1
|
Matos GR, Feliciano JR, Leitão JH. Non-coding regulatory sRNAs from bacteria of the Burkholderia cepacia complex. Appl Microbiol Biotechnol 2024; 108:280. [PMID: 38563885 PMCID: PMC10987360 DOI: 10.1007/s00253-024-13121-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Small non-coding RNAs (sRNAs) are key regulators of post-transcriptional gene expression in bacteria. Hundreds of sRNAs have been found using in silico genome analysis and experimentally based approaches in bacteria of the Burkholderia cepacia complex (Bcc). However, and despite the hundreds of sRNAs identified so far, the number of functionally characterized sRNAs from these bacteria remains very limited. In this mini-review, we describe the general characteristics of sRNAs and the main mechanisms involved in their action as regulators of post-transcriptional gene expression, as well as the work done so far in the identification and characterization of sRNAs from Bcc. The number of functionally characterized sRNAs from Bcc is expected to increase and to add new knowledge on the biology of these bacteria, leading to novel therapeutic approaches to tackle the infections caused by these opportunistic pathogens, particularly severe among cystic fibrosis patients. KEY POINTS: •Hundreds of sRNAs have been identified in Burkholderia cepacia complex bacteria (Bcc). •A few sRNAs have been functionally characterized in Bcc. •Functionally characterized Bcc sRNAs play major roles in metabolism, biofilm formation, and virulence.
Collapse
Affiliation(s)
- Gonçalo R Matos
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Joana R Feliciano
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Jorge H Leitão
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal.
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal.
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
| |
Collapse
|
2
|
Regmi R, Penton CR, Anderson J, Gupta VVSR. Do small RNAs unlock the below ground microbiome-plant interaction mystery? Front Mol Biosci 2022; 9:1017392. [PMID: 36406267 PMCID: PMC9670543 DOI: 10.3389/fmolb.2022.1017392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/18/2022] [Indexed: 11/02/2023] Open
Abstract
Over the past few decades, regulatory RNAs, such as small RNAs (sRNAs), have received increasing attention in the context of host-microbe interactions due to their diverse roles in controlling various biological processes in eukaryotes. In addition, studies have identified an increasing number of sRNAs with novel functions across a wide range of bacteria. What is not well understood is why cells regulate gene expression through post-transcriptional mechanisms rather than at the initiation of transcription. The finding of a multitude of sRNAs and their identified associated targets has allowed further investigation into the role of sRNAs in mediating gene regulation. These foundational data allow for further development of hypotheses concerning how a precise control of gene activity is accomplished through the combination of transcriptional and post-transcriptional regulation. Recently, sRNAs have been reported to participate in interkingdom communication and signalling where sRNAs originating from one kingdom are able to target or control gene expression in another kingdom. For example, small RNAs of fungal pathogens that silence plant genes and vice-versa plant sRNAs that mediate bacterial gene expression. However, there is currently a lack of evidence regarding sRNA-based inter-kingdom signalling across more than two interacting organisms. A habitat that provides an excellent opportunity to investigate interconnectivity is the plant rhizosphere, a multifaceted ecosystem where plants and associated soil microbes are known to interact. In this paper, we discuss how the interconnectivity of bacteria, fungi, and plants within the rhizosphere may be mediated by bacterial sRNAs with a particular focus on disease suppressive and non-suppressive soils. We discuss the potential roles sRNAs may play in the below-ground world and identify potential areas of future research, particularly in reference to the regulation of plant immunity genes by bacterial and fungal communities in disease-suppressive and non-disease-suppressive soils.
Collapse
Affiliation(s)
- Roshan Regmi
- CSIRO Microbiomes for One Systems Health, Waite Campus, Canberra, SA, Australia
- CSIRO Agriculture and Food, Waite Campus, Canberra, SA, Australia
| | - C. Ryan Penton
- CSIRO Agriculture and Food, Waite Campus, Canberra, SA, Australia
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ, United States
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Jonathan Anderson
- CSIRO Microbiomes for One Systems Health, Waite Campus, Canberra, SA, Australia
- CSIRO Agriculture and Food, Canberra, SA, Australia
| | - Vadakattu V. S. R. Gupta
- CSIRO Microbiomes for One Systems Health, Waite Campus, Canberra, SA, Australia
- CSIRO Agriculture and Food, Waite Campus, Canberra, SA, Australia
| |
Collapse
|
3
|
Abebew D, Sayedain FS, Bode E, Bode HB. Uncovering Nematicidal Natural Products from Xenorhabdus Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:498-506. [PMID: 34981939 PMCID: PMC8778618 DOI: 10.1021/acs.jafc.1c05454] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Parasitic nematodes infect different species of animals and plants. Root-knot nematodes are members of the genus Meloidogyne, which is distributed worldwide and parasitizes numerous plants, including vegetables, fruits, and crops. To reduce the global burden of nematode infections, only a few chemical therapeutic classes are currently available. The majority of nematicides are prohibited due to their harmful effects on the environment and public health. This study was intended to identify new nematicidal natural products (NPs) from the bacterial genus Xenorhabdus, which exists in symbiosis with Steinernema nematodes. Cell-free culture supernatants of Xenorhabdus bacteria were used for nematicidal bioassay, and high mortality rates for Caenorhabditis elegans and Meloidogyne javanica were observed. Promoter exchange mutants of biosynthetic gene clusters encoding nonribosomal peptide synthetases (NRPS) or NRPS-polyketide synthase hybrids in Xenorhabdus bacteria carrying additionally a hfq deletion produce a single NP class, which have been tested for their bioactivity. Among the NPs tested, fabclavines, rhabdopeptides, and xenocoumacins were highly toxic to nematodes and resulted in mortalities of 95.3, 74.6, and 72.6% to C. elegans and 82.0, 90.0, and 85.3% to M. javanica, respectively. The findings of such nematicidal NPs can provide templates for uncovering effective and environmentally safe alternatives to commercially available nematicides.
