1
|
Vasquez-Teuber P, Rouxel T, Mason AS, Soyer JL. Breeding and management of major resistance genes to stem canker/blackleg in Brassica crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:192. [PMID: 39052130 PMCID: PMC11272824 DOI: 10.1007/s00122-024-04641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/29/2024] [Indexed: 07/27/2024]
Abstract
Blackleg (also known as Phoma or stem canker) is a major, worldwide disease of Brassica crop species, notably B. napus (rapeseed, canola), caused by the ascomycete fungus Leptosphaeria maculans. The outbreak and severity of this disease depend on environmental conditions and management practices, as well as a complex interaction between the pathogen and its hosts. Genetic resistance is a major method to control the disease (and the only control method in some parts of the world, such as continental Europe), but efficient use of genetic resistance is faced with many difficulties: (i) the scarcity of germplasm/genetic resources available, (ii) the different history of use of resistance genes in different parts of the world and the different populations of the fungus the resistance genes are exposed to, (iii) the complexity of the interactions between the plant and the pathogen that expand beyond typical gene-for-gene interactions, (iv) the incredible evolutionary potential of the pathogen and the importance of knowing the molecular processes set up by the fungus to "breakdown' resistances, so that we may design high-throughput diagnostic tools for population surveys, and (v) the different strategies and options to build up the best resistances and to manage them so that they are durable. In this paper, we aim to provide a comprehensive overview of these different points, stressing the differences between the different continents and the current prospects to generate new and durable resistances to blackleg disease.
Collapse
Affiliation(s)
- Paula Vasquez-Teuber
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
- Department of Plant Production, Faculty of Agronomy, University of Concepción, Av. Vicente Méndez 595, Chillán, Chile
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Thierry Rouxel
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Annaliese S Mason
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany.
| | - Jessica L Soyer
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France.
| |
Collapse
|
2
|
Das Laha S, Das D, Ghosh T, Podder S. Enrichment of intrinsically disordered residues in ohnologs facilitates abiotic stress resilience in Brassica rapa. JOURNAL OF PLANT RESEARCH 2023; 136:239-251. [PMID: 36607467 DOI: 10.1007/s10265-022-01432-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Arabidopsis thaliana and Brassica rapa are in the same evolutionary lineage, although the latter experienced an additional whole genome triplication event. Therefore, it would be intriguing to investigate the traits that gene duplication imposes to mediate plant stress tolerance. Here, we noticed that B. rapa abiotic stress resistance (ASR) genes which code at least one stress responsive domain have a significantly higher number of paralogs than A. thaliana. Analysing the disordered content of the ASR genes in both species, we found that intrinsically disordered residues (IDR) are specifically enriched in whole genome duplication (WGD) derived paralogs. Subsequently, domain similarity analysis between WGD pairs of both species has revealed that majority of WGD pairs in B. rapa did not share domains with each other. Furthermore, domain enrichment analysis has shown that B. rapa paralogs contain 36 distinct stress responsive enriched domains, significantly higher than A. thaliana paralogs. Next, we performed MSA to investigate the domain conservation between orthologs and ohnologs pairs, we found that 80.13% of B. rapa ohnologs acquire new domains, depicting the fact that ohnologs play a significant role in stress-related behaviours. The average IDR content of the ohnologs enriching new domains after gene duplication in B. rapa (0.19), is also significantly higher than A. thaliana (0.04). Interestingly, we also found that all of these attributes i.e., exhibiting higher number of WGD paralogs and enhancement of IDR in ASR genes of B. rapa compared to A. thaliana is exclusive for ASR genes only. No such significant differences were observed in randomly selected non-ASR genes between the two species. Together these results provide strong support for the hypothesis that augmentation of IDR content followed by a whole genome duplication event imposes the stress resistance potentiality in B. rapa. This research will shed light on the mechanism of how B. rapa is able to successfully adapt to stress over the evolutionary timescale.
Collapse
Affiliation(s)
- Shayani Das Laha
- Department of Microbiology, Raiganj University, Raiganj, West Bengal, India
| | - Deepyaman Das
- Department of Microbiology, Raiganj University, Raiganj, West Bengal, India
| | - Tapash Ghosh
- Department of Microbiology, Raiganj University, Raiganj, West Bengal, India
- Department of Bioinformatics, Bose Institute, Kolkata, West Bengal, India
| | - Soumita Podder
- Department of Microbiology, Raiganj University, Raiganj, West Bengal, India.
| |
Collapse
|
3
|
Yim WC, Swain ML, Ma D, An H, Bird KA, Curdie DD, Wang S, Ham HD, Luzuriaga-Neira A, Kirkwood JS, Hur M, Solomon JKQ, Harper JF, Kosma DK, Alvarez-Ponce D, Cushman JC, Edger PP, Mason AS, Pires JC, Tang H, Zhang X. The final piece of the Triangle of U: Evolution of the tetraploid Brassica carinata genome. THE PLANT CELL 2022; 34:4143-4172. [PMID: 35961044 PMCID: PMC9614464 DOI: 10.1093/plcell/koac249] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/24/2022] [Indexed: 05/05/2023]
Abstract
Ethiopian mustard (Brassica carinata) is an ancient crop with remarkable stress resilience and a desirable seed fatty acid profile for biofuel uses. Brassica carinata is one of six Brassica species that share three major genomes from three diploid species (AA, BB, and CC) that spontaneously hybridized in a pairwise manner to form three allotetraploid species (AABB, AACC, and BBCC). Of the genomes of these species, that of B. carinata is the least understood. Here, we report a chromosome scale 1.31-Gbp genome assembly with 156.9-fold sequencing coverage for B. carinata, completing the reference genomes comprising the classic Triangle of U, a classical theory of the evolutionary relationships among these six species. Our assembly provides insights into the hybridization event that led to the current B. carinata genome and the genomic features that gave rise to the superior agronomic traits of B. carinata. Notably, we identified an expansion of transcription factor networks and agronomically important gene families. Completion of the Triangle of U comparative genomics platform has allowed us to examine the dynamics of polyploid evolution and the role of subgenome dominance in the domestication and continuing agronomic improvement of B. carinata and other Brassica species.
Collapse
Affiliation(s)
| | | | - Dongna Ma
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong An
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65201, USA
| | - Kevin A Bird
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
| | - David D Curdie
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Samuel Wang
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Hyun Don Ham
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | | | - Jay S Kirkwood
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Manhoi Hur
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Juan K Q Solomon
- Department of Agriculture, Veterinary & Rangeland Sciences, University of Nevada, Reno, Nevada 89557, USA
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | | | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
| | - Annaliese S Mason
- Plant Breeding Department, INRES, The University of Bonn, Bonn 53115, Germany
| | - J Chris Pires
- Division of Biological Sciences, Bond Life Sciences Center, , University of Missouri, Columbia, Missouri 65211, USA
| | - Haibao Tang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingtan Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
4
|
Mining of Cloned Disease Resistance Gene Homologs (CDRHs) in Brassica Species and Arabidopsis thaliana. BIOLOGY 2022; 11:biology11060821. [PMID: 35741342 PMCID: PMC9220128 DOI: 10.3390/biology11060821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 01/23/2023]
Abstract
Simple Summary Developing cultivars with resistance genes (R genes) is an effective strategy to support high yield and quality in Brassica crops. The availability of clone R gene and genomic sequences in Brassica species and Arabidopsis thaliana provide the opportunity to compare genomic regions and survey R genes across genomic databases. In this paper, we aim to identify genes related to cloned genes through sequence identity, providing a repertoire of species-wide related R genes in Brassica crops. The comprehensive list of candidate R genes can be used as a reference for functional analysis. Abstract Various diseases severely affect Brassica crops, leading to significant global yield losses and a reduction in crop quality. In this study, we used the complete protein sequences of 49 cloned resistance genes (R genes) that confer resistance to fungal and bacterial diseases known to impact species in the Brassicaceae family. Homology searches were carried out across Brassica napus, B. rapa, B. oleracea, B. nigra, B. juncea, B. carinata and Arabidopsis thaliana genomes. In total, 660 cloned disease R gene homologs (CDRHs) were identified across the seven species, including 431 resistance gene analogs (RGAs) (248 nucleotide binding site-leucine rich repeats (NLRs), 150 receptor-like protein kinases (RLKs) and 33 receptor-like proteins (RLPs)) and 229 non-RGAs. Based on the position and distribution of specific homologs in each of the species, we observed a total of 87 CDRH clusters composed of 36 NLR, 16 RLK and 3 RLP homogeneous clusters and 32 heterogeneous clusters. The CDRHs detected consistently across the seven species are candidates that can be investigated for broad-spectrum resistance, potentially providing resistance to multiple pathogens. The R genes identified in this study provide a novel resource for the future functional analysis and gene cloning of Brassicaceae R genes towards crop improvement.
