1
|
Herreros-Cabello A, Callejas-Hernández F, Fresno M, Gironès N. Mitochondrial DNA Structure in Trypanosoma cruzi. Pathogens 2025; 14:73. [PMID: 39861034 PMCID: PMC11769408 DOI: 10.3390/pathogens14010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Kinetoplastids display a single, large mitochondrion per cell, with their mitochondrial DNA referred to as the kinetoplast. This kinetoplast is a network of concatenated circular molecules comprising a maxicircle (20-64 kb) and up to thousands of minicircles varying in size depending on the species (0.5-10 kb). In Trypanosoma cruzi, maxicircles contain typical mitochondrial genes found in other eukaryotes. They consist of coding and divergent/variable regions, complicating their assembly due to repetitive elements. However, next-generation sequencing (NGS) methods have resolved these issues, enabling the complete sequencing of maxicircles from different strains. Furthermore, several insertions and deletions in the maxicircle sequences have been identified among strains, affecting specific genes. Unique to kinetoplastids, minicircles play a crucial role in a particular U-insertion/deletion RNA editing system by encoding guide RNAs (gRNAs). These gRNAs are essential for editing and maturing maxicircle mRNAs. In Trypanosoma cruzi, although only a few studies have utilized NGS methods to date, the structure of these molecules suggests a classification into four main groups of minicircles. This classification is based on their size and the number of highly conserved regions (mHCRs) and hypervariable regions (mHVRs).
Collapse
Affiliation(s)
- Alfonso Herreros-Cabello
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Instituto Sanitario de Investigación Princesa, 28006 Madrid, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Instituto Sanitario de Investigación Princesa, 28006 Madrid, Spain
| |
Collapse
|
2
|
Hoyos Sanchez MC, Ospina Zapata HS, Suarez BD, Ospina C, Barbosa HJ, Carranza Martinez JC, Vallejo GA, Urrea Montes D, Duitama J. A phased genome assembly of a Colombian Trypanosoma cruzi TcI strain and the evolution of gene families. Sci Rep 2024; 14:2054. [PMID: 38267502 PMCID: PMC10808112 DOI: 10.1038/s41598-024-52449-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
Chagas is an endemic disease in tropical regions of Latin America, caused by the parasite Trypanosoma cruzi. High intraspecies variability and genome complexity have been challenges to assemble high quality genomes needed for studies in evolution, population genomics, diagnosis and drug development. Here we present a chromosome-level phased assembly of a TcI T. cruzi strain (Dm25). While 29 chromosomes show a large collinearity with the assembly of the Brazil A4 strain, three chromosomes show both large heterozygosity and large divergence, compared to previous assemblies of TcI T. cruzi strains. Nucleotide and protein evolution statistics indicate that T. cruzi Marinkellei separated before the diversification of T. cruzi in the known DTUs. Interchromosomal paralogs of dispersed gene families and histones appeared before but at the same time have a more strict purifying selection, compared to other repeat families. Previously unreported large tandem arrays of protein kinases and histones were identified in this assembly. Over one million variants obtained from Illumina reads aligned to the primary assembly clearly separate the main DTUs. We expect that this new assembly will be a valuable resource for further studies on evolution and functional genomics of Trypanosomatids.
Collapse
Affiliation(s)
- Maria Camila Hoyos Sanchez
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, 79106, USA
| | | | - Brayhan Dario Suarez
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Universidad del Tolima, Ibagué, Colombia
| | - Carlos Ospina
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Universidad del Tolima, Ibagué, Colombia
| | - Hamilton Julian Barbosa
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Universidad del Tolima, Ibagué, Colombia
| | | | - Gustavo Adolfo Vallejo
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Universidad del Tolima, Ibagué, Colombia
| | - Daniel Urrea Montes
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Universidad del Tolima, Ibagué, Colombia
| | - Jorge Duitama
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia.
| |
Collapse
|
3
|
In silico investigation of cytochrome bc1 molecular inhibition mechanism against Trypanosoma cruzi. PLoS Negl Trop Dis 2023; 17:e0010545. [PMID: 36689459 PMCID: PMC9894551 DOI: 10.1371/journal.pntd.0010545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/02/2023] [Accepted: 01/05/2023] [Indexed: 01/24/2023] Open
Abstract
Chagas' disease is a neglected tropical disease caused by the kinetoplastid protozoan Trypanosoma cruzi. The only therapies are the nitroheterocyclic chemicals nifurtimox and benznidazole that cause various adverse effects. The need to create safe and effective medications to improve medical care remains critical. The lack of verified T. cruzi therapeutic targets hinders medication research for Chagas' disease. In this respect, cytochrome bc1 has been identified as a promising therapeutic target candidate for antibacterial medicines of medical and agricultural interest. Cytochrome bc1 belongs to the mitochondrial electron transport chain and transfers electrons from ubiquinol to cytochrome c1 by the action of two catalytic sites named Qi and Qo. The two binding sites are highly selective, and specific inhibitors exist for each site. Recent studies identified the Qi site of the cytochrome bc1 as a promising drug target against T. cruzi. However, a lack of knowledge of the drug mechanism of action unfortunately hinders the development of new therapies. In this context, knowing the cause of binding site selectivity and the mechanism of action of inhibitors and substrates is crucial for drug discovery and optimization processes. In this paper, we provide a detailed computational investigation of the Qi site of T. cruzi cytochrome b to shed light on the molecular mechanism of action of known inhibitors and substrates. Our study emphasizes the action of inhibitors at the Qi site on a highly unstructured portion of cytochrome b that could be related to the biological function of the electron transport chain complex.