Collapse
Affiliation(s)
- Desalegne Abebew
- Molekulare
Biotechnologie, Goethe Universität
Frankfurt, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
| | - Fatemeh S. Sayedain
- Department
of Natural Products in Organismic Interactions, Max-Planck-Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Edna Bode
- Department
of Natural Products in Organismic Interactions, Max-Planck-Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Helge B. Bode
- Molekulare
Biotechnologie, Goethe Universität
Frankfurt, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Department
of Natural Products in Organismic Interactions, Max-Planck-Institute for Terrestrial Microbiology, Marburg 35043, Germany
- Senckenberg
Gesellschaft für Naturforschung, Frankfurt am Main 60325, Germany
| |
Collapse
|
4
|
Regulation of Glycine Cleavage and Detoxification by a Highly Conserved Glycine Riboswitch in Burkholderia spp. Curr Microbiol 2021; 78:2943-2955. [PMID: 34076709 DOI: 10.1007/s00284-021-02550-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
The glycine riboswitch is a known regulatory element that is unique in having two aptamers that are joined by a linker region. In this study, we investigated a glycine riboswitch located in the 5' untranslated region of a glycine cleavage system homolog (gcvTHP) in Burkholderia spp. Structure prediction using the sequence generated a model with a glycine binding pocket composed of base-triple interactions (G62-A64-A86 and G65-U84-C85) that are supported by A/G minor interactions (A17-C60-G88 and G16-C61-G87, respectively) and two ribose-zipper motifs (C11-G12 interacting with A248-A247 and C153-U154 interacting with A79-A78) which had not been previously reported. The capacity of the riboswitch to bind to glycine was experimentally validated by native gel assays and the crucial role of interactions that make up the glycine binding pocket were proven by mutations of A17U and G16C which resulted in conformational differences that may lead to dysfunction. Using glycine supplemented minimal media, we were able to prove that the expression of the gcvTHP genes found downstream of the riboswitch responded to the glycine concentrations introduced thus confirming the role of this highly conserved Burkholderia riboswitch and its associated genes as a putative glycine detoxification system in Burkholderia spp.
Collapse
|
5
|
Kitto RZ, Christiansen KE, Hammond MC. RNA-based fluorescent biosensors for live cell detection of bacterial sRNA. Biopolymers 2021; 112:e23394. [PMID: 32786000 PMCID: PMC7856060 DOI: 10.1002/bip.23394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 01/21/2023]
Abstract
Bacteria contain a diverse set of RNAs to provide tight regulation of gene expression in response to environmental stimuli. Bacterial small RNAs (sRNAs) work in conjunction with protein cofactors to bind complementary mRNA sequences in the cell, leading to up- or downregulation of protein synthesis. In vivo imaging of sRNAs can aid in understanding their spatiotemporal dynamics in real time, which inspires new ways to manipulate these systems for a variety of applications including synthetic biology and therapeutics. Current methods for sRNA imaging are quite limited in vivo and do not provide real-time information about fluctuations in sRNA levels. Herein, we describe our efforts toward the development of an RNA-based fluorescent biosensor for bacterial sRNA both in vitro and in vivo. We validated these sensors for three different bacterial sRNAs in Escherichia coli and demonstrated that the designs provide a bright, sequence-specific signal output in response to exogenous and endogenous RNA targets.
Collapse
Affiliation(s)
- Rebekah Z Kitto
- Department of Chemistry, University of California, Berkeley, California, USA
- Department of Chemistry and Henry Eyring Center for Cell and Genome Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Kylee E Christiansen
- Department of Chemistry and Henry Eyring Center for Cell and Genome Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Ming C Hammond
- Department of Chemistry, University of California, Berkeley, California, USA
- Department of Chemistry and Henry Eyring Center for Cell and Genome Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
6
|
Koul V, Srivastava D, Singh PP, Kochar M. Genome-wide identification of Azospirillum brasilense Sp245 small RNAs responsive to nitrogen starvation and likely involvement in plant-microbe interactions. BMC Genomics 2020; 21:821. [PMID: 33228533 PMCID: PMC7685610 DOI: 10.1186/s12864-020-07212-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 11/05/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Small RNAs (sRNAs) are non-coding RNAs known to regulate various biological functions such as stress adaptation, metabolism, virulence as well as pathogenicity across a wide range of bacteria, mainly by controlling mRNA stabilization or regulating translation. Identification and functional characterization of sRNAs has been carried out in various plant growth-promoting bacteria and they have been shown to help the cells cope up with environmental stress. No study has been carried out to uncover these regulatory molecules in the diazotrophic alpha-proteobacterium Azospirillum brasilense Sp245 to date. RESULTS Expression-based sRNA identification (RNA-seq) revealed the first list of ~ 468 sRNA candidate genes in A. brasilense Sp245 that were differentially expressed in nitrogen starvation versus non-starved conditions. In parallel, in silico tools also identified 2 of the above as candidate sRNAs. Altogether, putative candidates were stringently curated from RNA-seq data based on known sRNA parameters (size, location, secondary structure, and abundance). In total, ~ 59 significantly expressed sRNAs were identified in this study of which 53 are potentially novel sRNAs as they have no Rfam and BSRD homologs. Sixteen sRNAs were randomly selected and validated for differential expression, which largely was found to be in congruence with the RNA-seq data. CONCLUSIONS Differential expression of 468 A. brasilense sRNAs was indicated by RNA-seq data, a subset of which was confirmed by expression analysis. Four of the significantly expressed sRNAs were not observed in nitrogen starvation while 16 sRNAs were found to be exclusively expressed in nitrogen depletion. Putative candidate sRNAs identified have potential mRNA targets primarily involved in stress (abiotic and biotic) adaptability; regulation of bacterial cellular, biological and molecular pathways such as nitrogen fixation, polyhydroxybutyrate synthesis, chemotaxis, biofilm formation and transcriptional regulation. In addition to directly influencing bacteria, some of these sRNAs also have targets influencing plant-microbe interactions through adhesion of bacteria to plant roots directly, suppressing host response, inducing plant defence and signalling.