Collapse
|
5
|
Ce F, Mei J, He H, Zhao Y, Hu W, Yu F, Li Q, Ren X, Si J, Song H, Qian W. Identification of Candidate Genes for Clubroot-Resistance in Brassica oleracea Using Quantitative Trait Loci-Sequencing. FRONTIERS IN PLANT SCIENCE 2021; 12:703520. [PMID: 34868102 PMCID: PMC8635040 DOI: 10.3389/fpls.2021.703520] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/19/2021] [Indexed: 05/27/2023]
Abstract
Clubroot caused by Plasmodiophora brassicae is a devastating disease of cabbage (Brassica oleracea). To identify quantitative trait loci (QTLs) for clubroot resistance (CR) in B. oleracea, genomic resequencing was carried out in two sets of extreme pools, group I and group II, which were constructed separately from 110 and 74 F2 cloned lines derived from the cross between clubroot-resistant (R) cabbage "GZ87" (against race 4) and susceptible (S) cabbage "263." Based on the QTL-sequencing (QTL-Seq) analysis of group I and group II, three QTLs (i.e., qCRc7-2, qCRc7-3, and qCRc7-4) were determined on the C07 chromosome. RNA-Seq and qRT-PCR were conducted in the extreme pools of group II before and after inoculation, and two potential candidate genes (i.e., Bol037115 and Bol042270), which exhibiting upregulation after inoculation in the R pool but downregulation in the S pool, were identified from the three QTLs on C07. A functional marker "SWU-OA" was developed from qCRc7-4 on C07, exhibiting ∼95% accuracy in identifying CR in 56 F2 lines. Our study will provide valuable information on resistance genes against P. brassicae and may accelerate the breeding process of B. oleracea with CR.
Collapse
Affiliation(s)
- Fuquan Ce
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jiaqin Mei
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, China
| | - Haiyan He
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Yu Zhao
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
| | - Wenhui Hu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Fengqun Yu
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Center, Saskatoon, SK, Canada
| | - Qinfei Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Xuesong Ren
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Jun Si
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Hongyuan Song
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Wei Qian
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, China
| |
Collapse
|
6
|
Das Laha S, Dutta S, Schäffner AR, Das M. Gene duplication and stress genomics in Brassicas: Current understanding and future prospects. JOURNAL OF PLANT PHYSIOLOGY 2020; 255:153293. [PMID: 33181457 DOI: 10.1016/j.jplph.2020.153293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Polyploidy or whole genome duplication (WGD) is an evolutionary phenomenon that happened in all angiosperms multiple times over millions of years. Extensive studies on the model plant Arabidopsis thaliana genome have revealed that it has undergone five rounds of WGDs followed, in the Brassicaceae tribe, by a characteristic whole genome triplication (WGT). In addition, small-scale events such as tandem or segmental duplications and retrotransposition also enable plants to reshape their genomes. Over the decades, extensive research efforts have been undertaken to understand the evolutionary significance of polyploidy. On the other hand, much less attention has been paid to understanding the impact of gene duplication on the diversification of important stress response genes. The main objective of this review is to discuss key aspects of gene and genome duplications with a focus on genes primarily regulated by osmotic stresses. The focal family is the Brassicaceae, since it (i) underwent multiple rounds of WGDs plus WGTs, (ii) hosts many economically important crops and wild relatives that are tolerant to a range of stresses, and (iii) comprises many species that have already been sequenced. Diverse molecular mechanisms that lead to structural and regulatory alterations of duplicated genes are discussed. Examples are drawn from recent literature to elucidate expanded, stress responsive gene families identified from different Brassica crops. A combined bioinformatic and transcriptomic method has been proposed and tested on a known stress-responsive gene pair to prove that stress-responsive duplicated allelic variants can be identified by this method. Finally, future prospects for engineering these genes into crops to enhance stress tolerance are discussed, and important resources for Brassica genome research are provided.
Collapse
Affiliation(s)
- Shayani Das Laha
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Smritikana Dutta
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Anton R Schäffner
- Institute of Biochemical Plant Pathology, Department of Environmental Sciences, Helmholtz Zentrum München, München, Germany
| | - Malay Das
- Department of Life Sciences, Presidency University, Kolkata, India.
| |
Collapse
|
7
|
Sri T, Gupta B, Tyagi S, Singh A. Homeologs of Brassica SOC1, a central regulator of flowering time, are differentially regulated due to partitioning of evolutionarily conserved transcription factor binding sites in promoters. Mol Phylogenet Evol 2020; 147:106777. [PMID: 32126279 DOI: 10.1016/j.ympev.2020.106777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/03/2020] [Accepted: 02/26/2020] [Indexed: 01/06/2023]
Abstract
Evolution of Brassica genome post-polyploidization reveals asymmetrical genome fractionation and copy number variation. Herein, we describe the impact of promoter divergence among SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) homeologs on expression and function in Brassica spp. SOC1, a regulated floral pathway integrator, is conserved as 3 redundant homeologs in diploid Brassicas. Even with high sequence identity within coding regions (92.8-100%), the spatio-temporal expression patterns of 9 SOC1 homologs in B. juncea and B. nigra indicates regulatory divergence. While LF and MF2 SOC1 homeologs are upregulated during floral transition, MF1 is barely expressed. Also, MF2 homeolog levels do not decline post-flowering, unlike LF. To investigate the underlying source of divergence, we analyzed the sequence and phylogeny of all reported (22) and isolated (21) upstream regions of Brassica SOC1. Full length upstream regions (4712-19189 bp) reveal 5 ubiquitously conserved ancestral Blocks, harboring binding sites of 18 TFs (TFBSs) characterized in Arabidopsis thaliana. The orthologs of these TFBSs are differentially conserved among Brassica SOC1 homeologs, imparting expression divergence. No crucial TFBSs are exclusively lost from LF_SOC1 promoter, while MF1_SOC1 has lost NF-Y binding site crucial for SOC1 activation by CONSTANS. MF2_SOC1 homeologs have lost important TFBSs (SEP3, AP1 and SMZ), responsible for SOC1 repression post-flowering. BjuAALF_SOC1 promoter (proximal 2 kb) shows ubiquitous reporter expression in B. juncea cv. Varuna transgenics, while BjuAAMF1_SOC1 promoter shows absence of reporter expression, validating the impact of TFBS divergence. Conservation of the original primary protein sequence is discovered in B. rapa homeologs (46) of 18 TFs. Co-regulation pattern of these TFs appeared similar for B. rapa LF and MF2 SOC1 homeologs; MF1 shows significant variation. Strong regulatory association is recorded for AP1, AP2, SEP3, FLC and CONSTANS/NF-Y, highlighting their importance in homeolog-specific SOC1 regulation. Correlation of B. juncea AP1, AP2 and FLC expression with SOC1 homeologs also complies with the TFBS differences. We thus conclude that redundant SOC1 loci contribute differentially to cumulative expression of SOC1 due to divergent selection of ancestral TFBSs.