Collapse
|
4
|
Gerasimov ES, Ramirez-Barrios R, Yurchenko V, Zimmer SL. Trypanosoma cruzi strain and starvation-driven mitochondrial RNA editing and transcriptome variability. RNA (NEW YORK, N.Y.) 2022; 28:993-1012. [PMID: 35470233 PMCID: PMC9202582 DOI: 10.1261/rna.079088.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/07/2022] [Indexed: 05/09/2023]
Abstract
Trypanosoma cruzi is a unicellular protistan parasitic species that is comprised of strains and isolates exhibiting high levels of genetic and metabolic variability. In the insect vector, it is known to be highly responsive to starvation, a signal for progression to a life stage in which it can infect mammalian cells. Most mRNAs encoded in its mitochondrion require the targeted insertion and deletion of uridines to become translatable transcripts. This study defined differences in uridine-insertion/deletion RNA editing among three strains and established the mechanism whereby abundances of edited (and, thus, translatable) mitochondrial gene products increase during starvation. Our approach utilized our custom T-Aligner toolkit to describe transcriptome-wide editing events and reconstruct editing products from high-throughput sequencing data. We found that the relative abundance of mitochondrial transcripts and the proportion of mRNAs that are edited varies greatly between analyzed strains, a characteristic that could potentially impact metabolic capacity. Starvation typically led to an increase in overall editing activity rather than affecting a specific step in the process. We also determined that transcripts CR3, CR4, and ND3 produce multiple open reading frames that, if translated, would generate different proteins. Finally, we quantitated the inherent flexibility of editing in T. cruzi and found it to be higher relative to that in a related trypanosomatid lineage. Over time, new editing domains or patterns could prove advantageous to the organism and become more widespread within individual transcriptomes or among strains.
Collapse
Affiliation(s)
- Evgeny S Gerasimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russia
| | - Roger Ramirez-Barrios
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota 55812, USA
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow 119435, Russia
| | - Sara L Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota 55812, USA
| |
Collapse
|
5
|
Berná L, Greif G, Pita S, Faral-Tello P, Díaz-Viraqué F, Souza RDCMD, Vallejo GA, Alvarez-Valin F, Robello C. Maxicircle architecture and evolutionary insights into Trypanosoma cruzi complex. PLoS Negl Trop Dis 2021; 15:e0009719. [PMID: 34437557 PMCID: PMC8425572 DOI: 10.1371/journal.pntd.0009719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/08/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
We sequenced maxicircles from T. cruzi strains representative of the species evolutionary diversity by using long-read sequencing, which allowed us to uncollapse their repetitive regions, finding that their real lengths range from 35 to 50 kb. T. cruzi maxicircles have a common architecture composed of four regions: coding region (CR), AT-rich region, short (SR) and long repeats (LR). Distribution of genes, both in order and in strand orientation are conserved, being the main differences the presence of deletions affecting genes coding for NADH dehydrogenase subunits, reinforcing biochemical findings that indicate that complex I is not functional in T. cruzi. Moreover, the presence of complete minicircles into maxicircles of some strains lead us to think about the origin of minicircles. Finally, a careful phylogenetic analysis was conducted using coding regions of maxicircles from up to 29 strains, and 1108 single copy nuclear genes from all of the DTUs, clearly establishing that taxonomically T. cruzi is a complex of species composed by group 1 that contains clades A (TcI), B (TcIII) and D (TcIV), and group 2 (1 and 2 do not coincide with groups I and II described decades ago) containing clade C (TcII), being all hybrid strains of the BC type. Three variants of maxicircles exist in T. cruzi: a, b and c, in correspondence with clades A, B, and C from mitochondrial phylogenies. While A and C carry maxicircles a and c respectively, both clades B and D carry b maxicircle variant; hybrid strains also carry the b- variant. We then propose a new nomenclature that is self-descriptive and makes use of both the phylogenetic relationships and the maxicircle variants present in T. cruzi.