Collapse
Affiliation(s)
- Vatsala Koul
- The Energy and Resources Institute, Darbari Seth Block, India Habitat Centre, Lodhi Road, New Delhi, 110003, India
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, Gurugram-Faridabad Road, Gwal Pahari, Haryana, 122003, India
| | - Divya Srivastava
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, Gurugram-Faridabad Road, Gwal Pahari, Haryana, 122003, India
| | - Pushplata Prasad Singh
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, Gurugram-Faridabad Road, Gwal Pahari, Haryana, 122003, India.
| | - Mandira Kochar
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, Gurugram-Faridabad Road, Gwal Pahari, Haryana, 122003, India.
| |
Collapse
|
7
|
New proposal of nitrogen metabolism regulation by small RNAs in the extreme halophilic archaeon Haloferax mediterranei. Mol Genet Genomics 2020; 295:775-785. [DOI: 10.1007/s00438-020-01659-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/27/2020] [Indexed: 12/16/2022]
|
8
|
Dobrzanski T, Pobre V, Moreno LF, Barbosa HCDS, Monteiro RA, de Oliveira Pedrosa F, de Souza EM, Arraiano CM, Steffens MBR. In silico prediction and expression profile analysis of small non-coding RNAs in Herbaspirillum seropedicae SmR1. BMC Genomics 2020; 21:134. [PMID: 32039705 PMCID: PMC7011215 DOI: 10.1186/s12864-019-6402-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/15/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Herbaspirillum seropedicae is a diazotrophic bacterium from the β-proteobacteria class that colonizes endophytically important gramineous species, promotes their growth through phytohormone-dependent stimulation and can express nif genes and fix nitrogen inside plant tissues. Due to these properties this bacterium has great potential as a commercial inoculant for agriculture. The H. seropedicae SmR1 genome is completely sequenced and annotated but despite the availability of diverse structural and functional analysis of this genome, studies involving small non-coding RNAs (sRNAs) has not yet been done. We have conducted computational prediction and RNA-seq analysis to select and confirm the expression of sRNA genes in the H. seropedicae SmR1 genome, in the presence of two nitrogen independent sources and in presence of naringenin, a flavonoid secreted by some plants. RESULTS This approach resulted in a set of 117 sRNAs distributed in riboswitch, cis-encoded and trans-encoded categories and among them 20 have Rfam homologs. The housekeeping sRNAs tmRNA, ssrS and 4.5S were found and we observed that a large number of sRNAs are more expressed in the nitrate condition rather than the control condition and in the presence of naringenin. Some sRNAs expression were confirmed in vitro and this work contributes to better understand the post transcriptional regulation in this bacterium. CONCLUSIONS H. seropedicae SmR1 express sRNAs in the presence of two nitrogen sources and/or in the presence of naringenin. The functions of most of these sRNAs remains unknown but their existence in this bacterium confirms the evidence that sRNAs are involved in many different cellular activities to adapt to nutritional and environmental changes.
Collapse
Affiliation(s)
- Tatiane Dobrzanski
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná (UFPR), Av. Coronel. Francisco H. dos Santos, 210, PoBox 19046, Curitiba, 81.531-980, Paraná, Brazil
| | - Vânia Pobre
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| | - Leandro Ferreira Moreno
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná (UFPR), Av. Coronel. Francisco H. dos Santos, 210, PoBox 19046, Curitiba, 81.531-980, Paraná, Brazil
| | - Helba Cirino de Souza Barbosa
- Graduate Program in Bioinformatics, Universidade Federal do Paraná (UFPR), Rua Alcides Vieira Arcoverde, 1225, Curitiba, 81520-260, Brazil
| | - Rose Adele Monteiro
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná (UFPR), Av. Coronel. Francisco H. dos Santos, 210, PoBox 19046, Curitiba, 81.531-980, Paraná, Brazil.,Graduate Program in Bioinformatics, Universidade Federal do Paraná (UFPR), Rua Alcides Vieira Arcoverde, 1225, Curitiba, 81520-260, Brazil
| | - Fábio de Oliveira Pedrosa
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná (UFPR), Av. Coronel. Francisco H. dos Santos, 210, PoBox 19046, Curitiba, 81.531-980, Paraná, Brazil
| | - Emanuel Maltempi de Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná (UFPR), Av. Coronel. Francisco H. dos Santos, 210, PoBox 19046, Curitiba, 81.531-980, Paraná, Brazil
| | - Cecília Maria Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Maria Berenice Reynaud Steffens
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná (UFPR), Av. Coronel. Francisco H. dos Santos, 210, PoBox 19046, Curitiba, 81.531-980, Paraná, Brazil.
| |
Collapse
|
9
|
Haning K, Engels SM, Williams P, Arnold M, Contreras LM. Applying a New REFINE Approach in Zymomonas mobilis Identifies Novel sRNAs That Confer Improved Stress Tolerance Phenotypes. Front Microbiol 2020; 10:2987. [PMID: 31998271 PMCID: PMC6970203 DOI: 10.3389/fmicb.2019.02987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022] Open
Abstract
As global controllers of gene expression, small RNAs represent powerful tools for engineering complex phenotypes. However, a general challenge prevents the more widespread use of sRNA engineering strategies: mechanistic analysis of these regulators in bacteria lags far behind their high-throughput search and discovery. This makes it difficult to understand how to efficiently identify useful sRNAs to engineer a phenotype of interest. To help address this, we developed a forward systems approach to identify naturally occurring sRNAs relevant to a desired phenotype: RNA-seq Examiner for Phenotype-Informed Network Engineering (REFINE). This pipeline uses existing RNA-seq datasets under different growth conditions. It filters the total transcriptome to locate and rank regulatory-RNA-containing regions that can influence a metabolic phenotype of interest, without the need for previous mechanistic characterization. Application of this approach led to the uncovering of six novel sRNAs related to ethanol tolerance in non-model ethanol-producing bacterium Zymomonas mobilis. Furthermore, upon overexpressing multiple sRNA candidates predicted by REFINE, we demonstrate improved ethanol tolerance reflected by up to an approximately twofold increase in relative growth rate compared to controls not expressing these sRNAs in 7% ethanol (v/v) RMG-supplemented media. In this way, the REFINE approach informs strain-engineering strategies that we expect are applicable for general strain engineering.
