
31
|
Wang Y, Feng Y, Liu X, Zhong M, Chen W, Wang F, Du H. Response of Gracilaria lemaneiformis to nitrogen deprivation. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Hu SK, Liu Z, Alexander H, Campbell V, Connell PE, Dyhrman ST, Heidelberg KB, Caron DA. Shifting metabolic priorities among key protistan taxa within and below the euphotic zone. Environ Microbiol 2018; 20:2865-2879. [PMID: 29708635 DOI: 10.1111/1462-2920.14259] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022]
Abstract
A metatranscriptome study targeting the protistan community was conducted off the coast of Southern California, at the San Pedro Ocean Time-series station at the surface, 150 m (oxycline), and 890 m to link putative metabolic patterns to distinct protistan lineages. Comparison of relative transcript abundances revealed depth-related shifts in the nutritional modes of key taxonomic groups. Eukaryotic gene expression in the sunlit surface environment was dominated by phototrophs, such as diatoms and chlorophytes, and high abundances of transcripts associated with synthesis pathways (e.g., photosynthesis, carbon fixation, fatty acid synthesis). Sub-euphotic depths (150 and 890 m) exhibited strong contributions from dinoflagellates and ciliates, and were characterized by transcripts relating to digestion or intracellular nutrient recycling (e.g., breakdown of fatty acids and V-type ATPases). These transcriptional patterns underlie the distinct nutritional modes of ecologically important protistan lineages that drive marine food webs, and provide a framework to investigate trophic dynamics across diverse protistan communities.
Collapse
Affiliation(s)
- Sarah K Hu
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Zhenfeng Liu
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Harriet Alexander
- Department of Population Health and Reproduction, University of California Davis, Davis, CA, USA
| | - Victoria Campbell
- Division Allergy and Infectious Diseases, UW Medicine, Seattle, WA, USA
| | - Paige E Connell
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Sonya T Dyhrman
- Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | - Karla B Heidelberg
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - David A Caron
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
33
|
Systems-level analysis of metabolic mechanism following nitrogen limitation in benthic dinoflagellate Prorocentrum lima. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Morse D, Tse SPK, Lo SCL. Exploring dinoflagellate biology with high-throughput proteomics. HARMFUL ALGAE 2018; 75:16-26. [PMID: 29778222 DOI: 10.1016/j.hal.2018.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Dinoflagellates are notorious for their ability to form the harmful algal blooms known as "red tides," yet the mechanisms underlying bloom formation remain poorly understood. Despite recent advances in nucleic acid sequencing, which have generated transcriptomes from a wide range of species exposed to a variety of different conditions, measuring changes in RNA levels have not generally produced great insight into dinoflagellate cell biology or environmental physiology, nor do we have a thorough grasp on the molecular events underpinning bloom formation. Not only is the transcriptomic response of dinoflagellates to environmental change generally muted, but there is a markedly low degree of congruency between mRNA expression and protein expression in dinoflagellates. Herein we discuss the application of high-throughput proteomics to the study of dinoflagellate biology. By profiling the cellular protein complement (the proteome) instead of mRNA (the transcriptome), the biomolecular events that underlie the changes of phenotypes can be more readily evaluated, as proteins directly determine the structure and the function of the cell. Recent advances in proteomics have seen this technique become a high-throughput method that is now able to provide a perspective different from the more commonly employed nucleic acid sequencing. We suggest that the time is ripe to exploit these new technologies in addressing the many mysteries of dinoflagellate biology, such as how the symbiotic dinoflagellate inhabiting reef corals acclimate to increases in temperature, as well as how harmful algal blooms are initiated at the sub-cellular level. Furthermore, as dinoflagellates are not the only eukaryotes that demonstrate muted transcriptional responses, the techniques addressed within this review are amenable to a wide array of organisms.
