1
|
Sola D, Betancor M, Marco Lorente PA, Pérez Lázaro S, Barrio T, Sevilla E, Marín B, Moreno B, Monzón M, Acín C, Bolea R, Badiola JJ, Otero A. Diagnosis in Scrapie: Conventional Methods and New Biomarkers. Pathogens 2023; 12:1399. [PMID: 38133284 PMCID: PMC10746075 DOI: 10.3390/pathogens12121399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Scrapie, a naturally occurring prion disease affecting goats and sheep, comprises classical and atypical forms, with classical scrapie being the archetype of transmissible spongiform encephalopathies. This review explores the challenges of scrapie diagnosis and the utility of various biomarkers and their potential implications for human prion diseases. Understanding these biomarkers in the context of scrapie may enable earlier prion disease diagnosis in humans, which is crucial for effective intervention. Research on scrapie biomarkers bridges the gap between veterinary and human medicine, offering hope for the early detection and improved management of prion diseases.
Collapse
Affiliation(s)
- Diego Sola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Marina Betancor
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Paula A. Marco Lorente
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Sonia Pérez Lázaro
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Tomás Barrio
- Unité Mixte de Recherche de l’Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement1225 Interactions Hôtes-Agents Pathogènes, École Nationale Vétérinaire de Toulouse, 31076 Toulouse, France
| | - Eloisa Sevilla
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Belén Marín
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Bernardino Moreno
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Marta Monzón
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Cristina Acín
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Juan J. Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| | - Alicia Otero
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, IA2, Universidad de Zaragoza, 50013 Zaragoza, Spain; (D.S.)
| |
Collapse
|
2
|
Hernaiz A, Sanz A, Sentre S, Ranera B, Lopez-Pérez O, Zaragoza P, Badiola JJ, Filali H, Bolea R, Toivonen JM, Martín-Burriel I. Genome-Wide Methylation Profiling in the Thalamus of Scrapie Sheep. Front Vet Sci 2022; 9:824677. [PMID: 35252421 PMCID: PMC8888973 DOI: 10.3389/fvets.2022.824677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Scrapie is a neurodegenerative disorder belonging to the group of transmissible spongiform encephalopathy (TSE). Scrapie occurs in sheep and goats, which are considered good natural animal models of these TSE. Changes in DNA methylation occur in the central nervous system (CNS) of patients suffering from prion-like neurodegenerative diseases, such as Alzheimer's disease. Nevertheless, potential DNA methylation alterations have not yet been investigated in the CNS of any prion disease model or naturally infected cases, neither in humans nor in animals. Genome-wide DNA methylation patterns were studied in the thalamus obtained from sheep naturally infected with scrapie at a clinical stage (n = 4) and from controls (n = 4) by performing a whole-genome bisulfite sequencing (WGBS) analysis. Ewes carried the scrapie-susceptible ARQ/ARQ PRNP genotype and were sacrificed at a similar age (4–6 years). Although the average genomic methylation levels were similar between the control and the scrapie animals, we identified 8,907 significant differentially methylated regions (DMRs) and 39 promoters (DMPs). Gene Ontology analysis revealed that hypomethylated DMRs were enriched in genes involved in transmembrane transport and cell adhesion, whereas hypermethylated DMRs were related to intracellular signal transduction genes. Moreover, genes highly expressed in specific types of CNS cells and those previously described to be differentially expressed in scrapie brains contained DMRs. Finally, a quantitative PCR (qPCR) validation indicated differences in the expression of five genes (PCDH19, SNCG, WDR45B, PEX1, and CABIN1) that matched the methylation changes observed in the genomic study. Altogether, these results suggest a potential regulatory role of DNA methylation in prion neuropathology.