Collapse
Affiliation(s)
- Tanu Sri
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi 110070, India
| | - Bharat Gupta
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi 110070, India
| | - Shikha Tyagi
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi 110070, India
| | - Anandita Singh
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi 110070, India.
| |
Collapse
|
8
|
Hu D, Zhang W, Zhang Y, Chang S, Chen L, Chen Y, Shi Y, Shen J, Meng J, Zou J. Reconstituting the genome of a young allopolyploid crop, Brassica napus, with its related species. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1106-1118. [PMID: 30467941 PMCID: PMC6523605 DOI: 10.1111/pbi.13041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 05/20/2023]
Abstract
Brassica napus (An An Cn Cn ) is an important worldwide oilseed crop, but it is a young allotetraploid with a short evolutionary history and limited genetic diversity. To significantly broaden its genetic diversity and create a novel heterotic population for sustainable rapeseed breeding, this study reconstituted the genome of B. napus by replacing it with the subgenomes from 122 accessions of Brassica rapa (Ar Ar ) and 74 accessions of Brassica carinata (Bc Bc Cc Cc ) and developing a novel gene pool of B. napus through five rounds of extensive recurrent selection. When compared with traditional B. napus using SSR markers and high-throughput SNP/Indel markers through genotyping by sequencing, the newly developed gene pool and its homozygous progenies exhibited a large genetic distance, rich allelic diversity, new alleles and exotic allelic introgression across all 19 AC chromosomes. In addition to the abundant genomic variation detected in the AC genome, we also detected considerable introgression from the eight chromosomes of the B genome. Extensive trait variation and some genetic improvements were present from the early recurrent selection to later generations. This novel gene pool produced equally rich phenotypic variation and should be valuable for rapeseed genetic improvement. By reconstituting the genome of B. napus by introducing subgenomic variation within and between the related species using intense selection and recombination, the whole genome could be substantially reorganized. These results serve as an example of the manipulation of the genome of a young allopolyploid and provide insights into its rapid genome evolution affected by interspecific and intraspecific crosses.
Collapse
Affiliation(s)
- Dandan Hu
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Wenshan Zhang
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yikai Zhang
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shihao Chang
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Lunlin Chen
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yingying Chen
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yongdi Shi
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jinling Meng
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jun Zou
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
9
|
Wang W, Guan R, Liu X, Zhang H, Song B, Xu Q, Fan G, Chen W, Wu X, Liu X, Wang J. Chromosome level comparative analysis of Brassica genomes. PLANT MOLECULAR BIOLOGY 2019; 99:237-249. [PMID: 30632049 DOI: 10.1007/s11103-018-0814-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
We provided a chromosome-length assembly of B. nigra and show the comprehensive chromosome-scale variations among Brassica genomes. Chromosome-level assembly of the Brassica species, which include many important crops, is essential for the agricultural and evolutionary studies. While the present B. nigra chromosomes was connected with genetic map of B. juncea, hindering the comparative analysis of the B chromosomes. Here we present a chromosome-length B. nigra assembly constructed with Hi-C connections and its variations on chromosome level compared with other Brassica species. We produced an assembly of 484 Mb annotated with 51,829 genes, of which 393 Mb were anchored onto 8 chromosomes, taking 81.26% of the assembly. Comparison of the B chromosomes shows high concordance of the two B. nigra assemblies and reveals comprehensive variations of the B chromosomes after polyploidization and gene loss in syntenic regions. Chromosome blocks with variations have lower gene density and higher TE content. Furthermore, we compared the chromosomes of the three major Brassica diploids, which showed that most of the variations between B and A/C had completed before A/C divergence and there are more variations on C chromosomes after their divergence. In summary, our work presents a chromosome-length assembly of B. nigra and comprehensive comparative analysis of the Brassica chromosomes, which provides a useful reference for other studies and comprehensive information of Brassica chromosome evolution.
Collapse
Affiliation(s)
- Wenliang Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, 518083, China
| | - Rui Guan
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, 518083, China
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xing Liu
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, 518083, China
| | - Haorui Zhang
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, 518083, China
| | - Bo Song
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, 518083, China
| | - Qiwu Xu
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, 518083, China
| | - Guangyi Fan
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, 518083, China
| | - Wenbin Chen
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.
| | - Xin Liu
- BGI-Shenzhen, Shenzhen, 518083, China.
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
10
|
Sun D, Wang C, Zhang X, Zhang W, Jiang H, Yao X, Liu L, Wen Z, Niu G, Shan X. Draft genome sequence of cauliflower ( Brassica oleracea L. var. botrytis) provides new insights into the C genome in Brassica species. HORTICULTURE RESEARCH 2019; 6:82. [PMID: 31645943 PMCID: PMC6804732 DOI: 10.1038/s41438-019-0164-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/19/2019] [Accepted: 05/09/2019] [Indexed: 05/18/2023]
Abstract
Cauliflower is an important variety of Brassica oleracea and is planted worldwide. Here, the high-quality genome sequence of cauliflower was reported. The assembled cauliflower genome was 584.60 Mb in size, with a contig N50 of 2.11 Mb, and contained 47,772 genes; 56.65% of the genome was composed of repetitive sequences. Among these sequences, long terminal repeats (LTRs) were the most abundant (32.71% of the genome), followed by transposable elements (TEs) (12.62%). Comparative genomic analysis confirmed that after an ancient paleohexaploidy (γ) event, cauliflower underwent two whole-genome duplication (WGD) events shared with Arabidopsis and an additional whole-genome triplication (WGT) event shared with other Brassica species. The present cultivated cauliflower diverged from the ancestral B. oleracea species ~3.0 million years ago (Mya). The speciation of cauliflower (~2.0 Mya) was later than that of B. oleracea L. var. capitata (approximately 2.6 Mya) and other Brassica species (over 2.0 Mya). Chromosome no. 03 of cauliflower shared the most syntenic blocks with the A, B, and C genomes of Brassica species and its eight other chromosomes, implying that chromosome no. 03 might be the most ancient one in the cauliflower genome, which was consistent with the chromosome being inherited from the common ancestor of Brassica species. In addition, 2,718 specific genes, 228 expanded genes, 2 contracted genes, and 1,065 positively selected genes in cauliflower were identified and functionally annotated. These findings provide new insights into the genomic diversity of Brassica species and serve as a valuable reference for molecular breeding of cauliflower.