Collapse
Affiliation(s)
- Luisa Berná
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Sección Biomatemática—Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Gonzalo Greif
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Sebastián Pita
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Sección Genética, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Paula Faral-Tello
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Florencia Díaz-Viraqué
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Gustavo Adolfo Vallejo
- Laboratorio de investigaciones en Parasitología Tropical (LIPT), Facultad de Ciencias, Universidad del Tolima, Tolima, Colombia
| | - Fernando Alvarez-Valin
- Sección Biomatemática—Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- * E-mail:
| |
Collapse
|
6
|
Callejas-Hernández F, Herreros-Cabello A, Del Moral-Salmoral J, Fresno M, Gironès N. The Complete Mitochondrial DNA of Trypanosoma cruzi: Maxicircles and Minicircles. Front Cell Infect Microbiol 2021; 11:672448. [PMID: 34268138 PMCID: PMC8277381 DOI: 10.3389/fcimb.2021.672448] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial DNA of Trypanosomatids, known as the kinetoplast DNA or kDNA or mtDNA, consists of a few maxicircles and thousands of minicircles concatenated together into a huge complex network. These structures present species-specific sizes, from 20 to 40 Kb in maxicircles and from 0.5 to 10 Kb in minicircles. Maxicircles are equivalent to other eukaryotic mitochondrial DNAs, while minicircles contain coding guide RNAs involved in U-insertion/deletion editing processes exclusive of Trypanosomatids that produce the maturation of the maxicircle-encoded transcripts. The knowledge about this mitochondrial genome is especially relevant since the expression of nuclear and mitochondrial genes involved in oxidative phosphorylation must be coordinated. In Trypanosoma cruzi (T. cruzi), the mtDNA has a dual relevance; the production of energy, and its use as a phylogenetic marker due to its high conservation among strains. Therefore, this study aimed to assemble, annotate, and analyze the complete repertoire of maxicircle and minicircle sequences of different T. cruzi strains by using DNA sequencing. We assembled and annotated the complete maxicircle sequence of the Y and Bug2148 strains. For Bug2148, our results confirm that the maxicircle sequence is the longest assembled to date, and is composed of 21 genes, most of them conserved among Trypanosomatid species. In agreement with previous results, T. cruzi minicircles show a conserved structure around 1.4 Kb, with four highly conserved regions and other four hypervariable regions interspersed between them. However, our results suggest that the parasite minicircles display several sizes and numbers of conserved and hypervariable regions, contrary to those previous studies. Besides, this heterogeneity is also reflected in the three conserved sequence blocks of the conserved regions that play a key role in the minicircle replication. Our results using sequencing technologies of second and third-generation indicate that the different consensus sequences of the maxicircles and minicircles seem to be more complex than previously described indicating at least four different groups in T. cruzi minicircles.
Collapse
Affiliation(s)
- Francisco Callejas-Hernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alfonso Herreros-Cabello
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Javier Del Moral-Salmoral
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto Sanitario de Investigación de la Princesa, Group 12, Madrid, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto Sanitario de Investigación de la Princesa, Group 12, Madrid, Spain
| |
Collapse
|
7
|
Rusman F, Floridia-Yapur N, Tomasini N, Diosque P. Guide RNA Repertoires in the Main Lineages of Trypanosoma cruzi: High Diversity and Variable Redundancy Among Strains. Front Cell Infect Microbiol 2021; 11:663416. [PMID: 34136416 PMCID: PMC8202002 DOI: 10.3389/fcimb.2021.663416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Trypanosoma cruzi, as other kinetoplastids, has a complex mechanism of editing of mitochondrial mRNAs that requires guide RNAs (gRNAs) coded in DNA minicircles in the kinetoplast. There are many variations on this mechanism among species. mRNA editing and gRNA repertoires are almost unknown in T. cruzi. Here, gRNAs were inferred based on deep-sequenced minicircle hypervariable regions (mHVRs) and editing cascades were rebuilt in strains belonging to the six main T. cruzi lineages. Inferred gRNAs were clustered according to their sequence similarity to constitute gRNA classes. Extreme diversity of gRNA classes was observed, which implied highly divergent gRNA repertoires among different lineages, even within some lineages. In addition, a variable gRNA class redundancy (i.e., different gRNA classes editing the same mRNA region) was detected among strains. Some strains had upon four times more gRNA classes than others. Such variations in redundancy affected gRNA classes of all mRNAs in a concerted way, i.e., there are correlated variations in the number of gRNAs classes editing each mRNA. Interestingly, cascades were incomplete for components of the respiratory complex I in several strains. Finally, gRNA classes of different strains may potentially edit mitochondrial mRNAs from other lineages in the same way as they edit their own mitochondrial mRNAs, which is a prerequisite for biparental inheritance of minicircle in hybrids. We propose that genetic exchange and biparental inheritance of minicircles combined with minicircle drift due to (partial) random segregation of minicircles during kDNA replication is a suitable hypothesis to explain the divergences among strains and the high levels of gRNA redundancy in some strains. In addition, our results support that the complex I may not be required in some stages in the life cycle as previously shown and that linkage (in the same minicircle) of gRNAs that edit different mRNAs may prevent gRNA class lost in such stage.
Collapse
|
8
|
Common Structural Patterns in the Maxicircle Divergent Region of Trypanosomatidae. Pathogens 2020; 9:pathogens9020100. [PMID: 32033466 PMCID: PMC7169413 DOI: 10.3390/pathogens9020100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 12/29/2022] Open
Abstract
Maxicircles of all kinetoplastid flagellates are functional analogs of mitochondrial genome of other eukaryotes. They consist of two distinct parts, called the coding region and the divergent region (DR). The DR is composed of highly repetitive sequences and, as such, remains the least explored segment of a trypanosomatid genome. It is extremely difficult to sequence and assemble, that is why very few full length maxicircle sequences were available until now. Using PacBio data, we assembled 17 complete maxicircles from different species of trypanosomatids. Here we present their large-scale comparative analysis and describe common patterns of DR organization in trypanosomatids.