Collapse
Affiliation(s)
- Adelaida Hernaiz
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
| | - Arianne Sanz
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
| | - Sara Sentre
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
| | - Beatriz Ranera
- Facultad de Ciencias de la Salud, Universidad San Jorge, Zaragoza, Spain
| | - Oscar Lopez-Pérez
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
| | - Pilar Zaragoza
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
| | - Juan J. Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
| | - Hicham Filali
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
| | - Janne M. Toivonen
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Inmaculada Martín-Burriel
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Inmaculada Martín-Burriel
| |
Collapse
|
3
|
López-Pérez Ó, Bernal-Martín M, Hernaiz A, Llorens F, Betancor M, Otero A, Toivonen JM, Zaragoza P, Zerr I, Badiola JJ, Bolea R, Martín-Burriel I. BAMBI and CHGA in Prion Diseases: Neuropathological Assessment and Potential Role as Disease Biomarkers. Biomolecules 2020; 10:biom10050706. [PMID: 32370154 PMCID: PMC7277700 DOI: 10.3390/biom10050706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022] Open
Abstract
Prion diseases affect both animals and humans. Research in the natural animal model of the disease could help in the understanding of neuropathological mechanisms and in the development of biomarkers for human pathologies. For this purpose, we studied the expression of 10 genes involved in prion propagation in vitro in the central nervous system of scrapie-infected sheep. Dysregulated genes (BAMBI and CHGA) were further analysed in a transgenic murine model (Tg338) of scrapie, and their protein distribution was determined using immunohistochemistry and Western blot. Their potential as biomarkers was finally assessed using enzyme-linked immunosorbent assay (ELISA) in cerebrospinal fluid (CSF) of scrapie sheep and Creutzfeldt-Jakob disease (CJD) patients. Protein BAMBI was upregulated in highly affected brain areas and CHGA was overexpressed along the brain in both models. Moreover, BAMBI and CHGA immunostaining scores strongly correlated with spongiosis and microgliosis in mice. Finally, levels of BAMBI were significantly higher in the CSF of clinical sheep and CJD patients. In addition to their potential as biomarkers, our work confirms the role of BAMBI and CHGA in prion neuropathology in vivo, but besides prion replication, they seem to be involved in the characteristic neuroinflammatory response associated to prion infection.
Collapse
Affiliation(s)
- Óscar López-Pérez
- Laboratorio de Genética Bioquímica (LAGENBIO), Universidad de Zaragoza, Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, 50013 Zaragoza, Spain; (Ó.L.-P.); (M.B.-M.); (A.H.); (J.M.T.); (P.Z.)
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Universidad de Zaragoza, Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, 50013 Zaragoza, Spain; (M.B.); (A.O.); (J.J.B.); (R.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Biomédica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Marcos Bernal-Martín
- Laboratorio de Genética Bioquímica (LAGENBIO), Universidad de Zaragoza, Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, 50013 Zaragoza, Spain; (Ó.L.-P.); (M.B.-M.); (A.H.); (J.M.T.); (P.Z.)
| | - Adelaida Hernaiz
- Laboratorio de Genética Bioquímica (LAGENBIO), Universidad de Zaragoza, Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, 50013 Zaragoza, Spain; (Ó.L.-P.); (M.B.-M.); (A.H.); (J.M.T.); (P.Z.)
| | - Franc Llorens
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Biomédica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical School, 37075 Göttingen, Germany;
| | - Marina Betancor
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Universidad de Zaragoza, Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, 50013 Zaragoza, Spain; (M.B.); (A.O.); (J.J.B.); (R.B.)
| | - Alicia Otero
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Universidad de Zaragoza, Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, 50013 Zaragoza, Spain; (M.B.); (A.O.); (J.J.B.); (R.B.)
- Department of Biological Sciences, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Janne Markus Toivonen
- Laboratorio de Genética Bioquímica (LAGENBIO), Universidad de Zaragoza, Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, 50013 Zaragoza, Spain; (Ó.L.-P.); (M.B.-M.); (A.H.); (J.M.T.); (P.Z.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, 28029 Madrid, Spain;
| | - Pilar Zaragoza
- Laboratorio de Genética Bioquímica (LAGENBIO), Universidad de Zaragoza, Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, 50013 Zaragoza, Spain; (Ó.L.-P.); (M.B.-M.); (A.H.); (J.M.T.); (P.Z.)
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical School, 37075 Göttingen, Germany;
| | - Juan José Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Universidad de Zaragoza, Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, 50013 Zaragoza, Spain; (M.B.); (A.O.); (J.J.B.); (R.B.)
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Universidad de Zaragoza, Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, 50013 Zaragoza, Spain; (M.B.); (A.O.); (J.J.B.); (R.B.)
| | - Inmaculada Martín-Burriel
- Laboratorio de Genética Bioquímica (LAGENBIO), Universidad de Zaragoza, Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, 50013 Zaragoza, Spain; (Ó.L.-P.); (M.B.-M.); (A.H.); (J.M.T.); (P.Z.)