Collapse
Affiliation(s)
- Deling Sun
- Tianjin Academy of Agricultural Sciences, 300192 Tianjin, China
| | - Chunguo Wang
- College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Xiaoli Zhang
- Tianjin Kernel Vegetable Research Institute, 300384 Tianjin, China
| | - Wenlin Zhang
- Novogene Bioinformatics Institute, 100015 Beijing, China
| | - Hanmin Jiang
- Tianjin Kernel Vegetable Research Institute, 300384 Tianjin, China
| | - Xingwei Yao
- Tianjin Kernel Vegetable Research Institute, 300384 Tianjin, China
| | - Lili Liu
- Tianjin Kernel Vegetable Research Institute, 300384 Tianjin, China
| | - Zhenghua Wen
- Tianjin Kernel Vegetable Research Institute, 300384 Tianjin, China
| | - Guobao Niu
- Tianjin Kernel Vegetable Research Institute, 300384 Tianjin, China
| | - Xiaozheng Shan
- Tianjin Kernel Vegetable Research Institute, 300384 Tianjin, China
| |
Collapse
|
11
|
Jiang M, Dong X, Lang H, Pang W, Zhan Z, Li X, Piao Z. Mining of Brassica-Specific Genes (BSGs) and Their Induction in Different Developmental Stages and under Plasmodiophora brassicae Stress in Brassica rapa. Int J Mol Sci 2018; 19:ijms19072064. [PMID: 30012965 PMCID: PMC6073354 DOI: 10.3390/ijms19072064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/29/2018] [Accepted: 07/13/2018] [Indexed: 11/16/2022] Open
Abstract
Orphan genes, also called lineage-specific genes (LSGs), are important for responses to biotic and abiotic stresses, and are associated with lineage-specific structures and biological functions. To date, there have been no studies investigating gene number, gene features, or gene expression patterns of orphan genes in Brassica rapa. In this study, 1540 Brassica-specific genes (BSGs) and 1824 Cruciferae-specific genes (CSGs) were identified based on the genome of Brassica rapa. The genic features analysis indicated that BSGs and CSGs possessed a lower percentage of multi-exon genes, higher GC content, and shorter gene length than evolutionary-conserved genes (ECGs). In addition, five types of BSGs were obtained and 145 out of 529 real A subgenome-specific BSGs were verified by PCR in 51 species. In silico and semi-qPCR, gene expression analysis of BSGs suggested that BSGs are expressed in various tissue and can be induced by Plasmodiophora brassicae. Moreover, an A/C subgenome-specific BSG, BSGs1, was specifically expressed during the heading stage, indicating that the gene might be associated with leafy head formation. Our results provide valuable biological information for studying the molecular function of BSGs for Brassica-specific phenotypes and biotic stress in B. rapa.
Collapse
Affiliation(s)
- Mingliang Jiang
- College of Horticulture, Shenyang Agricultural University, #120 Dongling Road, Shenyang 110866, China.
| | - Xiangshu Dong
- School of Agriculture, Yunnan University, Kunming 650504, China.
| | - Hong Lang
- Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture, Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Wenxing Pang
- College of Horticulture, Shenyang Agricultural University, #120 Dongling Road, Shenyang 110866, China.
| | - Zongxiang Zhan
- College of Horticulture, Shenyang Agricultural University, #120 Dongling Road, Shenyang 110866, China.
| | - Xiaonan Li
- College of Horticulture, Shenyang Agricultural University, #120 Dongling Road, Shenyang 110866, China.
| | - Zhongyun Piao
- College of Horticulture, Shenyang Agricultural University, #120 Dongling Road, Shenyang 110866, China.
| |
Collapse
|
12
|
Tyagi S, Sri T, Singh A, Mayee P, Shivaraj SM, Sharma P, Singh A. SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 influences flowering time, lateral branching, oil quality, and seed yield in Brassica juncea cv. Varuna. Funct Integr Genomics 2018; 19:43-60. [DOI: 10.1007/s10142-018-0626-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 01/18/2023]
|
13
|
Shivaraj SM, Jain A, Singh A. Highly preserved roles of Brassica MIR172 in polyploid Brassicas: ectopic expression of variants of Brassica MIR172 accelerates floral transition. Mol Genet Genomics 2018; 293:1121-1138. [PMID: 29752548 DOI: 10.1007/s00438-018-1444-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 05/03/2018] [Indexed: 12/21/2022]
Abstract
Functional characterization of regulatory genes governing flowering time is a research priority for breeding earliness in crop Brassicas. Highly polyploid genomes of Brassicas pose challenges in unraveling homeolog gene function. In Arabidopsis, five MIR172 paralogs control flowering time and floral organ identity by down-regulating AP2 and AP2-like genes. The impact of homeolog diversification on MIR172 loci, however, needs to be examined in morphologically diverse Brassicas. Herein, we analyze fractionation status and phylogeny of MIR172 and target AP2 from Brassicas and compare functionality of MIR172 variants representing distinct sub-genomes and progenitor genomes. Copy number analysis revealed higher retention of MIR172 loci relative to AP2 in diploid and amphi-diploid Brassica species. Dendrogram of 87 MIR172 sequences from Brassicaceae showed five major clusters corresponding to MIR172a-MIR172e which further separated into sub-genome and progenitor genome specific clades. Similar groupings were observed in the phylogeny of 11 Brassica AP2 and AP2-like genes. Over-expression of a pair of natural variants for each of MIR172b, MIR172d and MIR172e representing sub-genomes, progenitor genomes and species of Brassicas displayed floral acceleration in all transgenic lines indicating a strong selection pressure on MIR172. All gain-of-function lines, except 35S::MIR172e and 35S::MIR172e' displayed floral organ defects implying altered target spectrum of MIR172e relative to MIR172b and MIR172d. Expression of MIR172e caused marginal earliness in flowering time in B. juncea. In conclusion, this study demonstrates tightly preserved role of homeologs and natural variants of MIR172 family in mediating flowering in Brassicas and suggests their deployment for introgression of early flowering trait.
Collapse
Affiliation(s)
- S M Shivaraj
- Department of Biotechnology, TERI School of Advanced Studies, 10 Institutional Area, Vasant Kunj, New Delhi, Delhi, 110070, India
- Département de Phytologie-Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec, QC, Canada
| | - Aditi Jain
- Department of Biotechnology, TERI School of Advanced Studies, 10 Institutional Area, Vasant Kunj, New Delhi, Delhi, 110070, India
| | - Anandita Singh
- Department of Biotechnology, TERI School of Advanced Studies, 10 Institutional Area, Vasant Kunj, New Delhi, Delhi, 110070, India.
| |
Collapse
|
14
|
Tan C, Cui C, Xiang Y, Ge X, Li Z. Development of Brassica oleracea-nigra monosomic alien addition lines: genotypic, cytological and morphological analyses. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2491-2504. [PMID: 28884205 DOI: 10.1007/s00122-017-2971-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
We report the development and characterization of Brassica oleracea - nigra monosomic alien addition lines (MAALs) to dissect the Brassica B genome. Brassica nigra (2n = 16, BB) represents the diploid Brassica B genome which carries many useful genes and traits for breeding but received limited studies. To dissect the B genome from B. nigra, the triploid F1 hybrid (2n = 26, CCB) obtained previously from the cross B. oleracea var. alboglabra (2n = 18, CC) × B. nigra was used as the maternal parent and backcrossed successively to parental B. oleracea. The progenies in BC1 to BC3 generations were analyzed by the methods of FISH and SSR markers to screen the monosomic alien addition lines (MAALs) with each of eight different B-genome chromosomes added to C genome (2n = 19, CC + 1B1-8), and seven different MAALs were established, except for the one with chromosome B2 which existed in one triple addition. Most of these MAALs were distinguishable morphologically from each other, as they expressed the characters from B. nigra differently and at variable extents. The alien chromosome remained unpaired as a univalent in 86.24% pollen mother cells at diakinesis or metaphase I, and formed a trivalent with two C-genome chromosomes in 13.76% cells. Transmission frequency of all the added chromosomes was far higher through the ovules (averagely 14.40%) than the pollen (2.64%). The B1, B4 and B5 chromosomes were transmitted by female at much higher rates (22.38-30.00%) than the other four (B3, B6, B7, B8) (5.04-8.42%). The MAALs should be valuable for exploiting the genome structure and evolution of B. nigra.