Collapse
Affiliation(s)
- Katie Haning
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Sean M. Engels
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Paige Williams
- Department of Aerospace Engineering & Engineering Mechanics, The University of Texas at Austin, Austin, TX, United States
| | - Margaret Arnold
- Department of Computer Science and Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY, United States
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
10
|
Olaya-Abril A, Luque-Almagro VM, Pérez MD, López CM, Amil F, Cabello P, Sáez LP, Moreno-Vivián C, Roldán MD. Putative small RNAs controlling detoxification of industrial cyanide-containing wastewaters by Pseudomonas pseudoalcaligenes CECT5344. PLoS One 2019; 14:e0212032. [PMID: 30735537 PMCID: PMC6368324 DOI: 10.1371/journal.pone.0212032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/26/2019] [Indexed: 11/21/2022] Open
Abstract
The alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 uses free cyanide and several metal−cyanide complexes as the sole nitrogen source and tolerates high concentrations of metals like copper, zinc and iron, which are present in the jewelry wastewaters. To understand deeply the regulatory mechanisms involved in the transcriptional regulation of cyanide-containing wastewaters detoxification by P. pseudoalcaligenes CECT5344, RNA-Seq has been performed from cells cultured with a cyanide-containing jewelry wastewater, sodium cyanide or ammonium chloride as the sole nitrogen source. Small RNAs (sRNAs) that may have potential regulatory functions under cyanotrophic conditions were identified. In total 20 sRNAs were identified to be differentially expressed when compared the jewelry residue versus ammonium as nitrogen source, 16 of which could be amplified successfully by RT-PCR. As predicted targets of these 16 sRNAs were several components of the nit1C gene cluster encoding the nitrilase NitC essential for cyanide assimilation, the cioAB gene cluster that codes for the cyanide-insensitive cytochrome bd-type terminal oxidase, the medium length-polyhydroxyalkanoates (ml-PHAs) gene cluster, and gene clusters related with a global nitrogen limitation response like those coding for glutamine synthase and urease. Other targets were non-clustered genes (or their products) involved in metal resistance and iron acquisition, such as metal extrusion systems and the ferric uptake regulatory (Fur) protein, and a GntR-like regulatory family member probably involved in the regulation of the cyanide assimilation process in the strain CECT5344. Induction of genes targeted by sRNAs in the jewelry residue was demonstrated by qRT-PCR.
Collapse
Affiliation(s)
- Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Víctor Manuel Luque-Almagro
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - María Dolores Pérez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Cristina María López
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Francisco Amil
- Servicio Central de Apoyo a la Investigación (SCAI), Unidad de Proteómica, Campus de Rabanales, Córdoba, Spain
| | - Purificación Cabello
- Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Lara Paloma Sáez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Conrado Moreno-Vivián
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
- * E-mail:
| |
Collapse
|
11
|
Mat-Sharani S, Firdaus-Raih M. Computational discovery and annotation of conserved small open reading frames in fungal genomes. BMC Bioinformatics 2019; 19:551. [PMID: 30717662 PMCID: PMC7394265 DOI: 10.1186/s12859-018-2550-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/30/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Small open reading frames (smORF/sORFs) that encode short protein sequences are often overlooked during the standard gene prediction process thus leading to many sORFs being left undiscovered and/or misannotated. For many genomes, a second round of sORF targeted gene prediction can complement the existing annotation. In this study, we specifically targeted the identification of ORFs encoding for 80 amino acid residues or less from 31 fungal genomes. We then compared the predicted sORFs and analysed those that are highly conserved among the genomes. RESULTS A first set of sORFs was identified from existing annotations that fitted the maximum of 80 residues criterion. A second set was predicted using parameters that specifically searched for ORF candidates of 80 codons or less in the exonic, intronic and intergenic sequences of the subject genomes. A total of 1986 conserved sORFs were predicted and characterized. CONCLUSIONS It is evident that numerous open reading frames that could potentially encode for polypeptides consisting of 80 amino acid residues or less are overlooked during standard gene prediction and annotation. From our results, additional targeted reannotation of genomes is clearly able to complement standard genome annotation to identify sORFs. Due to the lack of, and limitations with experimental validation, we propose that a simple conservation analysis can provide an acceptable means of ensuring that the predicted sORFs are sufficiently clear of gene prediction artefacts.
Collapse
Affiliation(s)
- Shuhaila Mat-Sharani
- Centre for Frontier Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.,Malaysia Genome Institute, Ministry of Science, Technology & Innovation, Jalan Bangi, 43000, Kajang, Selangor, Malaysia
| | - Mohd Firdaus-Raih
- Centre for Frontier Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia. .,Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
12
|
Small Noncoding Regulatory RNAs from Pseudomonas aeruginosa and Burkholderia cepacia Complex. Int J Mol Sci 2018; 19:ijms19123759. [PMID: 30486355 PMCID: PMC6321483 DOI: 10.3390/ijms19123759] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) is the most life-limiting autosomal recessive disorder in Caucasians. CF is characterized by abnormal viscous secretions that impair the function of several tissues, with chronic bacterial airway infections representing the major cause of early decease of these patients. Pseudomonas aeruginosa and bacteria from the Burkholderia cepacia complex (Bcc) are the leading pathogens of CF patients’ airways. A wide array of virulence factors is responsible for the success of infections caused by these bacteria, which have tightly regulated responses to the host environment. Small noncoding RNAs (sRNAs) are major regulatory molecules in these bacteria. Several approaches have been developed to study P. aeruginosa sRNAs, many of which were characterized as being involved in the virulence. On the other hand, the knowledge on Bcc sRNAs remains far behind. The purpose of this review is to update the knowledge on characterized sRNAs involved in P. aeruginosa virulence, as well as to compile data so far achieved on sRNAs from the Bcc and their possible roles on bacteria virulence.
Collapse
|
13
|
Payá G, Bautista V, Camacho M, Castejón-Fernández N, Alcaraz LA, Bonete MJ, Esclapez J. Small RNAs of Haloferax mediterranei: Identification and Potential Involvement in Nitrogen Metabolism. Genes (Basel) 2018; 9:genes9020083. [PMID: 29439418 PMCID: PMC5852579 DOI: 10.3390/genes9020083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 11/16/2022] Open
Abstract
Small RNAs have been studied in detail in domains Bacteria and Eukarya but, in the case of the domain Archaea, the knowledge is scarce and the physiological function of these small RNAs (sRNAs) is still uncertain. To extend the knowledge of sRNAs in the domain Archaea and their possible role in the regulation of the nitrogen assimilation metabolism in haloarchaea, Haloferax mediterranei has been used as a model microorganism. The bioinformatic approach has allowed for the prediction of 295 putative sRNAs genes in the genome of H. mediterranei, 88 of which have been verified by means of RNA-Sequencing (RNA-Seq). The secondary structure of these sRNAs and their possible targets have been identified. Curiously, some of them present as possible target genes relating to nitrogen assimilation, such as glutamate dehydrogenase and the nitrogen regulatory PII protein. Analysis of RNA-Seq data has also revealed differences in the expression pattern of 16 sRNAs according to the nitrogen source. Consequently, RNomic and bioinformatic approaches used in this work have allowed for the identification of new sRNAs in H. mediterranei, some of which show different expression patterns depending on the nitrogen source. This suggests that these sRNAs could be involved in the regulation of nitrogen assimilation and can constitute an important gene regulatory network.