Collapse
|
9
|
Ramirez-Barrios R, Susa EK, Smoniewski CM, Faacks SP, Liggett CK, Zimmer SL. A link between mitochondrial gene expression and life stage morphologies in Trypanosoma cruzi. Mol Microbiol 2020; 113:1003-1021. [PMID: 31961979 DOI: 10.1111/mmi.14466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/17/2022]
Abstract
The protozoan Trypanosoma cruzi has a complicated dual-host life cycle, and starvation can trigger transition from the replicating insect stage to the mammalian-infectious nonreplicating insect stage (epimastigote to trypomastigote differentiation). Abundance of some mature RNAs derived from its mitochondrial genome increase during culture starvation of T. cruzi for unknown reasons. Here, we examine T. cruzi mitochondrial gene expression in the mammalian intracellular replicating life stage (amastigote), and uncover implications of starvation-induced changes in gene expression. Mitochondrial RNA levels in general were found to be lowest in actively replicating amastigotes. We discovered that mitochondrial respiration decreases during starvation in insect stage cells, despite the previously observed increases in mitochondrial mRNAs encoding electron transport chain (ETC) components. Surprisingly, T. cruzi epimastigotes in replete medium grow at normal rates when we genetically compromised their ability to perform insertion/deletion editing and thereby generate mature forms of some mitochondrial mRNAs. However, these cells, when starved, were impeded in the epimastigote to trypomastigote transition. Further, they experience a short-flagella phenotype that may also be linked to differentiation. We hypothesize a scenario where levels of mature RNA species or editing in the single T. cruzi mitochondrion are linked to differentiation by a yet-unknown signaling mechanism.
Collapse
Affiliation(s)
- Roger Ramirez-Barrios
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA
| | - Emily K Susa
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA
| | - Clara M Smoniewski
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA
| | - Sean P Faacks
- Department of Biology, University of Minnesota Duluth, Duluth, MN, USA
| | - Charles K Liggett
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA
| | - Sara L Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA
| |
Collapse
|
10
|
Gerasimov ES, Gasparyan AA, Kaurov I, Tichý B, Logacheva MD, Kolesnikov AA, Lukeš J, Yurchenko V, Zimmer SL, Flegontov P. Trypanosomatid mitochondrial RNA editing: dramatically complex transcript repertoires revealed with a dedicated mapping tool. Nucleic Acids Res 2019; 46:765-781. [PMID: 29220521 PMCID: PMC5778460 DOI: 10.1093/nar/gkx1202] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022] Open
Abstract
RNA editing by targeted insertion and deletion of uridine is crucial to generate translatable mRNAs from the cryptogenes of the mitochondrial genome of kinetoplastids. This type of editing consists of a stepwise cascade of reactions generally proceeding from 3′ to 5′ on a transcript, resulting in a population of partially edited as well as pre-edited and completely edited molecules for each mitochondrial cryptogene of these protozoans. Often, the number of uridines inserted and deleted exceed the number of nucleotides that are genome-encoded. Thus, analysis of kinetoplastid mitochondrial transcriptomes has proven frustratingly complex. Here we present our analysis of Leptomonas pyrrhocoris mitochondrial cDNA deep sequencing reads using T-Aligner, our new tool which allows comprehensive characterization of RNA editing, not relying on targeted transcript amplification and on prior knowledge of final edited products. T-Aligner implements a pipeline of read mapping, visualization of all editing states and their coverage, and assembly of canonical and alternative translatable mRNAs. We also assess T-Aligner functionality on a more challenging deep sequencing read input from Trypanosoma cruzi. The analysis reveals that transcripts of cryptogenes of both species undergo very complex editing that includes the formation of alternative open reading frames and whole categories of truncated editing products.
Collapse
Affiliation(s)
- Evgeny S Gerasimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia.,Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russia
| | - Anna A Gasparyan
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Iosif Kaurov
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| | - Boris Tichý
- Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Maria D Logacheva
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia.,Russia Extreme Biology Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420008, Russia.,Skolkovo Institute of Science and Technology, Moscow, 14326, Russia
| | | | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| | - Vyacheslav Yurchenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czech Republic.,Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czech Republic.,Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava 710 00, Czech Republic
| | - Sara L Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812-3031, USA
| | - Pavel Flegontov
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czech Republic.,Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia.,Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czech Republic
| |
Collapse
|
11
|
Urrea DA, Triana-Chavez O, Alzate JF. Mitochondrial genomics of human pathogenic parasite Leishmania ( Viannia) panamensis. PeerJ 2019; 7:e7235. [PMID: 31304069 PMCID: PMC6611448 DOI: 10.7717/peerj.7235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/01/2019] [Indexed: 12/14/2022] Open
Abstract
Background The human parasite Leishmania (V.) panamensis is one of the pathogenic species responsible for cutaneous leishmaniasis in Central and South America. Despite its importance in molecular parasitology, its mitochondrial genome, divided into minicircles and maxicircles, haven’t been described so far. Methods Using NGS-based sequencing (454 and ILLUMINA), and combining de novo genome assembly and mapping strategies, we report the maxicircle kDNA annotated genome of L. (V.) panamensis, the first reference of this molecule for the subgenus Viannia. A comparative genomics approach is performed against other Leishmania and Trypanosoma species. Results The results show synteny of mitochondrial genes of L. (V.) panamensis with other kinetoplastids. It was also possible to identify nucleotide variants within the coding regions of the maxicircle, shared among some of them and others specific to each strain. Furthermore, we compared the minicircles kDNA sequences of two strains and the results show that the conserved and divergent regions of the minicircles exhibit strain-specific associations.