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Universidad de Zaragoza, Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, 50013 Zaragoza, Spain; (M.B.); (A.O.); (J.J.B.); (R.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, 28029 Madrid, Spain;
- Correspondence: ; Tel.: +34-653-638-749
| |
Collapse
|
4
|
Abstract
Prion diseases are unique neurodegenerative pathologies that can occur with sporadic, genetic, and acquired etiologies. Human and animal prion diseases can be recapitulated in laboratory animals with good reproducibility providing highly controlled models for studying molecular mechanisms of neurodegeneration. In this chapter the overall area of omics research in prion diseases is described. The term omics includes all fields of studies that employ a comprehensive, unbiased, and high-throughput approach to areas of research such as functional genomics, transcriptomics, and proteomics. These kind of approaches can be extremely helpful in identifying disease susceptibility factors and pathways that are dysregulated upon the onset and the progression of the disease. Herein, the most important research about the various forms of prion pathologies in human and in models of prion diseases in animals is presented and discussed.
Collapse
|
5
|
Xerxa E, Barbisin M, Chieppa MN, Krmac H, Vallino Costassa E, Vatta P, Simmons M, Caramelli M, Casalone C, Corona C, Legname G. Whole Blood Gene Expression Profiling in Preclinical and Clinical Cattle Infected with Atypical Bovine Spongiform Encephalopathy. PLoS One 2016; 11:e0153425. [PMID: 27073865 PMCID: PMC4830546 DOI: 10.1371/journal.pone.0153425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/29/2016] [Indexed: 12/12/2022] Open
Abstract
Prion diseases, such as bovine spongiform encephalopathies (BSE), are transmissible neurodegenerative disorders affecting humans and a wide variety of mammals. Variant Creutzfeldt-Jakob disease (vCJD), a prion disease in humans, has been linked to exposure to BSE prions. This classical BSE (cBSE) is now rapidly disappearing as a result of appropriate measures to control animal feeding. Besides cBSE, two atypical forms (named H- and L-type BSE) have recently been described in Europe, Japan, and North America. Here we describe the first wide-spectrum microarray analysis in whole blood of atypical BSE-infected cattle. Transcriptome changes in infected animals were analyzed prior to and after the onset of clinical signs. The microarray analysis revealed gene expression changes in blood prior to the appearance of the clinical signs and during the progression of the disease. A set of 32 differentially expressed genes was found to be in common between clinical and preclinical stages and showed a very similar expression pattern in the two phases. A 22-gene signature showed an oscillating pattern of expression, being differentially expressed in the preclinical stage and then going back to control levels in the symptomatic phase. One gene, SEL1L3, was downregulated during the progression of the disease. Most of the studies performed up to date utilized various tissues, which are not suitable for a rapid analysis of infected animals and patients. Our findings suggest the intriguing possibility to take advantage of whole blood RNA transcriptional profiling for the preclinical identification of prion infection. Further, this study highlighted several pathways, such as immune response and metabolism that may play an important role in peripheral prion pathogenesis. Finally, the gene expression changes identified in the present study may be further investigated as a fingerprint for monitoring the progression of disease and for developing targeted therapeutic interventions.
Collapse
Affiliation(s)
- Elena Xerxa
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Functional and Structural Genomics sector, Trieste, Italy
| | - Maura Barbisin
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Functional and Structural Genomics sector, Trieste, Italy
| | - Maria Novella Chieppa
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Torino, Italy
| | - Helena Krmac
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Functional and Structural Genomics sector, Trieste, Italy
| | - Elena Vallino Costassa
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Torino, Italy
| | - Paolo Vatta
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Functional and Structural Genomics sector, Trieste, Italy
| | - Marion Simmons
- Pathology Department, Animal and Plant Health Agency (Weybridge), New Haw, Addlestone, United Kingdom
| | - Maria Caramelli
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Torino, Italy
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Torino, Italy
| | - Cristiano Corona
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Torino, Italy
| | - Giuseppe Legname
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Functional and Structural Genomics sector, Trieste, Italy
- * E-mail:
| |
Collapse
|
6
|
The effect of PrP(Sc) accumulation on inflammatory gene expression within sheep peripheral lymphoid tissue. Vet Microbiol 2015; 181:204-11. [PMID: 26507419 PMCID: PMC4678288 DOI: 10.1016/j.vetmic.2015.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/27/2015] [Accepted: 10/13/2015] [Indexed: 11/22/2022]
Abstract
Arrays quantified gene expression in peripheral LNs during sheep scrapie. Disease progression associated with alterations of inflammatory gene expression. Lymph node response contrasts with response of CNS. Step changes to gene expression after the detection of PrPSc in peripheral LNs.