Collapse
Affiliation(s)
- David Morse
- Institut de Recherche en biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Canada.
| | - Sirius P K Tse
- Shenzhen Key Laboratory of Food Biological Safety Control, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Samuel C L Lo
- Shenzhen Key Laboratory of Food Biological Safety Control, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
35
|
Shi X, Li L, Lin S. Circadian and irradiance effects on expression of antenna protein genes and pigment contents in dinoflagellate Prorocentrum donghaiense (Dinophycae). HARMFUL ALGAE 2018; 75:27-34. [PMID: 29778223 DOI: 10.1016/j.hal.2018.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
PCP and acpPC are the two major antennae proteins that bind pigments in peridinin-containing dinoflagellates. The relationship between antennae proteins and cellular pigments at molecular level is still poorly understood. Here we identified and characterized the two antennae protein genes in dinoflagellate Prorocentrum donghaiense under different light conditions. The mature PCP protein was 32 kDa, while acpPC was a polyprotein each of 19 kDa. Both genes showed higher expression under low light than under high light, suggesting their possible role in a low light adaptation mechanism. The two genes showed differential diel expression rhythm, with PCP being more highly expressed in the dark than in the light period and acpPC the other way around. HPLC analysis of cellular pigments indicated a diel change of chlorophyll c2, but invariability of other pigments. A stable peridinin: chlorophyll a pigment ratio was detected under different light intensities and over the diel cycle, although the diadinoxanthin:chlorophyll a ratio increased significantly with light intensity. The results suggest that 1) PCP and acpPC genes are functionally distinct, 2) PCP and acpPC can function under low light as an adaptive mechanism in P. donghaiense, 3). the ratios of diadinoxanthin:chlorophyll a and peridinin: chlorophyll a can potentially be used as an indicator of algal photophysiological status and a pigment signature respectively under different light conditions in P. donghaiense.
Collapse
Affiliation(s)
- Xinguo Shi
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361012, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361012, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361012, China; Department of Marine Sciences, University of Connecticut, Groton, CT 06340, United States.
| |
Collapse
|
36
|
Roy S, Jagus R, Morse D. Translation and Translational Control in Dinoflagellates. Microorganisms 2018; 6:microorganisms6020030. [PMID: 29642465 PMCID: PMC6027434 DOI: 10.3390/microorganisms6020030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 12/24/2022] Open
Abstract
Dinoflagellates are unicellular protists that feature a multitude of unusual nuclear features, including large genomes, packaging of DNA without histones, and multiple gene copies organized as tandem gene arrays. Furthermore, all dinoflagellate mRNAs experience trans-splicing with a common 22-nucleotide splice leader (SL) sequence. These features challenge some of the concepts and assumptions about the regulation of gene expression derived from work on model eukaryotes such as yeasts and mammals. Translational control in the dinoflagellates, based on extensive study of circadian bioluminescence and by more recent microarray and transcriptome analyses, is now understood to be a crucial element in regulating gene expression. A picture of the translation machinery of dinoflagellates is emerging from the recent availability of transcriptomes of multiple dinoflagellate species and the first complete genome sequences. The components comprising the translational control toolkit of dinoflagellates are beginning to take shape and are outlined here.
Collapse
Affiliation(s)
- Sougata Roy
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke East, Montréal, QC H1X 2B2, Canada.
| | - Rosemary Jagus
- Institute of Marine & Environmental Technology, University of Maryland Center for Environmental Science701 E. Pratt St., Baltimore, MD 21202, USA.
| | - David Morse
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke East, Montréal, QC H1X 2B2, Canada.
| |
Collapse
|
37
|
Zhang C, Chen G, Wang Y, Guo C, Zhou J. Physiological and molecular responses of Prorocentrum donghaiense to dissolved inorganic phosphorus limitation. MARINE POLLUTION BULLETIN 2018; 129:562-572. [PMID: 29055559 DOI: 10.1016/j.marpolbul.2017.10.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/09/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
Prorocentrum donghaiense is an important dinoflagellate as it frequently forms harmful algal blooms that cause serious damage to marine ecosystems and fisheries in the coast of East China Sea. Previous studies showed that phosphorus acquisition (especially inorganic phosphorus) was the limiting factor for P. donghaiense growth. However, the responsive mechanism of this microalga under dissolved inorganic phosphorus (DIP) limitation is poorly understood. In this work, the physiological parameters and differentially expressed genes in P. donghaiense response to DIP limitation were comparatively analyzed. DIP-depleted P. donghaiense displayed decreased growth rate, enlarged cell size, decreased cellular phosphorus content, and high AP activities. A forward suppression subtractive hybridization (SSH) library representing differentially upregulated genes in P. donghaiense under DIP-depleted conditions was constructed, and 134 ESTs were finally identified, with a significant identity (E values<1×10-4) to the deposited genes (proteins) in the corresponding databases. Five representative genes, namely, NAD-dependent deacetylase, phosphoglycolate phosphatase, heat shock protein (HSP) 90, rhodopsin, and HSP40 were investigated through real-time quantitative PCR to verify the effectiveness of the established SSH library. Results showed that all the selected genes were differentially expressed and thus indicated that the established SSH library generally represented differentially expressed genes. These genes were classified into 11 categories according to their gene ontology annotations of biological processes. The members involved in functional responses such as cell defense/homeostasis, phosphorus metabolism, and cellular cycles were specially discussed. This study is the first to perform a global analysis of differentially expressed functional genes in P. donghaiense under DIP-depleted condition. It provided new insights into the molecular adaptive mechanisms of dinoflagellate in response to phosphorous limitation and elucidating the formation mechanism of algal blooms.