Collapse
Affiliation(s)
- Chen Tan
- National Key Lab of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Research and Development Centre of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311202, People's Republic of China
| | - Cheng Cui
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, People's Republic of China.
| | - Yi Xiang
- National Key Lab of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xianhong Ge
- National Key Lab of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zaiyun Li
- National Key Lab of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
15
|
Wang J, Tang M, Chen S, Zheng X, Mo H, Li S, Wang Z, Zhu K, Ding L, Liu S, Li Y, Tan X. Down-regulation of BnDA1, whose gene locus is associated with the seeds weight, improves the seeds weight and organ size in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1024-1033. [PMID: 28097785 PMCID: PMC5506660 DOI: 10.1111/pbi.12696] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 05/03/2023]
Abstract
Brassica napus L. is an important oil crop worldwide and is the main raw material for biofuel. Seed weight and seed size are the main contributors to seed yield. DA1 (DA means big in Chinese) is an ubiquitin receptor and negatively regulates seed size. Down-regulation of AtDA1 in Arabidopsis leads to larger seeds and organs by increasing cell proliferation in integuments. In this study, BnDA1 was down-regulated in B. napus by over expressed of AtDA1R358K , which is a functional deficiency of DA1 with an arginine-to-lysine mutation at the 358th amino acid. The results showed that the biomass and size of the seeds, cotyledons, leaves, flowers and siliques of transgenic plants all increased significantly. In particular, the 1000 seed weight increased 21.23% and the seed yield per plant increased 13.22% in field condition. The transgenic plants had no negative traits related to yield. The candidate gene association analysis demonstrated that the BnDA1 locus was contributed to the seeds weight. Therefore, our study showed that regulation of DA1 in B. napus can increase the seed yield and biomass, and DA1 is a promising target for crop improvement.
Collapse
Affiliation(s)
- Jie‐Li Wang
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Min‐Qiang Tang
- The Oil Crops Research Institute (OCRI) of the Chinese Academy of Agricultural Sciences (CAAS)WuhanChina
| | - Sheng Chen
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | | | - Hui‐Xian Mo
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology (IGDB)Chinese Academy of Sciences (CAS)BeijingChina
| | - Sheng‐Jun Li
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology (IGDB)Chinese Academy of Sciences (CAS)BeijingChina
| | - Zheng Wang
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Ke‐Ming Zhu
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Li‐Na Ding
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Sheng‐Yi Liu
- The Oil Crops Research Institute (OCRI) of the Chinese Academy of Agricultural Sciences (CAAS)WuhanChina
| | - Yun‐Hai Li
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology (IGDB)Chinese Academy of Sciences (CAS)BeijingChina
| | - Xiao‐Li Tan
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| |
Collapse
|
16
|
Sharma BB, Kalia P, Singh D, Sharma TR. Introgression of Black Rot Resistance from Brassica carinata to Cauliflower ( Brassica oleracea botrytis Group) through Embryo Rescue. FRONTIERS IN PLANT SCIENCE 2017; 8:1255. [PMID: 28769959 PMCID: PMC5513967 DOI: 10.3389/fpls.2017.01255] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/03/2017] [Indexed: 05/21/2023]
Abstract
Black rot caused by Xanthomonas campestris pv. campestris (Xcc) is a very important disease of cauliflower (Brassica oleracea botrytis group) resulting into 10-50% yield losses every year. Since there is a dearth of availability of resistance to black rot disease in B. oleracea (C genome), therefore exploration of A and B genomes was inevitable as they have been reported to be potential reservoirs of gene(s) for resistance to black rot. To utilize these sources, interspecific hybrid and backcross progeny (B1) were generated between cauliflower "Pusa Sharad" and Ethiopian mustard "NPC-9" employing in vitro embryo rescue technique. Direct ovule culture method was better than siliqua culture under different temperature regime periods. Hybridity testing of F1 inter-specific plants was carried out using co-dominant SSR marker and Brassica B and C genome-specific (DB and DC) primers. Meiosis in the di-genomic (BCC) interspecific hybrid of B. oleracea botrytis group (2n = 18, CC) × B. carinata (2n = 4x = 34, BBCC) was higly disorganized and cytological analysis of pollen mother cells revealed chromosomes 2n = 26 at metaphase-I. Fertile giant pollen grain formation was observed frequently in interspecific F1 hybrid and BC1 plants. The F1 inter-specific plants were found to be resistant to Xcc race 1. Segregation distortion was observed in BC1 generation for black rot resistance and different morphological traits. The At1g70610 marker analysis confirmed successful introgression of black rot resistance in interspecific BC1 population. This effort will go a long way in pyramiding gene(s) for resistance against black rot in Cole crops, especially cauliflower and cabbage for developing durable resistance, thus minimize dependency on bactericides.
Collapse
Affiliation(s)
- Brij B. Sharma
- Division of Vegetable Science, Indian Council of Agricultural Research-Indian Agricultural Research InstituteNew Delhi, India
| | - Pritam Kalia
- Division of Vegetable Science, Indian Council of Agricultural Research-Indian Agricultural Research InstituteNew Delhi, India
- *Correspondence: Pritam Kalia
| | - Dinesh Singh
- Division of Plant Pathology, Indian Council of Agricultural Research-Indian Agricultural Research InstituteNew Delhi, India
| | | |
Collapse
|
17
|
Jeong YM, Kim N, Ahn BO, Oh M, Chung WH, Chung H, Jeong S, Lim KB, Hwang YJ, Kim GB, Baek S, Choi SB, Hyung DJ, Lee SW, Sohn SH, Kwon SJ, Jin M, Seol YJ, Chae WB, Choi KJ, Park BS, Yu HJ, Mun JH. Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1357-1372. [PMID: 27038817 DOI: 10.1007/s00122-016-2708-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/17/2016] [Indexed: 05/03/2023]
Abstract
This study presents a chromosome-scale draft genome sequence of radish that is assembled into nine chromosomal pseudomolecules. A comprehensive comparative genome analysis with the Brassica genomes provides genomic evidences on the evolution of the mesohexaploid radish genome. Radish (Raphanus sativus L.) is an agronomically important root vegetable crop and its origin and phylogenetic position in the tribe Brassiceae is controversial. Here we present a comprehensive analysis of the radish genome based on the chromosome sequences of R. sativus cv. WK10039. The radish genome was sequenced and assembled into 426.2 Mb spanning >98 % of the gene space, of which 344.0 Mb were integrated into nine chromosome pseudomolecules. Approximately 36 % of the genome was repetitive sequences and 46,514 protein-coding genes were predicted and annotated. Comparative mapping of the tPCK-like ancestral genome revealed that the radish genome has intermediate characteristics between the Brassica A/C and B genomes in the triplicated segments, suggesting an internal origin from the genus Brassica. The evolutionary characteristics shared between radish and other Brassica species provided genomic evidences that the current form of nine chromosomes in radish was rearranged from the chromosomes of hexaploid progenitor. Overall, this study provides a chromosome-scale draft genome sequence of radish as well as novel insight into evolution of the mesohexaploid genomes in the tribe Brassiceae.