Collapse
Affiliation(s)
- Daniel Alfonso Urrea
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Departamento de Biología, Facultad de Ciencias, Universidad del Tolima, Ibague, Tolima, Colombia.,Grupo Biología y Control de Enfermedades Infecciosas (BCEI), Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Omar Triana-Chavez
- Grupo Biología y Control de Enfermedades Infecciosas (BCEI), Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Juan F Alzate
- Centro Nacional de Secuenciación Genómica -CNSG, Sede de Investigación Universitaria -SIU. Grupo de Parasitología, Facultad de Medicina, Universidad de Antioquia, Medellin, Antioquia, Colombia
| |
Collapse
|
12
|
Zimmer SL, Simpson RM, Read LK. High throughput sequencing revolution reveals conserved fundamentals of U-indel editing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1487. [PMID: 29888550 DOI: 10.1002/wrna.1487] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 01/18/2023]
Abstract
Among Euglenozoans, mitochondrial RNA editing occurs in the diplonemids and in the kinetoplastids that include parasitic trypanosomes. Yet U-indel editing, in which open reading frames (ORFs) on mRNAs are generated by insertion and deletion of uridylates in locations dictated by guide RNAs, appears confined to kinetoplastids. The nature of guide RNA and edited mRNA populations has been cursorily explored in a surprisingly extensive number of species over the years, although complete sets of fully edited mRNAs for most kinetoplast genomes are largely missing. Now, however, high throughput sequencing technologies have had an enormous impact on what we know and will learn about the mechanisms, benefits, and final edited products of U-indel editing. Tools including PARERS, TREAT, and T-Aligner function to organize and make sense of U-indel mRNA transcriptomes, which are comprised of mRNAs harboring uridylate indels both consistent and inconsistent with translatable products. From high throughput sequencing data come arguments that partially edited mRNAs containing "junction regions" of noncanonical editing are editing intermediates, and conversely, arguments that they are dead-end products. These data have also revealed that the percent of a given transcript population that is fully or partially edited varies dramatically between transcripts and organisms. Outstanding questions that are being addressed include the prevalence of sequences that apparently encode alternative ORFs, diversity of editing events in ORF termini and 5' and 3' untranslated regions, and the differences that exist in this byzantine process between species. High throughput sequencing technologies will also undoubtedly be harnessed to probe U-indel editing's evolutionary origins. This article is categorized under: RNA Processing > RNA Editing and Modification RNA Evolution and Genomics > Computational Analyses of RNA.
Collapse
Affiliation(s)
- Sara L Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota
| | - Rachel M Simpson
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Laurie K Read
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
13
|
Kalem MC, Gerasimov ES, Vu PK, Zimmer SL. Gene expression to mitochondrial metabolism: Variability among cultured Trypanosoma cruzi strains. PLoS One 2018; 13:e0197983. [PMID: 29847594 PMCID: PMC5976161 DOI: 10.1371/journal.pone.0197983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/11/2018] [Indexed: 11/18/2022] Open
Abstract
The insect-transmitted protozoan parasite Trypanosoma cruzi experiences changes in nutrient availability and rate of flux through different metabolic pathways across its life cycle. The species encompasses much genetic diversity of both the nuclear and mitochondrial genomes among isolated strains. The genetic or expression variation of both genomes are likely to impact metabolic responses to environmental stimuli, and even steady state metabolic function, among strains. To begin formal characterization these differences, we compared aspects of metabolism between genetically similar strains CL Brener and Tulahuen with less similar Esmeraldo and Sylvio X10 strains in a culture environment. Epimastigotes of all strains took up glucose at similar rates. However, the degree of medium acidification that could be observed when glucose was absent from the medium varied by strain, indicating potential differences in excreted metabolic byproducts. Our main focus was differences related to electron transport chain function. We observed differences in ATP-coupled respiration and maximal respiratory capacity, mitochondrial membrane potential, and mitochondrial morphology between strains, despite the fact that abundances of two nuclear-encoded proteins of the electron transport chain are similar between strains. RNA sequencing reveals strain-specific differences in abundances of mRNAs encoding proteins of the respiratory chain but also other metabolic processes. From these differences in metabolism and mitochondrial phenotypes we have generated tentative models for the differential metabolic fluxes or differences in gene expression that may underlie these results.