Collapse
Affiliation(s)
- Gloria Payá
- Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Division, Faculty of Science, University of Alicante, Ap 99, E-03080 Alicante, Spain.
| | - Vanesa Bautista
- Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Division, Faculty of Science, University of Alicante, Ap 99, E-03080 Alicante, Spain.
| | - Mónica Camacho
- Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Division, Faculty of Science, University of Alicante, Ap 99, E-03080 Alicante, Spain.
| | | | - Luís A Alcaraz
- Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Division, Faculty of Science, University of Alicante, Ap 99, E-03080 Alicante, Spain.
- Bioarray, S.L., 03202 Alicante, Spain.
| | - María-José Bonete
- Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Division, Faculty of Science, University of Alicante, Ap 99, E-03080 Alicante, Spain.
| | - Julia Esclapez
- Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Division, Faculty of Science, University of Alicante, Ap 99, E-03080 Alicante, Spain.
| |
Collapse
|
14
|
Identification of sRNA mediated responses to nutrient depletion in Burkholderia pseudomallei. Sci Rep 2017; 7:17173. [PMID: 29215024 PMCID: PMC5719362 DOI: 10.1038/s41598-017-17356-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022] Open
Abstract
The Burkholderia genus includes many species that are known to survive in diverse environmental conditions including low nutrient environments. One species, Burkholderia pseudomallei is a versatile pathogen that can survive in a wide range of hosts and environmental conditions. In this study, we investigated how a nutrient depleted growth environment evokes sRNA mediated responses by B. pseudomallei. Computationally predicted B. pseudomallei D286 sRNAs were mapped to RNA-sequencing data for cultures grown under two conditions: (1) BHIB as a nutrient rich media reference environment and (2) M9 media as a nutrient depleted stress environment. The sRNAs were further selected to identify potentially cis-encoded systems by investigating their possible interactions with their flanking genes. The mappings of predicted sRNA genes and interactions analysis to their flanking genes identified 12 sRNA candidates that may possibly have cis-acting regulatory roles that are associated to a nutrient depleted growth environment. Our approach can be used for identifying novel sRNA genes and their possible role as cis-mediated regulatory systems.
Collapse
|
15
|
Ghosh S, Dureja C, Khatri I, Subramanian S, Raychaudhuri S, Ghosh S. Identification of novel small RNAs in Burkholderia cenocepacia KC-01 expressed under iron limitation and oxidative stress conditions. MICROBIOLOGY-SGM 2017; 163:1924-1936. [PMID: 29099689 DOI: 10.1099/mic.0.000566] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Small RNA (sRNA)-mediated regulation of gene expression is a major tool to understand bacterial responses to environmental changes. In particular, pathogenic bacteria employ sRNAs to adapt to the host environment and establish infection. Members of the Burkholderia cepacia complex, normally present in soil microbiota, cause nosocomial lung infection especially in hospitalized cystic fibrosis patients. We sequenced the draft genome of Burkholderia cenocepacia KC-01, isolated from the coastal saline soil, and identified several potential sRNAs in silico. Expression of seven small RNAs (Bc_KC_sr1-7) was subsequently confirmed. Two sRNAs (Bc_KC_sr1 and Bc_KC_sr2) were upregulated in response to iron depletion by 2,2'-bipyridyl and another two (Bc_KC_sr3 and Bc_KC_sr4) responded to the presence of 60 µM H2O2 in the culture media. Bc_Kc_sr5, 6 and 7 remained unchanged under these conditions. Expression of Bc_KC_sr2, 3 and 4 also altered with a change in temperature and incubation time. A search in the Rfam and BSRD databases identified Bc_Kc_sr4 as candidate738 in B. pseudomallei D286 and assigned Bc_Kc_sr5 and 6 as tmRNA and 6S RNA, respectively. The novel sRNAs were conserved in Burkholderiaceae but did not have any homologue in other genera. Bc_KC_sr1 and 4 were transcribed independently while the rest were part of the 3' UTR of their upstream genes. TargetRNA2 predicted that these sRNAs could target a host of cellular messages with very high stringency. Intriguingly, regions surrounding the translation initiation site for several enzymes involved in Fe-S cluster and siderophore biosynthesis, ROS homeostasis, porins, transcription and translation regulators, were among the suggested putative binding sites for these sRNAs.
Collapse
Affiliation(s)
- Suparna Ghosh
- Department of Microbiology, University of Calcutta, Kolkata 700 019, India
| | - Chetna Dureja
- CSIR-Institute of Microbial Technology, Chandigarh 160 036, India
| | - Indu Khatri
- CSIR-Institute of Microbial Technology, Chandigarh 160 036, India
| | | | | | - Sagarmoy Ghosh
- Department of Microbiology, University of Calcutta, Kolkata 700 019, India
| |
Collapse
|
16
|
Sass A, Kiekens S, Coenye T. Identification of small RNAs abundant in Burkholderia cenocepacia biofilms reveal putative regulators with a potential role in carbon and iron metabolism. Sci Rep 2017; 7:15665. [PMID: 29142288 PMCID: PMC5688073 DOI: 10.1038/s41598-017-15818-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/02/2017] [Indexed: 12/23/2022] Open
Abstract
Small RNAs play a regulatory role in many central metabolic processes of bacteria, as well as in developmental processes such as biofilm formation. Small RNAs of Burkholderia cenocepacia, an opportunistic pathogenic beta-proteobacterium, are to date not well characterised. To address that, we performed genome-wide transcriptome structure analysis of biofilm grown B. cenocepacia J2315. 41 unannotated short transcripts were identified in intergenic regions of the B. cenocepacia genome. 15 of these short transcripts, highly abundant in biofilms, widely conserved in Burkholderia sp. and without known function, were selected for in-depth analysis. Expression profiling showed that most of these sRNAs are more abundant in biofilms than in planktonic cultures. Many are also highly abundant in cells grown in minimal media, suggesting they are involved in adaptation to nutrient limitation and growth arrest. Their computationally predicted targets include a high proportion of genes involved in carbon metabolism. Expression and target genes of one sRNA suggest a potential role in regulating iron homoeostasis. The strategy used for this study to detect sRNAs expressed in B. cenocepacia biofilms has successfully identified sRNAs with a regulatory function.