Collapse
Affiliation(s)
- Chunyun Zhang
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Guofu Chen
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China.
| | - Yuanyuan Wang
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Changlu Guo
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Jin Zhou
- The Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
38
|
Wang H, Guo R, Ki JS. 6.0 K microarray reveals differential transcriptomic responses in the dinoflagellate Prorocentrum minimum exposed to polychlorinated biphenyl (PCB). CHEMOSPHERE 2018; 195:398-409. [PMID: 29274579 DOI: 10.1016/j.chemosphere.2017.12.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/23/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
Endocrine disrupting chemicals (EDCs) have toxic effects on algae; however, their molecular genomic responses have not been sufficiently elucidated. Here, we evaluated genome-scaled responses of the dinoflagellate alga Prorocentrum minimum exposed to an EDC, polychlorinated biphenyl (PCB), using a 6.0 K microarray. Based on two-fold change cut-off, we identified that 609 genes (∼10.2%) responded to the PCB treatment. KEGG pathway analysis showed that differentially expressed genes (DEGs) were related to ribosomes, biosynthesis of amino acids, spliceosomes, and cellular processes. Many DEGs were involved in cell cycle progression, apoptosis, signal transduction, ion binding, and cellular transportation. In contrast, only a few genes related to photosynthesis and oxidative stress were expressed in response to PCB exposure. This was supported by that fact that there were no obvious changes in the photosynthetic efficiency and reactive oxygen species (ROS) production. These results suggest that PCB might not cause chloroplast and oxidative damage, but could lead to cell cycle arrest and apoptosis. In addition, various signal transduction and transport pathways might be disrupted in the cells, which could further contribute to cell death. These results expand the genomic understanding of the effects of EDCs on this dinoflagellate protist.
Collapse
Affiliation(s)
- Hui Wang
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea
| | - Ruoyu Guo
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea.
| |
Collapse
|
39
|
Current Knowledge and Recent Advances in Marine Dinoflagellate Transcriptomic Research. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2018. [DOI: 10.3390/jmse6010013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
RNA-Seq as an Emerging Tool for Marine Dinoflagellate Transcriptome Analysis: Process and Challenges. Processes (Basel) 2018. [DOI: 10.3390/pr6010005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
41
|
Deng Y, Hu Z, Shang L, Peng Q, Tang YZ. Transcriptomic Analyses of Scrippsiella trochoidea Reveals Processes Regulating Encystment and Dormancy in the Life Cycle of a Dinoflagellate, with a Particular Attention to the Role of Abscisic Acid. Front Microbiol 2017; 8:2450. [PMID: 29312167 PMCID: PMC5732363 DOI: 10.3389/fmicb.2017.02450] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/27/2017] [Indexed: 12/26/2022] Open
Abstract
Due to the vital importance of resting cysts in the biology and ecology of many dinoflagellates, a transcriptomic investigation on Scrippsiella trochoidea was conducted with the aim to reveal the molecular processes and relevant functional genes regulating encystment and dormancy in dinoflagellates. We identified via RNA-seq 3,874 (out of 166,575) differentially expressed genes (DEGs) between resting cysts and vegetative cells; a pause of photosynthesis (confirmed via direct measurement of photosynthetic efficiency); an active catabolism including β-oxidation, glycolysis, glyoxylate pathway, and TCA in resting cysts (tested via measurements of respiration rate); 12 DEGs encoding meiotic recombination proteins and members of MEI2-like family potentially involved in sexual reproduction and encystment; elevated expressions in genes encoding enzymes responding to pathogens (chitin deacetylase) and ROS stress in cysts; and 134 unigenes specifically expressed in cysts. We paid particular attention to genes pertaining to phytohormone signaling and identified 4 key genes regulating abscisic acid (ABA) biosynthesis and catabolism, with further characterization based on their full-length cDNA obtained via RACE-PCR. The qPCR results demonstrated elevated biosynthesis and repressed catabolism of ABA during the courses of encystment and cyst dormancy, which was significantly enhanced by lower temperature (4 ± 1°C) and darkness. Direct measurements of ABA using UHPLC-MS/MS and ELISA in vegetative cells and cysts both fully supported qPCR results. These results collectively suggest a vital role of ABA in regulating encystment and maintenance of dormancy, akin to its function in seed dormancy of higher plants. Our results provided a critical advancement in understanding molecular processes in resting cysts of dinoflagellates.