Collapse
Affiliation(s)
- Murat C. Kalem
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, United States of America
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth campus, Duluth, Minnesota, United States of America
| | | | - Pamela K. Vu
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, United States of America
| | - Sara L. Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth campus, Duluth, Minnesota, United States of America
| |
Collapse
|
14
|
Botero A, Kapeller I, Cooper C, Clode PL, Shlomai J, Thompson RCA. The kinetoplast DNA of the Australian trypanosome, Trypanosoma copemani, shares features with Trypanosoma cruzi and Trypanosoma lewisi. Int J Parasitol 2018; 48:691-700. [PMID: 29778329 DOI: 10.1016/j.ijpara.2018.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 01/16/2023]
Abstract
Kinetoplast DNA (kDNA) is the mitochondrial genome of trypanosomatids. It consists of a few dozen maxicircles and several thousand minicircles, all catenated topologically to form a two-dimensional DNA network. Minicircles are heterogeneous in size and sequence among species. They present one or several conserved regions that contain three highly conserved sequence blocks. CSB-1 (10 bp sequence) and CSB-2 (8 bp sequence) present lower interspecies homology, while CSB-3 (12 bp sequence) or the Universal Minicircle Sequence is conserved within most trypanosomatids. The Universal Minicircle Sequence is located at the replication origin of the minicircles, and is the binding site for the UMS binding protein, a protein involved in trypanosomatid survival and virulence. Here, we describe the structure and organisation of the kDNA of Trypanosoma copemani, a parasite that has been shown to infect mammalian cells and has been associated with the drastic decline of the endangered Australian marsupial, the woylie (Bettongia penicillata). Deep genomic sequencing showed that T. copemani presents two classes of minicircles that share sequence identity and organisation in the conserved sequence blocks with those of Trypanosoma cruzi and Trypanosoma lewisi. A 19,257 bp partial region of the maxicircle of T. copemani that contained the entire coding region was obtained. Comparative analysis of the T. copemani entire maxicircle coding region with the coding regions of T. cruzi and T. lewisi showed they share 71.05% and 71.28% identity, respectively. The shared features in the maxicircle/minicircle organisation and sequence between T. copemani and T. cruzi/T. lewisi suggest similarities in their process of kDNA replication, and are of significance in understanding the evolution of Australian trypanosomes.
Collapse
Affiliation(s)
- Adriana Botero
- School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, WA 6150, Australia.
| | - Irit Kapeller
- Department of Microbiology and Molecular Genetics and the Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University- Hadassah Medical School, Jerusalem, Israel
| | - Crystal Cooper
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Stirling Hwy, Crawley, WA 6009, Australia
| | - Peta L Clode
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Stirling Hwy, Crawley, WA 6009, Australia; School of Biological Sciences, University of Western Australia, Stirling Hwy, Crawley, WA 6009, Australia
| | - Joseph Shlomai
- Department of Microbiology and Molecular Genetics and the Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University- Hadassah Medical School, Jerusalem, Israel
| | - R C Andrew Thompson
- School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, WA 6150, Australia
| |
Collapse
|
15
|
Lin RH, Lai DH, Zheng LL, Wu J, Lukeš J, Hide G, Lun ZR. Analysis of the mitochondrial maxicircle of Trypanosoma lewisi, a neglected human pathogen. Parasit Vectors 2015; 8:665. [PMID: 26715306 PMCID: PMC4696184 DOI: 10.1186/s13071-015-1281-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/21/2015] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The haemoflagellate Trypanosoma lewisi is a kinetoplastid parasite which, as it has been recently reported to cause human disease, deserves increased attention. Characteristic features of all kinetoplastid flagellates are a uniquely structured mitochondrial DNA or kinetoplast, comprised of a network of catenated DNA circles, and RNA editing of mitochondrial transcripts. The aim of this study was to describe the kinetoplast DNA of T. lewisi. METHODS/RESULTS In this study, purified kinetoplast DNA from T. lewisi was sequenced using high-throughput sequencing in combination with sequencing of PCR amplicons. This allowed the assembly of the T. lewisi kinetoplast maxicircle DNA, which is a homologue of the mitochondrial genome in other eukaryotes. The assembly of 23,745 bp comprises the non-coding and coding regions. Comparative analysis of the maxicircle sequence of T. lewisi with Trypanosoma cruzi, Trypanosoma rangeli, Trypanosoma brucei and Leishmania tarentolae revealed that it shares 78%, 77%, 74% and 66% sequence identity with these parasites, respectively. The high GC content in at least 9 maxicircle genes of T. lewisi (ATPase6; NADH dehydrogenase subunits ND3, ND7, ND8 and ND9; G-rich regions GR3 and GR4; cytochrome oxidase subunit COIII and ribosomal protein RPS12) implies that their products may be extensively edited. A detailed analysis of the non-coding region revealed that it contains numerous repeat motifs and palindromes. CONCLUSIONS We have sequenced and comprehensively annotated the kinetoplast maxicircle of T. lewisi. Our analysis reveals that T. lewisi is closely related to T. cruzi and T. brucei, and may share similar RNA editing patterns with them rather than with L. tarentolae. These findings provide novel insight into the biological features of this emerging human pathogen.