Collapse
Affiliation(s)
- Young-Min Jeong
- Department of Life Science, The Catholic University of Korea, Bucheon, 420-743, Korea
| | - Namshin Kim
- Epigenomics Research Center of Genome Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Byung Ohg Ahn
- Department of Genomics, National Academy of Agricultural Science, Rural Development Administration, Wanju, 565-851, Korea
| | - Mijin Oh
- Department of Genomics, National Academy of Agricultural Science, Rural Development Administration, Wanju, 565-851, Korea
| | - Won-Hyong Chung
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Hee Chung
- Department of Life Science, The Catholic University of Korea, Bucheon, 420-743, Korea
| | - Seongmun Jeong
- Epigenomics Research Center of Genome Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Ki-Byung Lim
- Department of Horticultural Science, Kyungpook National University, Daegu, 702-701, Korea
| | - Yoon-Jung Hwang
- Department of Life Science, Sahmyook University, Seoul, 139-800, Korea
| | - Goon-Bo Kim
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, 449-728, Korea
| | - Seunghoon Baek
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, 449-728, Korea
| | - Sang-Bong Choi
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, 449-728, Korea
| | | | | | - Seong-Han Sohn
- Department of Genomics, National Academy of Agricultural Science, Rural Development Administration, Wanju, 565-851, Korea
| | - Soo-Jin Kwon
- Department of Genomics, National Academy of Agricultural Science, Rural Development Administration, Wanju, 565-851, Korea
| | - Mina Jin
- Department of Genomics, National Academy of Agricultural Science, Rural Development Administration, Wanju, 565-851, Korea
| | - Young-Joo Seol
- Department of Genomics, National Academy of Agricultural Science, Rural Development Administration, Wanju, 565-851, Korea
| | - Won Byoung Chae
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 565-852, Korea
| | - Keun Jin Choi
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 565-852, Korea
| | - Beom-Seok Park
- Department of Genomics, National Academy of Agricultural Science, Rural Development Administration, Wanju, 565-851, Korea
| | - Hee-Ju Yu
- Department of Life Science, The Catholic University of Korea, Bucheon, 420-743, Korea.
| | - Jeong-Hwan Mun
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, 449-728, Korea.
| |
Collapse
|
18
|
Zou J, Hu D, Liu P, Raman H, Liu Z, Liu X, Parkin IAP, Chalhoub B, Meng J. Co-linearity and divergence of the A subgenome of Brassica juncea compared with other Brassica species carrying different A subgenomes. BMC Genomics 2016; 17:18. [PMID: 26728943 PMCID: PMC4700566 DOI: 10.1186/s12864-015-2343-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 12/22/2015] [Indexed: 01/25/2023] Open
Abstract
Background There are three basic Brassica genomes (A, B, and C) and three parallel sets of subgenomes distinguished in the diploid Brassica (i.e.: B. rapa, ArAr; B. nigra, BniBni; B. oleracea, CoCo) and the derived allotetraploid species (i.e.: B. juncea, AjAjBjBj; B. napus, AnAnCnCn; B. carinata, BcBcCcCc). To understand subgenome differentiation in B. juncea in comparison to other A genome-carrying Brassica species (B. rapa and B. napus), we constructed a dense genetic linkage map of B. juncea, and conducted population genetic analysis on diverse lines of the three A-genome carrying Brassica species using a genotyping-by-sequencing approach (DArT-seq). Results A dense genetic linkage map of B. juncea was constructed using an F2 population derived from Sichuan Yellow/Purple Mustard. The map included 3329 DArT-seq markers on 18 linkage groups and covered 1579 cM with an average density of two markers per cM. Based on this map and the alignment of the marker sequences with the physical genome of Arabidopsis thaliana, we observed strong co-linearity of the ancestral blocks among the different A subgenomes but also considerable block variation. Comparative analyses at the level of genome sequences of B. rapa and B. napus, and marker sequence anchored on the genetic map of B. juncea, revealed a total of 30 potential inversion events across large segments and 20 potential translocation events among the three A subgenomes. Population genetic analysis on 26 accessions of the three A genome-carrying Brassica species showed that the highest genetic distance were estimated when comparing Aj-An than between An-Ar and Aj-Ar subgenome pairs. Conclusions The development of the dense genetic linkage map of B. juncea with informative DArT-seq marker sequences and availability of the reference sequences of the Ar, and AnCn genomes allowed us to compare the A subgenome structure of B. juncea (Aj) . Our results suggest that strong co-linearity exists among the three A Brassica genomes (Ar, An and Aj) but with apparent subgenomic variation. Population genetic analysis on three A-genome carrying Brassica species support the idea that B. juncea has distinct genomic diversity, and/or evolved from a different A genome progenitor of B. napus. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2343-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture P. R. China, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Dandan Hu
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture P. R. China, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Peifa Liu
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture P. R. China, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Harsh Raman
- Graham Centre for Agricultural Innovation (an alliance between the Charles Sturt University and NSW Department of Primary Industries), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia.
| | - Zhongsong Liu
- Oilseed Crops Institute, Hunan Agricultural University, Changsha, 410128, China.
| | - Xianjun Liu
- Oilseed Crops Institute, Hunan Agricultural University, Changsha, 410128, China.
| | - Isobel A P Parkin
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada.
| | - Boulos Chalhoub
- Unité de Recherche en Génomique Végétale (Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université d'Evry Val d'Essonnes), Organization and Evolution of Plant Genomes, 91057, Evry cedex, France.
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture P. R. China, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
19
|
Wei Z, Wang M, Chang S, Wu C, Liu P, Meng J, Zou J. Introgressing Subgenome Components from Brassica rapa and B. carinata to B. juncea for Broadening Its Genetic Base and Exploring Intersubgenomic Heterosis. FRONTIERS IN PLANT SCIENCE 2016; 7:1677. [PMID: 27909440 PMCID: PMC5112257 DOI: 10.3389/fpls.2016.01677] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/25/2016] [Indexed: 05/21/2023]
Abstract
Brassica juncea (AjAjBjBj), is an allotetraploid that arose from two diploid species, B. rapa (ArAr) and B. nigra (BnBn). It is an old oilseed crop with unique favorable traits, but the genetic improvement on this species is limited. We developed an approach to broaden its genetic base within several generations by intensive selection. The Ar subgenome from the Asian oil crop B. rapa (ArAr) and the Bc subgenome from the African oil crop B. carinata (BcBcCcCc) were combined in a synthesized allohexaploid (ArArBcBcCcCc), which was crossed with traditional B. juncea to generate pentaploid F1 hybrids (ArAjBcBjCc), with subsequent self-pollination to obtain newly synthesized B. juncea (Ar/jAr/jBc/jBc/j). After intensive cytological screening and phenotypic selection of fertility and agronomic traits, a population of new-type B. juncea was obtained and was found to be genetically stable at the F6 generation. The new-type B. juncea possesses good fertility and rich genetic diversity and is distinctly divergent but not isolated from traditional B. juncea, as revealed by population genetic analysis with molecular markers. More than half of its genome was modified, showing exotic introgression and novel variation. In addition to the improvement in some traits of the new-type B. juncea lines, a considerable potential for heterosis was observed in inter-subgenomic hybrids between new-type B. juncea lines and traditional B. juncea accessions. The new-type B. juncea exhibited a stable chromosome number and a novel genome composition through multiple generations, providing insight into how to significantly broaden the genetic base of crops with subgenome introgression from their related species and the potential of exploring inter-subgenomic heterosis for hybrid breeding.