Accumulation of the misfolded prion protein, PrPSc in the central nervous system (CNS) is strongly linked to progressive neurodegenerative disease. For many transmissible spongiform encephalopathies (TSEs), peripheral lymphoid tissue is an important site of PrPSc amplification but without gross immunological consequence. Susceptible VRQ homozygous New Zealand Cheviot sheep were infected with SSBP/1 scrapie by inoculation in the drainage area of the prescapular lymph nodes. The earliest time that PrPSc was consistently detected by immunohistology in these nodes was D50 post infection. This transcriptomic study of lymph node taken before (D10) and after (D50) the detection of PrPSc, aimed to identify the genes and physiological pathways affected by disease progression within the nodes as assessed by PrPSc detection. Affymetrix Ovine Gene arrays identified 75 and 80 genes as differentially-expressed at D10 and D50, respectively, in comparison with control sheep inoculated with uninfected brain homogenate. Approximately 70% of these were repressed at each time point. RT-qPCR analysis of seven genes showed statistically significant correlation with the array data, although the results for IL1RN and TGIF were different between the two technologies. The ingenuity pathway analysis (IPA) and general low level of repression of gene expression in lymphoid tissue, including many inflammatory genes, contrasts with the pro-inflammatory and pro-apoptotic events that occur within the CNS at equivalent stages of disease progression as assessed by PrPSc accumulation.
Collapse
|
7
|
Gossner AG, Hopkins J. Transcriptome analysis of CNS immediately before and after the detection of PrP(Sc) in SSBP/1 sheep scrapie. Vet Microbiol 2014; 173:201-7. [PMID: 25183238 PMCID: PMC4206282 DOI: 10.1016/j.vetmic.2014.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/25/2014] [Accepted: 07/27/2014] [Indexed: 11/18/2022]
Abstract
Arrays and DGE-tags quantified gene expression in the CNS during sheep scrapie. Neurological receptors were increased with disease progression. Clues to basis of psychiatric changes. Step changes to gene expression after the detection of PrPSc in CNS.
Sheep scrapie is a transmissible spongiform encephalopathy (TSE), progressive and fatal neurodegenerative diseases of the central nervous system (CNS) linked to the accumulation of misfolded prion protein, PrPSc. New Zealand Cheviot sheep, homozygous for the VRQ genotype of the PRNP gene are most susceptible with an incubation period of 193 days with SSBP/1 scrapie. However, the earliest time point that PrPSc can be detected in the CNS is 125 days (D125). The aim of this study was to quantify changes to the transcriptome of the thalamus and obex (medulla) at times immediately before (D75) and after (D125) PrPSc was detected. Affymetrix gene arrays were used to quantify gene expression in the thalamus and Illumina DGE-tag profiling for obex. Ingenuity Pathway Analysis was used to help describe the biological processes of scrapie pathology. Neurological disease and Cancer were common Bio Functions in each tissue at D75; inflammation and cell death were major processes at D125. Several neurological receptors were significantly increased at D75 (e.g. CHRNA6, GRM1, HCN2), which might be clues to the molecular basis of psychiatric changes associated with TSEs. No genes were significantly differentially expressed at both D75 and D125 and there was no progression of events from earlier to later time points. This implies that there is no simple linear progression of pathological or molecular events. There seems to be a step-change between D75 and D125, correlating with the detection of PrPSc, resulting in the involvement of different pathological processes in later TSE disease.