Collapse
Affiliation(s)
- Andrea Sass
- Department of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Sanne Kiekens
- Department of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Department of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|
17
|
Álvarez-Fraga L, Rumbo-Feal S, Pérez A, Gómez MJ, Gayoso C, Vallejo JA, Ohneck EJ, Valle J, Actis LA, Beceiro A, Bou G, Poza M. Global assessment of small RNAs reveals a non-coding transcript involved in biofilm formation and attachment in Acinetobacter baumannii ATCC 17978. PLoS One 2017; 12:e0182084. [PMID: 28763494 PMCID: PMC5538643 DOI: 10.1371/journal.pone.0182084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/12/2017] [Indexed: 12/30/2022] Open
Abstract
Many strains of Acinetobacter baumannii have been described as being able to form biofilm. Small non-coding RNAs (sRNAs) control gene expression in many regulatory circuits in bacteria. The aim of the present work was to provide a global description of the sRNAs produced both by planktonic and biofilm-associated (sessile) cells of A. baumannii ATCC 17978, and to compare the corresponding gene expression profiles to identify sRNAs molecules associated to biofilm formation and virulence. sRNA was extracted from both planktonic and sessile cells and reverse transcribed. cDNA was subjected to 454-pyrosequencing using the GS-FLX Titanium chemistry. The global analysis of the small RNA transcriptome revealed different sRNA expression patterns in planktonic and biofilm associated cells, with some of the transcripts only expressed or repressed in sessile bacteria. A total of 255 sRNAs were detected, with 185 of them differentially expressed in the different types of cells. A total of 9 sRNAs were expressed only in biofilm cells, while the expression of other 21 coding regions were repressed only in biofilm cells. Strikingly, the expression level of the sRNA 13573 was 120 times higher in biofilms than in planktonic cells, an observation that prompted us to further investigate the biological role of this non-coding transcript. Analyses of an isogenic mutant and over-expressing strains revealed that the sRNA 13573 gene is involved in biofilm formation and attachment to A549 human alveolar epithelial cells. The present work serves as a basis for future studies examining the complex regulatory network that regulate biofilm biogenesis and attachment to eukaryotic cells in A. baumannii ATCC 17978.
Collapse
Affiliation(s)
- Laura Álvarez-Fraga
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
| | - Soraya Rumbo-Feal
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
| | - Astrid Pérez
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Manuel J. Gómez
- Department of Molecular Evolution, Center for Astrobiology, INTA-CSIC, Torrejón de Ardoz, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Carmen Gayoso
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
| | - Juan A. Vallejo
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
| | - Emily J. Ohneck
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Jaione Valle
- Departamento de Biofilms Microbianos, Instituto de Agrobiotecnología, Navarra, Spain
| | - Luis A. Actis
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Alejandro Beceiro
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
| | - Germán Bou
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
- * E-mail: (GB); (MP)
| | - Margarita Poza
- Departamento de Microbiología, Instituto de Investigación Biomédica (INIBIC), Complejo Hospitalario Universitario (CHUAC), A Coruña, Spain
- * E-mail: (GB); (MP)
| |
Collapse
|
18
|
Nawaz MZ, Jian H, He Y, Xiong L, Xiao X, Wang F. Genome-Wide Detection of Small Regulatory RNAs in Deep-Sea Bacterium Shewanella piezotolerans WP3. Front Microbiol 2017; 8:1093. [PMID: 28663744 PMCID: PMC5471319 DOI: 10.3389/fmicb.2017.01093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/30/2017] [Indexed: 11/13/2022] Open
Abstract
Shewanella are one of the most abundant Proteobacteria in the deep-sea and are renowned for their versatile electron accepting capacities. The molecular mechanisms involved in their adaptation to diverse and extreme environments are not well understood. Small non-coding RNAs (sRNAs) are known for modulating the gene expression at transcriptional and posttranscriptional levels, subsequently playing a key role in microbial adaptation. To understand the potential roles of sRNAs in the adaptation of Shewanella toward deep-sea environments, here an in silico approach was utilized to detect the sRNAs in the genome of Shewanella piezotolerans WP3, a piezotolerant and psychrotolerant deep-sea iron reducing bacterium. After scanning 3673 sets of 5' and 3' UTRs of orthologous genes, 209 sRNA candidates were identified with high confidence in S. piezotolerans WP3. About 92% (193 out of 209) of these putative sRNAs belong to the class trans-encoded RNAs, suggesting that trans-regulatory RNAs are the dominant class of sRNAs in S. piezotolerans WP3. The remaining 16 cis-regulatory RNAs were validated through quantitative polymerase chain reaction. Five cis-sRNAs were further shown to act as cold regulated sRNAs. Our study provided additional evidence at the transcriptional level to decipher the microbial adaptation mechanisms to extreme environmental conditions.
Collapse
Affiliation(s)
- Muhammad Z Nawaz
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China.,State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong UniversityShanghai, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China
| | - Ying He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China.,State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong UniversityShanghai, China
| | - Lei Xiong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China.,State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong UniversityShanghai, China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China.,State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
19
|
Gaimster H, Chalklen L, Alston M, Munnoch JT, Richardson DJ, Gates AJ, Rowley G. Genome-Wide Discovery of Putative sRNAs in Paracoccus denitrificans Expressed under Nitrous Oxide Emitting Conditions. Front Microbiol 2016; 7:1806. [PMID: 27895629 PMCID: PMC5107571 DOI: 10.3389/fmicb.2016.01806] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/27/2016] [Indexed: 12/18/2022] Open
Abstract
Nitrous oxide (N2O) is a stable, ozone depleting greenhouse gas. Emissions of N2O into the atmosphere continue to rise, primarily due to the use of nitrogen-containing fertilizers by soil denitrifying microbes. It is clear more effective mitigation strategies are required to reduce emissions. One way to help develop future mitigation strategies is to address the currently poor understanding of transcriptional regulation of the enzymes used to produce and consume N2O. With this ultimate aim in mind we performed RNA-seq on a model soil denitrifier, Paracoccus denitrificans, cultured anaerobically under high N2O and low N2O emitting conditions, and aerobically under zero N2O emitting conditions to identify small RNAs (sRNAs) with potential regulatory functions transcribed under these conditions. sRNAs are short (∼40–500 nucleotides) non-coding RNAs that regulate a wide range of activities in many bacteria. Hundred and sixty seven sRNAs were identified throughout the P. denitrificans genome which are either present in intergenic regions or located antisense to ORFs. Furthermore, many of these sRNAs are differentially expressed under high N2O and low N2O emitting conditions respectively, suggesting they may play a role in production or reduction of N2O. Expression of 16 of these sRNAs have been confirmed by RT-PCR. Ninety percent of the sRNAs are predicted to form secondary structures. Predicted targets include transporters and a number of transcriptional regulators. A number of sRNAs were conserved in other members of the α-proteobacteria. Better understanding of the sRNA factors which contribute to expression of the machinery required to reduce N2O will, in turn, help to inform strategies for mitigation of N2O emissions.