Collapse
Affiliation(s)
- Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lixia Shang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Quancai Peng
- Research Center of Analysis and Measurement, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
42
|
Jing X, Lin S, Zhang H, Koerting C, Yu Z. Utilization of urea and expression profiles of related genes in the dinoflagellate Prorocentrum donghaiense. PLoS One 2017; 12:e0187837. [PMID: 29117255 PMCID: PMC5678928 DOI: 10.1371/journal.pone.0187837] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/26/2017] [Indexed: 01/23/2023] Open
Abstract
Urea has been shown to contribute more than half of total nitrogen (N) required by phytoplankton in some estuaries and coastal waters and to provide a substantial portion of the N demand for many harmful algal blooms (HABs) of dinoflagellates. In this study, we investigated the physiological and transcriptional responses in Prorocentrum donghaiense to changes in nitrate and urea availability. We found that this species could efficiently utilize urea as sole N source and achieve comparable growth rate and photosynthesis capability as it did under nitrate. These physiological parameters were markedly lower in cultures grown under nitrate- or urea-limited conditions. P. donghaiense N content was similarly low under nitrate- or urea-limited culture condition, but was markedly higher under urea-replete condition than under nitrate-replete condition. Carbon (C) content was consistently elevated under N-limited condition. Consequently, the C:N ratio was as high as 21:1 under nitrate- or urea-limitation, but 7:1 under urea-replete condition and 9:1 to 10:1 under nitrate-replete condition. Using quantitative reverse transcription PCR, we investigated the expression pattern for four genes involved in N transport and assimilation. The results indicated that genes encoding nitrate transport, urea hydrolysis, and nickel transporter gene were sensitive to changes in general N nutrient availability whereas the urea transporter gene responded much more strongly to changes in urea concentration. Taken together, our study shows the high bioavailability of urea, its impact on C:N stoichiometry, and the sensitivity of urea transporter gene expression to urea availability.
Collapse
Affiliation(s)
- Xiaoli Jing
- College of Marine Life Science, Ocean University of China, Qingdao, China
- Department of Marine Sciences, University of Connecticut, Groton, United States of America
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, United States of America
| | - Huan Zhang
- Department of Marine Sciences, University of Connecticut, Groton, United States of America
| | - Claudia Koerting
- Department of Marine Sciences, University of Connecticut, Groton, United States of America
| | - Zhigang Yu
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Marine Chemical Theory and Technology, Ministry of Education, Qingdao, China
| |
Collapse
|
43
|
Luo H, Lin X, Li L, Lin L, Zhang C, Lin S. Transcriptomic and physiological analyses of the dinoflagellate Karenia mikimotoi reveal non-alkaline phosphatase-based molecular machinery of ATP utilisation. Environ Microbiol 2017; 19:4506-4518. [PMID: 28856827 DOI: 10.1111/1462-2920.13899] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 11/28/2022]
Abstract
The ability to utilize dissolved organic phosphorus (DOP) is important for phytoplankton to survive the scarcity of dissolved inorganic phosphorus (DIP), and alkaline phosphatase (AP) has been the major research focus as a facilitating mechanism. Here, we employed a unique molecular ecological approach and conducted a broader search for underpinning molecular mechanisms of adenosine triphosphate (ATP) utilisation. Cultures of the dinoflagellate Karenia mikimotoi were set up in L1 medium (+P), DIP-depleted L1 medium (-P) and ATP-replacing-DIP medium (ATP). Differential gene expression was profiled for ATP and +P cultures using suppression subtractive hybridisation (SSH) followed by 454 pyrosequencing, and RT-qPCR methods. We found that ATP supported a similar growth rate and cell yield as L1 medium and observed DIP release from ATP into the medium, suggesting that K. mikimotoi cells were expressing extracellular hydrolases to hydrolyse ATP. However, our SSH, qPCR and enzymatic activity assays indicated that 5'-nucleotidase (5NT), rather than AP, was responsible for ATP hydrolysis. Further gene expression analyses uncovered that intercellular purine metabolism was significantly changed following the utilisation of ATP. Our findings reveal a multi-faceted machinery regulating ATP utilisation and P metabolism in K. mikimotoi, and underscore AP activity is not the exclusive indicator of DOP utilisation.