Collapse
Affiliation(s)
- Ruo-Hong Lin
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences and Key Laboratory of Tropical Diseases and Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, The People's Republic of China.
| | - De-Hua Lai
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences and Key Laboratory of Tropical Diseases and Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, The People's Republic of China.
| | - Ling-Ling Zheng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, The People's Republic of China.
| | - Jie Wu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, The People's Republic of China.
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
- Canadian Institute for Advanced Research, Toronto, Canada.
| | - Geoff Hide
- Ecosystems and Environment Research Centre and Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, Salford, UK.
| | - Zhao-Rong Lun
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences and Key Laboratory of Tropical Diseases and Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, The People's Republic of China.
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, The People's Republic of China.
- Ecosystems and Environment Research Centre and Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, Salford, UK.
| |
Collapse
|
16
|
Ibáñez-Cervantes G, Martínez-Ibarra A, Nogueda-Torres B, López-Orduña E, Alonso AL, Perea C, Maldonado T, Hernández JM, León-Avila G. Identification by Q-PCR of Trypanosoma cruzi lineage and determination of blood meal sources in triatomine gut samples in México. Parasitol Int 2013; 62:36-43. [DOI: 10.1016/j.parint.2012.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 05/04/2012] [Accepted: 09/11/2012] [Indexed: 11/16/2022]
|
17
|
Franzén O, Talavera-López C, Ochaya S, Butler CE, Messenger LA, Lewis MD, Llewellyn MS, Marinkelle CJ, Tyler KM, Miles MA, Andersson B. Comparative genomic analysis of human infective Trypanosoma cruzi lineages with the bat-restricted subspecies T. cruzi marinkellei. BMC Genomics 2012; 13:531. [PMID: 23035642 PMCID: PMC3507753 DOI: 10.1186/1471-2164-13-531] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 10/01/2012] [Indexed: 02/07/2023] Open
Abstract
Background Trypanosoma cruzi marinkellei is a bat-associated parasite of the subgenus Schizotrypanum and it is regarded as a T. cruzi subspecies. Here we report a draft genome sequence of T. c. marinkellei and comparison with T. c. cruzi. Our aims were to identify unique sequences and genomic features, which may relate to their distinct niches. Results The T. c. marinkellei genome was found to be ~11% smaller than that of the human-derived parasite T. c. cruzi Sylvio X10. The genome size difference was attributed to copy number variation of coding and non-coding sequences. The sequence divergence in coding regions was ~7.5% between T. c. marinkellei and T. c. cruzi Sylvio X10. A unique acetyltransferase gene was identified in T. c. marinkellei, representing an example of a horizontal gene transfer from eukaryote to eukaryote. Six of eight examined gene families were expanded in T. c. cruzi Sylvio X10. The DGF gene family was expanded in T. c. marinkellei. T. c. cruzi Sylvio X10 contained ~1.5 fold more sequences related to VIPER and L1Tc elements. Experimental infections of mammalian cell lines indicated that T. c. marinkellei has the capacity to invade non-bat cells and undergo intracellular replication. Conclusions Several unique sequences were identified in the comparison, including a potential subspecies-specific gene acquisition in T. c. marinkellei. The identified differences reflect the distinct evolutionary trajectories of these parasites and represent targets for functional investigation.
Collapse
Affiliation(s)
- Oscar Franzén
- Department of Cell and Molecular Biology, Karolinska Institutet, Box 285, Stockholm SE 17177, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Phylogenetic evidence based on Trypanosoma cruzi nuclear gene sequences and information entropy suggest that inter-strain intragenic recombination is a basic mechanism underlying the allele diversity of hybrid strains. INFECTION GENETICS AND EVOLUTION 2012; 12:1064-71. [DOI: 10.1016/j.meegid.2012.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 11/27/2022]
|
19
|
Messenger LA, Llewellyn MS, Bhattacharyya T, Franzén O, Lewis MD, Ramírez JD, Carrasco HJ, Andersson B, Miles MA. Multiple mitochondrial introgression events and heteroplasmy in trypanosoma cruzi revealed by maxicircle MLST and next generation sequencing. PLoS Negl Trop Dis 2012; 6:e1584. [PMID: 22506081 PMCID: PMC3323513 DOI: 10.1371/journal.pntd.0001584] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 02/15/2012] [Indexed: 11/19/2022] Open
Abstract
Background Mitochondrial DNA is a valuable taxonomic marker due to its relatively fast rate of evolution. In Trypanosoma cruzi, the causative agent of Chagas disease, the mitochondrial genome has a unique structural organization consisting of 20–50 maxicircles (∼20 kb) and thousands of minicircles (0.5–10 kb). T. cruzi is an early diverging protist displaying remarkable genetic heterogeneity and is recognized as a complex of six discrete typing units (DTUs). The majority of infected humans are asymptomatic for life while 30–35% develop potentially fatal cardiac and/or digestive syndromes. However, the relationship between specific clinical outcomes and T. cruzi genotype remains elusive. The availability of whole genome sequences has driven advances in high resolution genotyping techniques and re-invigorated interest in exploring the diversity present within the various DTUs. Methodology/Principal Findings To describe intra-DTU diversity, we developed a highly resolutive maxicircle multilocus sequence typing (mtMLST) scheme based on ten gene fragments. A panel of 32 TcI isolates was genotyped using the mtMLST scheme, GPI, mini-exon and 25 microsatellite