Collapse
Affiliation(s)
- Hannah Gaimster
- School of Biological Sciences, University of East Anglia Norwich, UK
| | - Lisa Chalklen
- School of Biological Sciences, University of East Anglia Norwich, UK
| | - Mark Alston
- Earlham Institute (formerly The Genome Analysis Centre) Norwich, UK
| | - John T Munnoch
- School of Biological Sciences, University of East Anglia Norwich, UK
| | | | - Andrew J Gates
- School of Biological Sciences, University of East Anglia Norwich, UK
| | - Gary Rowley
- School of Biological Sciences, University of East Anglia Norwich, UK
| |
Collapse
|
20
|
Balgir PP, Dhiman SR, Kaur P. In silico prediction and qPCR validation of novel sRNAs in Propionibacterium acnes KPA171202. J Genet Eng Biotechnol 2016; 14:169-176. [PMID: 30647611 PMCID: PMC6299900 DOI: 10.1016/j.jgeb.2016.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/23/2016] [Indexed: 11/15/2022]
Abstract
Propionibacterium acnes is an anaerobic, Gram-positive, opportunistic pathogen known to be involved in a wide variety of diseases ranging from mild acne to prostate cancer. Bacterial small non-coding RNAs are novel regulators of gene expression and are known to be involved in, virulence, pathogenesis, stress tolerance and adaptation to environmental changes in bacteria. The present study was undertaken keeping in view the lack of predicted sRNAs of P. acnes KPA171202 in databases. This report represents the first attempt to identify sRNAs in P. acnes KPA171202. A total of eight potential candidate sRNAs were predicted using SIPHT, one was found to have a Rfam homolog and seven were novel. Out of these seven predicted sRNAs, five were validated by reverse transcriptase-polymerase chain reaction (RT-PCR) and sequencing. The expression of these sRNAs was quantified in different growth phases by qPCR (quantitative PCR). They were found to be expressed in both exponential and stationary stages of growth but with maximum expression in stationary phase which points to a regulatory role for them. Further investigation of their targets and regulatory functions is in progress.
Collapse
Affiliation(s)
- Praveen P. Balgir
- Department of Biotechnology, Punjabi University, Patiala, Punjab 147 002, India
| | - Shobha R. Dhiman
- Department of Human Genetics, Punjabi University, Patiala, Punjab 147 002, India
| | - Puneet Kaur
- Department of Biotechnology, Punjabi University, Patiala, Punjab 147 002, India
| |
Collapse
|
21
|
Ahmad L, Hung TL, Mat Akhir NA, Mohamed R, Nathan S, Firdaus-Raih M. Characterization of Burkholderia pseudomallei protein BPSL1375 validates the Putative hemolytic activity of the COG3176 N-Acyltransferase family. BMC Microbiol 2015; 15:270. [PMID: 26597807 PMCID: PMC4657338 DOI: 10.1186/s12866-015-0604-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 11/13/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND There are still numerous protein subfamilies within families and superfamilies that do not yet have conclusive empirical experimental evidence providing a specific function. These proteins persist in databases with the annotation of a specific 'putative' function made by association with discernible features in the protein sequence. RESULTS Here, we report the characterization of one such protein produced by the pathogenic soil bacterium Burkholderia pseudomallei, BPSL1375, which provided evidence for putative hemolysins in the COG3176 family to have experimentally validated hemolytic activity. BPSL1375 can be classified into the N-acyltransferase superfamily, specifically to members of the COG3176 family. Sequence alignments identified seven highly conserved residues (Arg54, Phe58, Asp75, Asp78, Arg99, Glu132 and Arg135), of which several have been implicated with N-acyltransferase activity in previously characterized examples. Using the 3D model of an N-acyltransferase example as a reference, an acyl homoserine lactone synthase, we generated 3D structure models for mutants of six of the seven N-acyltransferase conserved residues (R54, D75, D78, R99, E132 and R135). Both the R99 and R135 mutants resulted in a loss of hemolytic activity while mutations at the other five positions resulted in either reduction or increment in hemolytic activity. CONCLUSIONS The implication of residues previously characterized to be important for N-acyltransferase activity to hemolytic activity for the COG3176 family members of the N-acyltransferase provides validation of the correct placement of the hemolytic capability annotation within the N-acyltransferase superfamily.
Collapse
Affiliation(s)
- Laziana Ahmad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Teng Loong Hung
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Nor Azurah Mat Akhir
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
- Malaysia Genome Institute, 43000, Kajang, Selangor, Malaysia.
| | - Rahmah Mohamed
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
- INTI International University, Bandar Baru Nilai, Nilai, Negeri Sembilan, 71800, Malaysia.
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Mohd Firdaus-Raih
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| |
Collapse
|
22
|
Li B, Ibrahim M, Ge M, Cui Z, Sun G, Xu F, Kube M. Transcriptome analysis of Acidovorax avenae subsp. avenae cultivated in vivo and co-culture with Burkholderia seminalis. Sci Rep 2014; 4:5698. [PMID: 25027476 PMCID: PMC4099980 DOI: 10.1038/srep05698] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/23/2014] [Indexed: 12/28/2022] Open
Abstract
Response of bacterial pathogen to environmental bacteria and its host is critical for understanding of microbial adaption and pathogenesis. Here, we used RNA-Seq to comprehensively and quantitatively assess the transcriptional response of Acidovorax avenae subsp. avenae strain RS-1 cultivated in vitro, in vivo and in co-culture with rice rhizobacterium Burkholderia seminalis R456. Results revealed a slight response to other bacteria, but a strong response to host. In particular, a large number of virulence associated genes encoding Type I to VI secretion systems, 118 putative non-coding RNAs, and 7 genomic islands (GIs) were differentially expressed in vivo based on comparative genomic and transcriptomic analyses. Furthermore, the loss of virulence for knockout mutants of 11 differentially expressed T6SS genes emphasized the importance of these genes in bacterial pathogenicity. In addition, the reliability of expression data obtained by RNA-Seq was supported by quantitative real-time PCR of the 25 selected T6SS genes. Overall, this study highlighted the role of differentially expressed genes in elucidating bacterial pathogenesis based on combined analysis of RNA-Seq data and knockout of T6SS genes.