Collapse
Affiliation(s)
- Anton G Gossner
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, Edinburgh EH25 9RG, UK
| | - John Hopkins
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, Edinburgh EH25 9RG, UK.
| |
Collapse
|
8
|
Barbisin M, Vanni S, Schmädicke AC, Montag J, Motzkus D, Opitz L, Salinas-Riester G, Legname G. Gene expression profiling of brains from bovine spongiform encephalopathy (BSE)-infected cynomolgus macaques. BMC Genomics 2014; 15:434. [PMID: 24898206 PMCID: PMC4061447 DOI: 10.1186/1471-2164-15-434] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 05/07/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prion diseases are fatal neurodegenerative disorders whose pathogenesis mechanisms are not fully understood. In this context, the analysis of gene expression alterations occurring in prion-infected animals represents a powerful tool that may contribute to unravel the molecular basis of prion diseases and therefore discover novel potential targets for diagnosis and therapeutics. Here we present the first large-scale transcriptional profiling of brains from BSE-infected cynomolgus macaques, which are an excellent model for human prion disorders. RESULTS The study was conducted using the GeneChip® Rhesus Macaque Genome Array and revealed 300 transcripts with expression changes greater than twofold. Among these, the bioinformatics analysis identified 86 genes with known functions, most of which are involved in cellular development, cell death and survival, lipid homeostasis, and acute phase response signaling. RT-qPCR was performed on selected gene transcripts in order to validate the differential expression in infected animals versus controls. The results obtained with the microarray technology were confirmed and a gene signature was identified. In brief, HBB and HBA2 were down-regulated in infected macaques, whereas TTR, APOC1 and SERPINA3 were up-regulated. CONCLUSIONS Some genes involved in oxygen or lipid transport and in innate immunity were found to be dysregulated in prion infected macaques. These genes are known to be involved in other neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Our results may facilitate the identification of potential disease biomarkers for many neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy.
| |
Collapse
|
9
|
Filali H, Martín-Burriel I, Harders F, Varona L, Hedman C, Mediano DR, Monzón M, Bossers A, Badiola JJ, Bolea R. Gene expression profiling of mesenteric lymph nodes from sheep with natural scrapie. BMC Genomics 2014; 15:59. [PMID: 24450868 PMCID: PMC3906094 DOI: 10.1186/1471-2164-15-59] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 01/17/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prion diseases are characterized by the accumulation of the pathogenic PrPSc protein, mainly in the brain and the lymphoreticular system. Although prions multiply/accumulate in the lymph nodes without any detectable pathology, transcriptional changes in this tissue may reflect biological processes that contribute to the molecular pathogenesis of prion diseases. Little is known about the molecular processes that occur in the lymphoreticular system in early and late stages of prion disease. We performed a microarray-based study to identify genes that are differentially expressed at different disease stages in the mesenteric lymph node of sheep naturally infected with scrapie. Oligo DNA microarrays were used to identify gene-expression profiles in the early/middle (preclinical) and late (clinical) stages of the disease. RESULTS In the clinical stage of the disease, we detected 105 genes that were differentially expressed (≥2-fold change in expression). Of these, 43 were upregulated and 62 downregulated as compared with age-matched negative controls. Fewer genes (50) were differentially expressed in the preclinical stage of the disease. Gene Ontology enrichment analysis revealed that the differentially expressed genes were largely associated with the following terms: glycoprotein, extracellular region, disulfide bond, cell cycle and extracellular matrix. Moreover, some of the annotated genes could be grouped into 3 specific signaling pathways: focal adhesion, PPAR signaling and ECM-receptor interaction. We discuss the relationship between the observed gene expression profiles and PrPSc deposition and the potential involvement in the pathogenesis of scrapie of 7 specific differentially expressed genes whose expression levels were confirmed by real time-PCR. CONCLUSIONS The present findings identify new genes that may be involved in the pathogenesis of natural scrapie infection in the lymphoreticular system, and confirm previous reports describing scrapie-induced alterations in the expression of genes involved in protein misfolding, angiogenesis and the oxidative stress response. Further studies will be necessary to determine the role of these genes in prion replication, dissemination and in the response of the organism to this disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Rosa Bolea
- Centro de Investigación en Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain.