loci. Comparison of nuclear and mitochondrial data revealed clearly incongruent phylogenetic histories among different geographical populations as well as major DTUs. In parallel, we exploited read depth data, generated by Illumina sequencing of the maxicircle genome from the TcI reference strain Sylvio X10/1, to provide the first evidence of mitochondrial heteroplasmy (heterogeneous mitochondrial genomes in an individual cell) in T. cruzi. Conclusions/Significance mtMLST provides a powerful approach to genotyping at the sub-DTU level. This strategy will facilitate attempts to resolve phenotypic variation in T. cruzi and to address epidemiologically important hypotheses in conjunction with intensive spatio-temporal sampling. The observations of both general and specific incidences of nuclear-mitochondrial phylogenetic incongruence indicate that genetic recombination is geographically widespread and continues to influence the natural population structure of TcI, a conclusion which challenges the traditional paradigm of clonality in T. cruzi. Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is an important public health problem in Latin America. While molecular techniques can differentiate the major T. cruzi genetic lineages, few have sufficient resolution to describe diversity among closely related strains. The online availability of three mitochondrial genomes allowed us to design a multilocus sequence typing (mtMLST) scheme to exploit these rapidly evolving markers. We compared mtMLST with current nuclear typing tools using isolates belonging to the oldest and most widely occurring lineage TcI. T. cruzi is generally believed to reproduce clonally. However, in this study, distinct branching patterns between mitochondrial and nuclear phylogenetic trees revealed multiple incidences of genetic exchange within different geographical populations and major lineages. We also examined Illumina sequencing data from the TcI genome strain which revealed multiple different mitochondrial genomes within an individual parasite (heteroplasmy) that were, however, not sufficiently divergent to represent a major source of typing error. We strongly recommend this combined nuclear and mitochondrial genotyping methodology to reveal cryptic diversity and genetic exchange in T. cruzi. The level of resolution that this mtMLST provides should greatly assist attempts to elucidate the complex interactions between parasite genotype, clinical outcome and disease distribution.
Collapse
Affiliation(s)
- Louisa A Messenger
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Teixeira SM, de Paiva RMC, Kangussu-Marcolino MM, Darocha WD. Trypanosomatid comparative genomics: Contributions to the study of parasite biology and different parasitic diseases. Genet Mol Biol 2012; 35:1-17. [PMID: 22481868 PMCID: PMC3313497 DOI: 10.1590/s1415-47572012005000008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/18/2011] [Indexed: 01/23/2023] Open
Abstract
In 2005, draft sequences of the genomes of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major, also known as the Tri-Tryp genomes, were published. These protozoan parasites are the causative agents of three distinct insect-borne diseases, namely sleeping sickness, Chagas disease and leishmaniasis, all with a worldwide distribution. Despite the large estimated evolutionary distance among them, a conserved core of ~6,200 trypanosomatid genes was found among the Tri-Tryp genomes. Extensive analysis of these genomic sequences has greatly increased our understanding of the biology of these parasites and their host-parasite interactions. In this article, we review the recent advances in the comparative genomics of these three species. This analysis also includes data on additional sequences derived from other trypanosmatid species, as well as recent data on gene expression and functional genomics. In addition to facilitating the identification of key parasite molecules that may provide a better understanding of these complex diseases, genome studies offer a rich source of new information that can be used to define potential new drug targets and vaccine candidates for controlling these parasitic infections.
Collapse
Affiliation(s)
- Santuza M Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | |
Collapse
|
21
|
Zingales B, Miles MA, Campbell DA, Tibayrenc M, Macedo AM, Teixeira MMG, Schijman AG, Llewellyn MS, Lages-Silva E, Machado CR, Andrade SG, Sturm NR. The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. INFECTION GENETICS AND EVOLUTION 2011; 12:240-53. [PMID: 22226704 DOI: 10.1016/j.meegid.2011.12.009] [Citation(s) in RCA: 645] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/16/2011] [Indexed: 10/14/2022]
Abstract
The protozoan Trypanosoma cruzi, its mammalian reservoirs, and vectors have existed in nature for millions of years. The human infection, named Chagas disease, is a major public health problem for Latin America. T. cruzi is genetically highly diverse and the understanding of the population structure of this parasite is critical because of the links to transmission cycles and disease. At present, T. cruzi is partitioned into six discrete typing units (DTUs), TcI-TcVI. Here we focus on the current status of taxonomy-related areas such as population structure, phylogeographical and eco-epidemiological features, and the correlation of DTU with natural and experimental infection. We also summarize methods for DTU genotyping, available for widespread use in endemic areas. For the immediate future multilocus sequence typing is likely to be the gold standard for population studies. We conclude that greater advances in our knowledge on pathogenic and epidemiological features of these parasites are expected in the coming decade through the comparative analysis of the genomes from isolates of various DTUs.
Collapse
Affiliation(s)
- Bianca Zingales
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|