Collapse
Affiliation(s)
- Hao Luo
- State Key Laboratory of Marine Environmental Science, Department of Marine Biological Sciences and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science, Department of Marine Biological Sciences and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science, Department of Marine Biological Sciences and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Lingxiao Lin
- State Key Laboratory of Marine Environmental Science, Department of Marine Biological Sciences and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Chao Zhang
- Department of Biochemistry, Province Key Laboratory of Biochip, School of Basic Medical Science and Institute of Genetic Engineering, Southern Medical University, Guangzhou, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, Department of Marine Biological Sciences and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.,Department of Marine Sciences, University of Connecticut, Groton, CT 06405, USA
| |
Collapse
|
44
|
Lauritano C, De Luca D, Ferrarini A, Avanzato C, Minio A, Esposito F, Ianora A. De novo transcriptome of the cosmopolitan dinoflagellate Amphidinium carterae to identify enzymes with biotechnological potential. Sci Rep 2017; 7:11701. [PMID: 28916825 PMCID: PMC5601461 DOI: 10.1038/s41598-017-12092-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/04/2017] [Indexed: 01/17/2023] Open
Abstract
Dinoflagellates are phytoplanktonic organisms found in both freshwater and marine habitats. They are often studied because related to harmful algal blooms but they are also known to produce bioactive compounds for the treatment of human pathologies. The aim of this study was to sequence the full transcriptome of the dinoflagellate Amphidinium carterae in both nitrogen-starved and -replete culturing conditions (1) to evaluate the response to nitrogen starvation at the transcriptional level, (2) to look for possible polyketide synthases (PKSs) in the studied clone (genes that may be involved in the synthesis of bioactive compounds), (3) if present, to evaluate if nutrient starvation can influence PKS expression, (4) to look for other possible enzymes of biotechnological interest and (5) to test strain cytotoxicity on human cell lines. Results showed an increase in nitrogen metabolism and stress response in nitrogen-starved cells and confirmed the presence of a type I β-ketosynthase. In addition, L-asparaginase (used for the treatment of Leukemia and for acrylamide reduction in food industries) and cellulase (useful for biofuel production and other industrial applications) have been identified for the first time in this species, giving new insights into possible biotechnological applications of dinoflagellates.
Collapse
Affiliation(s)
- Chiara Lauritano
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy.