Collapse
|
20
|
Sri T, Mayee P, Singh A. Sequence and expression variation in SUPPRESSOR of OVEREXPRESSION of CONSTANS 1 (SOC1): homeolog evolution in Indian Brassicas. Dev Genes Evol 2015; 225:287-303. [PMID: 26276216 DOI: 10.1007/s00427-015-0513-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022]
Abstract
Whole genome sequence analyses allow unravelling such evolutionary consequences of meso-triplication event in Brassicaceae (∼14-20 million years ago (MYA)) as differential gene fractionation and diversification in homeologous sub-genomes. This study presents a simple gene-centric approach involving microsynteny and natural genetic variation analysis for understanding SUPPRESSOR of OVEREXPRESSION of CONSTANS 1 (SOC1) homeolog evolution in Brassica. Analysis of microsynteny in Brassica rapa homeologous regions containing SOC1 revealed differential gene fractionation correlating to reported fractionation status of sub-genomes of origin, viz. least fractionated (LF), moderately fractionated 1 (MF1) and most fractionated (MF2), respectively. Screening 18 cultivars of 6 Brassica species led to the identification of 8 genomic and 27 transcript variants of SOC1, including splice-forms. Co-occurrence of both interrupted and intronless SOC1 genes was detected in few Brassica species. In silico analysis characterised Brassica SOC1 as MADS intervening, K-box, C-terminal (MIKC(C)) transcription factor, with highly conserved MADS and I domains relative to K-box and C-terminal domain. Phylogenetic analyses and multiple sequence alignments depicting shared pattern of silent/non-silent mutations assigned Brassica SOC1 homologs into groups based on shared diploid base genome. In addition, a sub-genome structure in uncharacterised Brassica genomes was inferred. Expression analysis of putative MF2 and LF (Brassica diploid base genome A (AA)) sub-genome-specific SOC1 homeologs of Brassica juncea revealed near identical expression pattern. However, MF2-specific homeolog exhibited significantly higher expression implying regulatory diversification. In conclusion, evidence for polyploidy-induced sequence and regulatory evolution in Brassica SOC1 is being presented wherein differential homeolog expression is implied in functional diversification.
Collapse
Affiliation(s)
- Tanu Sri
- Department of Biotechnology, TERI University, 10 Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | - Pratiksha Mayee
- Department of Biotechnology, TERI University, 10 Institutional Area, Vasant Kunj, New Delhi, 110070, India
- Department of Research, Ankur Seeds Pvt. Ltd., Nagpur, 440018, India
| | - Anandita Singh
- Department of Biotechnology, TERI University, 10 Institutional Area, Vasant Kunj, New Delhi, 110070, India.
| |
Collapse
|
21
|
Dun X, Shen W, Hu K, Zhou Z, Xia S, Wen J, Yi B, Shen J, Ma C, Tu J, Fu T, Lagercrantz U. Neofunctionalization of duplicated Tic40 genes caused a gain-of-function variation related to male fertility in Brassica oleracea lineages. PLANT PHYSIOLOGY 2014; 166:1403-19. [PMID: 25185122 PMCID: PMC4226349 DOI: 10.1104/pp.114.246470] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Gene duplication followed by functional divergence in the event of polyploidization is a major contributor to evolutionary novelties. The Brassica genus evolved from a common ancestor after whole-genome triplication. Here, we studied the evolutionary and functional features of Brassica spp. homologs to Tic40 (for translocon at the inner membrane of chloroplasts with 40 kDa). Four Tic40 loci were identified in allotetraploid Brassica napus and two loci in each of three basic diploid Brassica spp. Although these Tic40 homologs share high sequence identities and similar expression patterns, they exhibit altered functional features. Complementation assays conducted on Arabidopsis thaliana tic40 and the B. napus male-sterile line 7365A suggested that all Brassica spp. Tic40 homologs retain an ancestral function similar to that of AtTic40, whereas BolC9.Tic40 in Brassica oleracea and its ortholog in B. napus, BnaC9.Tic40, in addition, evolved a novel function that can rescue the fertility of 7365A. A homologous chromosomal rearrangement placed bnac9.tic40 originating from the A genome (BraA10.Tic40) as an allele of BnaC9.Tic40 in the C genome, resulting in phenotypic variation for male sterility in the B. napus near-isogenic two-type line 7365AB. Assessment of the complementation activity of chimeric B. napus Tic40 domain-swapping constructs in 7365A suggested that amino acid replacements in the carboxyl terminus of BnaC9.Tic40 cause this functional divergence. The distribution of these amino acid replacements in 59 diverse Brassica spp. accessions demonstrated that the neofunctionalization of Tic40 is restricted to B. oleracea and its derivatives and thus occurred after the divergence of the Brassica spp. A, B, and C genomes.
Collapse
Affiliation(s)
- Xiaoling Dun
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Wenhao Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Kaining Hu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Zhengfu Zhou
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Shengqian Xia
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| | - Ulf Lagercrantz
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China (X.D., W.S., K.H., Z.Z., S.X., J.W., B.Y., J.S., C.M., J.T., T.F.); andDepartment of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala SE-75236, Sweden (U.L.)
| |
Collapse
|
22
|
Cao HX, Schmidt R. Intergenomic single nucleotide polymorphisms as a tool for bacterial artificial chromosome contig building of homoeologous Brassica napus regions. BMC Genomics 2014; 15:560. [PMID: 24996518 PMCID: PMC4102721 DOI: 10.1186/1471-2164-15-560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 06/25/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Homoeologous sequences pose a particular challenge if bacterial artificial chromosome (BAC) contigs shall be established for specific regions of an allopolyploid genome. Single nucleotide polymorphisms (SNPs) differentiating between homoeologous genomes (intergenomic SNPs) may represent a suitable screening tool for such purposes, since they do not only identify homoeologous sequences but also differentiate between them. RESULTS Sequence alignments between Brassica rapa (AA) and Brassica oleracea (CC) sequences mapping to corresponding regions on chromosomes A1 and C1, respectively were used to identify single nucleotide polymorphisms between the A and C genomes. A large fraction of these polymorphisms was also present in Brassica napus (AACC), an allopolyploid species that originated from hybridisation of A and C genome species. Intergenomic SNPs mapping throughout homoeologous chromosome segments spanning approximately one Mbp each were included in Illumina's GoldenGate® Genotyping Assay and used to screen multidimensional pools of a Brassica napus bacterial artificial chromosome library with tenfold genome coverage. Based on the results of 50 SNP assays, a BAC contig for the Brassica napus A subgenome was established that spanned the entire region of interest. The C subgenome region was represented in three BAC contigs. CONCLUSIONS This proof-of-concept study shows that sequence resources of diploid progenitor genomes can be used to deduce intergenomic SNPs suitable for multiplex polymerase chain reaction (PCR)-based screening of multidimensional BAC pools of a polyploid organism. Owing to their high abundance and ease of identification, intergenomic SNPs represent a versatile tool to establish BAC contigs for homoeologous regions of a polyploid genome.