Collapse
Affiliation(s)
- Bin Li
- 1] State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China [2]
| | - Muhammad Ibrahim
- 1] State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China [2]
| | - Mengyu Ge
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Zhouqi Cui
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Guochang Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest and Disease Control, Key Laboratory of Detection for Pesticide Residues, Ministry of Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fei Xu
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Michael Kube
- Faculty of Agriculture and Horticulture, Humboldt-Universität zu Berlin, 14195 Berlin, Germany
| |
Collapse
|
23
|
Dong H, Peng X, Wang N, Wu Q. Identification of novel sRNAs inBrucella abortus2308. FEMS Microbiol Lett 2014; 354:119-25. [DOI: 10.1111/1574-6968.12433] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/20/2014] [Accepted: 03/20/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Hao Dong
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture; College of Veterinary Medicine; China Agricultural University; Beijing China
| | - Xiaowei Peng
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture; College of Veterinary Medicine; China Agricultural University; Beijing China
| | - Ning Wang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture; College of Veterinary Medicine; China Agricultural University; Beijing China
| | - Qingmin Wu
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture; College of Veterinary Medicine; China Agricultural University; Beijing China
| |
Collapse
|
24
|
Fazli M, Almblad H, Rybtke ML, Givskov M, Eberl L, Tolker-Nielsen T. Regulation of biofilm formation in Pseudomonas and Burkholderia species. Environ Microbiol 2014; 16:1961-81. [PMID: 24592823 DOI: 10.1111/1462-2920.12448] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/12/2014] [Accepted: 02/28/2014] [Indexed: 01/28/2023]
Abstract
In the present review, we describe and compare the molecular mechanisms that are involved in the regulation of biofilm formation by Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas aeruginosa and Burkholderia cenocepacia. Our current knowledge suggests that biofilm formation is regulated by cyclic diguanosine-5'-monophosphate (c-di-GMP), small RNAs (sRNA) and quorum sensing (QS) in all these bacterial species. The systems that employ c-di-GMP as a second messenger regulate the production of exopolysaccharides and surface proteins which function as extracellular matrix components in the biofilms formed by the bacteria. The systems that make use of sRNAs appear to regulate the production of exopolysaccharide biofilm matrix material in all these species. In the pseudomonads, QS regulates the production of extracellular DNA, lectins and biosurfactants which all play a role in biofilm formation. In B.cenocepacia QS regulates the expression of a large surface protein, lectins and extracellular DNA that all function as biofilm matrix components. Although the three regulatory systems all regulate the production of factors used for biofilm formation, the molecular mechanisms involved in transducing the signals into expression of the biofilm matrix components differ between the species. Under the conditions tested, exopolysaccharides appears to be the most important biofilm matrix components for P.aeruginosa, whereas large surface proteins appear to be the most important biofilm matrix components for P.putida, P.fluorescens, and B.cenocepacia.
Collapse
Affiliation(s)
- Mustafa Fazli
- Department of International Health, Immunology, and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
25
|
Tsai CH, Baranowski C, Livny J, McDonough KA, Wade JT, Contreras LM. Identification of novel sRNAs in mycobacterial species. PLoS One 2013; 8:e79411. [PMID: 24244498 PMCID: PMC3828370 DOI: 10.1371/journal.pone.0079411] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 09/28/2013] [Indexed: 01/29/2023] Open
Abstract
Bacterial small RNAs (sRNAs) are short transcripts that typically do not encode proteins and often act as regulators of gene expression through a variety of mechanisms. Regulatory sRNAs have been identified in many species, including Mycobacterium tuberculosis, the causative agent of tuberculosis. Here, we use a computational algorithm to predict sRNA candidates in the mycobacterial species M. smegmatis and M. bovis BCG and confirmed the expression of many sRNAs using Northern blotting. Thus, we have identified 17 and 23 novel sRNAs in M. smegmatis and M. bovis BCG, respectively. We have also applied a high-throughput technique (Deep-RACE) to map the 5' and 3' ends of many of these sRNAs and identified potential regulators of sRNAs by analysis of existing ChIP-seq datasets. The sRNAs identified in this work likely contribute to the unique biology of mycobacteria.
Collapse
Affiliation(s)
- Chen-Hsun Tsai
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Catherine Baranowski
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Jonathan Livny
- Channing Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kathleen A. McDonough
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, University at Albany, SUNY, Albany, New York, United States of America
| | - Joseph T. Wade
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, University at Albany, SUNY, Albany, New York, United States of America
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
26
|
Ranganathan S, Tongsima S, Chan J, Tan TW, Schönbach C. Advances in translational bioinformatics and population genomics in the Asia-Pacific. BMC Genomics 2013; 13 Suppl 7:S1. [PMID: 23282089 PMCID: PMC3521394 DOI: 10.1186/1471-2164-13-s7-s1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The theme of the 2012 International Conference on Bioinformatics (InCoB) in Bangkok, Thailand was "From Biological Data to Knowledge to Technological Breakthroughs." Besides providing a forum for life scientists and bioinformatics researchers in the Asia-Pacific region to meet and interact, the conference also hosted thematic sessions on the Pan-Asian Pacific Genome Initiative and immunoinformatics. Over the seven years of conference papers published in BMC Bioinformatics and four years in BMC Genomics, we note that there is increasing interest in the applications of -omics technologies to the understanding of diseases, as a forerunner to personalized genomic medicine.
Collapse
Affiliation(s)
- Shoba Ranganathan
- Department of Chemistry and Biomolecular Sciences and ARC Centre of Excellence, Macquarie University, Sydney, NSW 2109, Australia
| | | | | | | | | |
Collapse
|