| | - Daniele De Luca
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Alberto Ferrarini
- Università degli Studi di Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy
| | - Carla Avanzato
- Università degli Studi di Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy
| | - Andrea Minio
- Università degli Studi di Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy
| | - Francesco Esposito
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Adrianna Ianora
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| |
Collapse
|
45
|
Haley ST, Alexander H, Juhl AR, Dyhrman ST. Transcriptional response of the harmful raphidophyte Heterosigma akashiwo to nitrate and phosphate stress. HARMFUL ALGAE 2017; 68:258-270. [PMID: 28962986 DOI: 10.1016/j.hal.2017.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 06/30/2017] [Accepted: 07/01/2017] [Indexed: 06/07/2023]
Abstract
The marine eukaryotic alga Heterosigma akashiwo (Raphidophyceae) is known for forming ichthyotoxic harmful algal blooms (HABs). In the past 50 years, H. akashiwo blooms have increased, occurring globally in highly eutrophic coastal and estuarine systems. These systems often incur dramatic physicochemical changes, including macronutrient (nitrogen and phosphorus) enrichment and depletion, on short timescales. Here, H. akashiwo cultures grown under nutrient replete, low N and low P growth conditions were examined for changes in biochemical and physiological characteristics in concert with transcriptome sequencing to provide a mechanistic perspective on the metabolic processes involved in responding to N and P stress. There was a marked difference in the overall transcriptional pattern between low N and low P transcriptomes. Both nutrient stresses led to significant changes in the abundance of thousands of contigs related to a wide diversity of metabolic pathways, with limited overlap between the transcriptomic responses to low N and low P. Enriched contigs under low N included many related to nitrogen metabolism, acquisition, and transport. In addition, metabolic modules like photosynthesis and carbohydrate metabolism changed significantly under low N, coincident with treatment-specific changes in photosynthetic efficiency and particulate carbohydrate content. P-specific contigs responsible for P transport and organic P use were more enriched in the low P treatment than in the replete control and low N treatment. These results provide new insight into the genetic mechanisms that distinguish how this HAB species responds to these two common nutrient stresses, and the results can inform future field studies, linking transcriptional patterns to the physiological ecology of H. akashiwo in situ.
Collapse
Affiliation(s)
- Sheean T Haley
- Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY, USA
| | - Harriet Alexander
- Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Andrew R Juhl
- Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY, USA; Columbia University, Department of Earth and Environmental Sciences, Palisades, NY, USA
| | - Sonya T Dyhrman
- Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY, USA; Columbia University, Department of Earth and Environmental Sciences, Palisades, NY, USA.
| |
Collapse
|
46
|
Jaeger D, Winkler A, Mussgnug JH, Kalinowski J, Goesmann A, Kruse O. Time-resolved transcriptome analysis and lipid pathway reconstruction of the oleaginous green microalga Monoraphidium neglectum reveal a model for triacylglycerol and lipid hyperaccumulation. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:197. [PMID: 28814974 PMCID: PMC5556983 DOI: 10.1186/s13068-017-0882-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/03/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Oleaginous microalgae are promising production hosts for the sustainable generation of lipid-based bioproducts and as bioenergy carriers such as biodiesel. Transcriptomics of the lipid accumulation phase, triggered efficiently by nitrogen starvation, is a valuable approach for the identification of gene targets for metabolic engineering. RESULTS An explorative analysis of the detailed transcriptional response to different stages of nitrogen availability was performed in the oleaginous green alga Monoraphidium neglectum. Transcript data were correlated with metabolic data for cellular contents of starch and of different lipid fractions. A pronounced transcriptional down-regulation of photosynthesis became apparent in response to nitrogen starvation, whereas glucose catabolism was found to be up-regulated. An in-depth reconstruction and analysis of the pathways for glycerolipid, central carbon, and starch metabolism revealed that distinct transcriptional changes were generally found only for specific steps within a metabolic pathway. In addition to pathway analyses, the transcript data were also used to refine the current genome annotation. The transcriptome data were integrated into a database and complemented with data for other microalgae which were also subjected to nitrogen starvation. It is available at https://tdbmn.cebitec.uni-bielefeld.de. CONCLUSIONS Based on the transcriptional responses to different stages of nitrogen availability, a model for triacylglycerol and lipid hyperaccumulation is proposed, which involves transcriptional induction of thioesterases, differential regulation of lipases, and a re-routing of the central carbon metabolism. Over-expression of distinct thioesterases was identified to be a potential strategy to increase the oleaginous phenotype of M. neglectum, and furthermore specific lipases were identified as potential targets for future metabolic engineering approaches.