| |
Collapse
|
10
|
Asuni AA, Gray B, Bailey J, Skipp P, Perry VH, O'Connor V. Analysis of the hippocampal proteome in ME7 prion disease reveals a predominant astrocytic signature and highlights the brain-restricted production of clusterin in chronic neurodegeneration. J Biol Chem 2013; 289:4532-45. [PMID: 24366862 PMCID: PMC3924314 DOI: 10.1074/jbc.m113.502690] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Prion diseases are characterized by accumulation of misfolded protein, gliosis, synaptic dysfunction, and ultimately neuronal loss. This sequence, mirroring key features of Alzheimer disease, is modeled well in ME7 prion disease. We used iTRAQTM/mass spectrometry to compare the hippocampal proteome in control and late-stage ME7 animals. The observed changes associated with reactive glia highlighted some specific proteins that dominate the proteome in late-stage disease. Four of the up-regulated proteins (GFAP, high affinity glutamate transporter (EAAT-2), apo-J (Clusterin), and peroxiredoxin-6) are selectively expressed in astrocytes, but astrocyte proliferation does not contribute to their up-regulation. The known functional role of these proteins suggests this response acts against protein misfolding, excitotoxicity, and neurotoxic reactive oxygen species. A recent convergence of genome-wide association studies and the peripheral measurement of circulating levels of acute phase proteins have focused attention on Clusterin as a modifier of late-stage Alzheimer disease and a biomarker for advanced neurodegeneration. Since ME7 animals allow independent measurement of acute phase proteins in the brain and circulation, we extended our investigation to address whether changes in the brain proteome are detectable in blood. We found no difference in the circulating levels of Clusterin in late-stage prion disease when animals will show behavioral decline, accumulation of misfolded protein, and dramatic synaptic and neuronal loss. This does not preclude an important role of Clusterin in late-stage disease, but it cautions against the assumption that brain levels provide a surrogate peripheral measure for the progression of brain degeneration.
Collapse
|
11
|
Rosa A, Scano P, Incani A, Pilla F, Maestrale C, Manca M, Ligios C, Pani A. Lipid profiles in brains from sheep with natural scrapie. Chem Phys Lipids 2013; 175-176:33-40. [DOI: 10.1016/j.chemphyslip.2013.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/01/2013] [Indexed: 01/03/2023]
|
12
|
Cho IS, Spinner DS, Kascsak RJ, Meeker HC, Kim BS, Park SY, Schuller-Levis G, Park E. Altered lymphocyte proliferation and innate immune function in scrapie 139A- and ME7-infected mice. Viral Immunol 2013; 26:192-200. [PMID: 23656168 DOI: 10.1089/vim.2012.0091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lymphoid organs play an important role in prion disease development and progression. While the role of lymphoid organs and changes in immune-related genes have been extensively investigated in scrapie-infected animals, innate immunity has not. Previous studies examined lymphocyte function in scrapie-infected C3H/HeJ mice, which exhibit defects in lipopolysaccharide (LPS) response now known to result from a mutation in Toll-like receptor (TLR) 4. We examined immune function in scrapie-infected CD1 mice, which are LPS responders. Lymphocyte proliferation from CD1 mice infected with either 139A or ME7 scrapie was measured in response to concanavalin (Con) A or LPS at 1 and 3 months after infection. Following LPS exposure, mice infected 3 months with ME7, but not 139A, demonstrated significantly decreased lymphocyte proliferation compared to controls. After Con A exposure, lymphocyte proliferation in scrapie-infected mice did not differ from controls. Gender-specific comparison of lymphocyte proliferation showed significant decreases in mitogenic responses in females infected 3 months with either 139A or ME7, compared to controls. Males infected for 3 months with ME7, but not 139A, showed significantly decreased proliferation after lymphocyte exposure to LPS, but not Con A. Neither gender showed changes in lymphocyte proliferation after 1 month of scrapie infection. Innate immune activation of peritoneal macrophages was determined via production of nitric oxide (NO), IL-6, and TNF-α after exposure to TLR ligands. TNF-α and IL-6 production were reduced in macrophages from females infected with either scrapie strain for 3 months, while NO production after TLR agonist plus IFN-γ exposure was decreased in both females and males infected for 3 months with 139A, compared to ME7. These data demonstrated altered innate immunity, suggesting hormonal and/or other gender-specific regulation may contribute to gender differences in some immune functions. Our data demonstrate lymphocyte proliferation and innate immune functioning in scrapie-infected mice deteriorate with disease progression.
Collapse
Affiliation(s)
- In Soo Cho
- Animal, Plant and Fisheries Quarantine and Inspection Agency, Anyang, Gyunggi-do, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|