Collapse
Affiliation(s)
- Daniel Jaeger
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Anika Winkler
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Jan H. Mussgnug
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-Universität, 35392 Gießen, Germany
| | - Olaf Kruse
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Universitaetsstrasse 27, 33615 Bielefeld, Germany
| |
Collapse
|
47
|
Harke MJ, Juhl AR, Haley ST, Alexander H, Dyhrman ST. Conserved Transcriptional Responses to Nutrient Stress in Bloom-Forming Algae. Front Microbiol 2017; 8:1279. [PMID: 28769884 PMCID: PMC5513979 DOI: 10.3389/fmicb.2017.01279] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/26/2017] [Indexed: 11/13/2022] Open
Abstract
The concentration and composition of bioavailable nitrogen (N) and phosphorus (P) in the upper ocean shape eukaryotic phytoplankton communities and influence their physiological responses. Phytoplankton are known to exhibit similar physiological responses to limiting N and P conditions such as decreased growth rates, chlorosis, and increased assimilation of N and P. Are these responses similar at the molecular level across multiple species? To interrogate this question, five species from biogeochemically important, bloom-forming taxa (Bacillariophyta, Dinophyta, and Haptophyta) were grown under similar low N, low P, and replete nutrient conditions to identify transcriptional patterns and associated changes in biochemical pools related to N and P stress. Metabolic profiles, revealed through the transcriptomes of these taxa, clustered together based on species rather than nutrient stressor, suggesting that the global metabolic response to nutrient stresses was largely, but not exclusively, species-specific. Nutrient stress led to few transcriptional changes in the two dinoflagellates, consistent with other research. An orthologous group analysis examined functionally conserved (i.e., similarly changed) responses to nutrient stress and therefore focused on the diatom and haptophytes. Most conserved ortholog changes were specific to a single nutrient treatment, but a small number of orthologs were similarly changed under both N and P stress in 2 or more species. Many of these orthologs were related to photosynthesis and may represent generalized stress responses. A greater number of orthologs were conserved across more than one species under low P compared to low N. Screening the conserved orthologs for functions related to N and P metabolism revealed increased relative abundance of orthologs for nitrate, nitrite, ammonium, and amino acid transporters under N stress, and increased relative abundance of orthologs related to acquisition of inorganic and organic P substrates under P stress. Although the global transcriptional responses were dominated by species-specific changes, the analysis of conserved responses revealed functional similarities in resource acquisition pathways among different phytoplankton taxa. This overlap in nutrient stress responses observed among species may be useful for tracking the physiological ecology of phytoplankton field populations.
Collapse
Affiliation(s)
- Matthew J Harke
- Lamont-Doherty Earth Observatory, Columbia UniversityPalisades, NY, United States
| | - Andrew R Juhl
- Lamont-Doherty Earth Observatory, Columbia UniversityPalisades, NY, United States.,Department of Earth and Environmental Sciences, Columbia UniversityPalisades, NY, United States
| | - Sheean T Haley
- Lamont-Doherty Earth Observatory, Columbia UniversityPalisades, NY, United States
| | - Harriet Alexander
- Department of Population Health and Reproduction, University of California, DavisDavis, CA, United States
| | - Sonya T Dyhrman
- Lamont-Doherty Earth Observatory, Columbia UniversityPalisades, NY, United States.,Department of Earth and Environmental Sciences, Columbia UniversityPalisades, NY, United States
| |
Collapse
|
48
|
Grosse J, Burson A, Stomp M, Huisman J, Boschker HTS. From Ecological Stoichiometry to Biochemical Composition: Variation in N and P Supply Alters Key Biosynthetic Rates in Marine Phytoplankton. Front Microbiol 2017; 8:1299. [PMID: 28747905 PMCID: PMC5506227 DOI: 10.3389/fmicb.2017.01299] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/27/2017] [Indexed: 02/05/2023] Open
Abstract
One of the major challenges in ecological stoichiometry is to establish how environmental changes in resource availability may affect both the biochemical composition of organisms and the species composition of communities. This is a pressing issue in many coastal waters, where anthropogenic activities have caused large changes in riverine nutrient inputs. Here we investigate variation in the biochemical composition and synthesis of amino acids, fatty acids (FA), and carbohydrates in mixed phytoplankton communities sampled from the North Sea. The communities were cultured in chemostats supplied with different concentrations of dissolved inorganic nitrogen (DIN) and phosphorus (DIP) to establish four different types of resource limitations. Diatoms dominated under N-limited, N+P limited and P-limited conditions. Cyanobacteria became dominant in one of the N-limited chemostats and green algae dominated in the one P-limited chemostat and under light-limited conditions. Changes in nutrient availability directly affected amino acid content, which was lowest under N and N+P limitation, higher under P-limitation and highest when light was the limiting factor. Storage carbohydrate content showed the opposite trend and storage FA content seemed to be co-dependent on community composition. The synthesis of essential amino acids was affected under N and N+P limitation, as the transformation from non-essential to essential amino acids decreased at DIN:DIP ≤ 6. The simple community structure and clearly identifiable nutrient limitations confirm and clarify previous field findings in the North Sea. Our results show that different phytoplankton groups are capable of adapting their key biosynthetic rates and hence their biochemical composition to different degrees when experiencing shifts in nutrient availability. This will have implications for phytoplankton growth, community structure, and the nutritional quality of phytoplankton as food for higher trophic levels.
Collapse
Affiliation(s)
- Julia Grosse
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, and Utrecht UniversityDen Burg, Netherlands
| | - Amanda Burson
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| | - Maayke Stomp
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| | - Jef Huisman
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| | - Henricus T S Boschker
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, and Utrecht UniversityDen Burg, Netherlands
| |
Collapse
|
49
|
Zhang C, Luo H, Huang L, Lin S. Molecular mechanism of glucose-6-phosphate utilization in the dinoflagellate Karenia mikimotoi. HARMFUL ALGAE 2017; 67:74-84. [PMID: 28755722 DOI: 10.1016/j.hal.2017.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Phosphorus (P) is an essential nutrient for marine phytoplankton as for other living organisms, and the preferred form, dissolved inorganic phosphate (DIP), is often quickly depleted in the sunlit layer of the ocean. Phytoplankton have developed mechanisms to utilize organic forms of P (DOP). Hydrolysis of DOP to release DIP by alkaline phosphatase is believed to be the most common mechanism of DOP utilization. Little effort has been made, however, to understand other potential molecular mechanisms of utilizing different types of DOP. This study investigated the bioavailability of glucose-6-phosphate (G6P) and its underlying molecular mechanism in the dinoflagellate Karenia mikimotoi. Suppression Subtraction Hybridization (SSH) was used to identify genes up- and down-regulated during G6P utilization compared to DIP condition. The results showed that G6P supported the growth and yield of K. mikimotoi as efficiently as DIP. Neither DIP release nor AP activity was detected in the cultures grown in G6P medium, however, suggesting direct uptake of G6P. SSH analysis and RT-qPCR results showed evidence of metabolic modifications, particularly that mitochondrial ATP synthase f1gamma subunit and thioredoxin reductase were up-regulated while diphosphatase and pyrophosphatase were down-regulated in the G6P cultures. All the results indicate that K. mikimotoi has developed a mechanism other than alkaline phosphatase to utilize G6P.
Collapse
Affiliation(s)
- Chao Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China; Institute of Genetic Engineering, Southern Medical University, Guangzhou, China, Guangdong Province Key Laboratory of Biochip, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Hao Luo
- Key State Laboratory of Marine Environmental Science and Marine Biodiversity and Global Change Research Center, Xiamen University, Xiamen, Fujian, China
| | - Liangmin Huang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Senjie Lin
- Key State Laboratory of Marine Environmental Science and Marine Biodiversity and Global Change Research Center, Xiamen University, Xiamen, Fujian, China; Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA.
| |
Collapse
|
50
|
Transcriptome Analysis of Core Dinoflagellates Reveals a Universal Bias towards "GC" Rich Codons. Mar Drugs 2017; 15:md15050125. [PMID: 28448468 PMCID: PMC5450531 DOI: 10.3390/md15050125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/11/2017] [Accepted: 04/20/2017] [Indexed: 11/24/2022] Open
Abstract
Although dinoflagellates are a potential source of pharmaceuticals and natural products, the mechanisms for regulating and producing these compounds are largely unknown because of extensive post-transcriptional control of gene expression. One well-documented mechanism for controlling gene expression during translation is codon bias, whereby specific codons slow or even terminate protein synthesis. Approximately 10,000 annotatable genes from fifteen “core” dinoflagellate transcriptomes along a range of overall guanine and cytosine (GC) content were used for codonW analysis to determine the relative synonymous codon usage (RSCU) and the GC content at each codon position. GC bias in the analyzed dataset and at the third codon position varied from 51% and 54% to 66% and 88%, respectively. Codons poor in GC were observed to be universally absent, but bias was most pronounced for codons ending in uracil followed by adenine (UA). GC bias at the third codon position was able to explain low abundance codons as well as the low effective number of codons. Thus, we propose that a bias towards codons rich in GC bases is a universal feature of core dinoflagellates, possibly relating to their unique chromosome structure, and not likely a major mechanism for controlling gene expression.
Collapse
|