Collapse
Affiliation(s)
| | - Renate Schmidt
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, D-06466 Stadt Seeland, Germany.
| |
Collapse
|
23
|
Parkin IAP, Koh C, Tang H, Robinson SJ, Kagale S, Clarke WE, Town CD, Nixon J, Krishnakumar V, Bidwell SL, Denoeud F, Belcram H, Links MG, Just J, Clarke C, Bender T, Huebert T, Mason AS, Pires JC, Barker G, Moore J, Walley PG, Manoli S, Batley J, Edwards D, Nelson MN, Wang X, Paterson AH, King G, Bancroft I, Chalhoub B, Sharpe AG. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol 2014; 15:R77. [PMID: 24916971 PMCID: PMC4097860 DOI: 10.1186/gb-2014-15-6-r77] [Citation(s) in RCA: 297] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/10/2014] [Indexed: 01/24/2023] Open
Abstract
Background Brassica oleracea is a valuable vegetable species that has contributed to human health and nutrition for hundreds of years and comprises multiple distinct cultivar groups with diverse morphological and phytochemical attributes. In addition to this phenotypic wealth, B. oleracea offers unique insights into polyploid evolution, as it results from multiple ancestral polyploidy events and a final Brassiceae-specific triplication event. Further, B. oleracea represents one of the diploid genomes that formed the economically important allopolyploid oilseed, Brassica napus. A deeper understanding of B. oleracea genome architecture provides a foundation for crop improvement strategies throughout the Brassica genus. Results We generate an assembly representing 75% of the predicted B. oleracea genome using a hybrid Illumina/Roche 454 approach. Two dense genetic maps are generated to anchor almost 92% of the assembled scaffolds to nine pseudo-chromosomes. Over 50,000 genes are annotated and 40% of the genome predicted to be repetitive, thus contributing to the increased genome size of B. oleracea compared to its close relative B. rapa. A snapshot of both the leaf transcriptome and methylome allows comparisons to be made across the triplicated sub-genomes, which resulted from the most recent Brassiceae-specific polyploidy event. Conclusions Differential expression of the triplicated syntelogs and cytosine methylation levels across the sub-genomes suggest residual marks of the genome dominance that led to the current genome architecture. Although cytosine methylation does not correlate with individual gene dominance, the independent methylation patterns of triplicated copies suggest epigenetic mechanisms play a role in the functional diversification of duplicate genes.
Collapse
|
24
|
Paritosh K, Gupta V, Yadava SK, Singh P, Pradhan AK, Pental D. RNA-seq based SNPs for mapping in Brassica juncea (AABB): synteny analysis between the two constituent genomes A (from B. rapa) and B (from B. nigra) shows highly divergent gene block arrangement and unique block fragmentation patterns. BMC Genomics 2014; 15:396. [PMID: 24886001 PMCID: PMC4045973 DOI: 10.1186/1471-2164-15-396] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/20/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Brassica juncea (AABB) is an allotetraploid species containing genomes of B. rapa (AA) and B. nigra (BB). It is a major oilseed crop in South Asia, and grown on approximately 6-7 million hectares of land in India during the winter season under dryland conditions. B. juncea has two well defined gene pools--Indian and east European. Hybrids between the two gene pools are heterotic for yield. A large number of qualitative and quantitative traits need to be introgressed from one gene pool into the other. This study explores the availability of SNPs in RNA-seq generated contigs, and their use for general mapping, fine mapping of selected regions, and comparative arrangement of gene blocks on B. juncea A and B genomes. RESULTS RNA isolated from two lines of B. juncea--Varuna (Indian type) and Heera (east European type)--was sequenced using Illumina paired end sequencing technology, and assembled using the Velvet de novo programme. A and B genome specific contigs were identified in two steps. First, by aligning contigs against the B. rapa protein database (available at BRAD), and second by comparing percentage identity at the nucleotide level with B. rapa CDS and B. nigra transcriptome. 135,693 SNPs were recorded in the assembled partial gene models of Varuna and Heera, 85,473 in the A genome and 50,236 in the B. Using KASpar technology, 999 markers were added to an earlier intron polymorphism marker based map of a B. juncea Varuna x Heera DH population. Many new gene blocks were identified in the B genome. A number of SNP markers covered single copy homoeologues of the A and B genomes, and these were used to identify homoeologous blocks between the two genomes. Comparison of the block architecture of A and B genomes revealed extensive differences in gene block associations and block fragmentation patterns. CONCLUSIONS Sufficient SNP markers are available for general and specific -region fine mapping of crosses between lines of two diverse B. juncea gene pools. Comparative gene block arrangement and block fragmentation patterns between A and B genomes support the hypothesis that the two genomes evolved from independent hexaploidy events.
Collapse
Affiliation(s)
| | | | | | | | | | - Deepak Pental
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
25
|
Sharma A, Li X, Lim YP. Comparative genomics of Brassicaceae crops. BREEDING SCIENCE 2014; 64:3-13. [PMID: 24987286 PMCID: PMC4031108 DOI: 10.1270/jsbbs.64.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/16/2014] [Indexed: 06/03/2023]
Abstract
The family Brassicaceae is one of the major groups of the plant kingdom and comprises diverse species of great economic, agronomic and scientific importance, including the model plant Arabidopsis. The sequencing of the Arabidopsis genome has revolutionized our knowledge in the field of plant biology and provides a foundation in genomics and comparative biology. Genomic resources have been utilized in Brassica for diversity analyses, construction of genetic maps and identification of agronomic traits. In Brassicaceae, comparative sequence analysis across the species has been utilized to understand genome structure, evolution and the detection of conserved genomic segments. In this review, we focus on the progress made in genetic resource development, genome sequencing and comparative mapping in Brassica and related species. The utilization of genomic resources and next-generation sequencing approaches in improvement of Brassica crops is also discussed.
Collapse
Affiliation(s)
- Ashutosh Sharma
- Graduate School of Agricultural Science, Tohoku University,
Aoba, Sendai, Miyagi 981-8555,
Japan
- Present address: Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Xiaonan Li
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University,
Daejeon 305-764,
Republic of Korea
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University,
Daejeon 305-764,
Republic of Korea
| |
Collapse
|
26
|
Sharma S, Padmaja KL, Gupta V, Paritosh K, Pradhan AK, Pental D. Two plastid DNA lineages--Rapa/Oleracea and Nigra--within the tribe Brassiceae can be best explained by reciprocal crosses at hexaploidy: evidence from divergence times of the plastid genomes and R-block genes of the A and B genomes of Brassica juncea. PLoS One 2014; 9:e93260. [PMID: 24691069 PMCID: PMC3972200 DOI: 10.1371/journal.pone.0093260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 03/04/2014] [Indexed: 12/23/2022] Open
Abstract
Brassica species (tribe Brassiceae) belonging to U's triangle--B. rapa (AA), B. nigra (BB), B. oleracea (CC), B. juncea (AABB), B. napus (AACC) and B. carinata (BBCC)--originated via two polyploidization rounds: a U event producing the three allopolyploids, and a more ancient b genome-triplication event giving rise to the A-, B-, and C-genome diploid species. Molecular mapping studies, in situ hybridization, and genome sequencing of B. rapa support the genome triplication origin of tribe Brassiceae, and suggest that these three diploid species diversified from a common hexaploid ancestor. Analysis of plastid DNA has revealed two distinct lineages--Rapa/Oleracea and Nigra--that conflict with hexaploidization as a single event defining the tribe Brassiceae. We analysed an R-block region of A. thaliana present in six copies in B. juncea (AABB), three copies each on A- and B-genomes to study gene fractionation pattern and synonymous base substitution rates (Ks values). Divergence time of paralogues within the A and B genomes and homoeologues between the A and B genomes was estimated. Homoeologous R blocks of the A and B genomes exhibited high gene collinearity and a conserved gene fractionation pattern. The three progenitors of diploid Brassicas were estimated to have diverged approximately 12 mya. Divergence of B. rapa and B. nigra, calculated from plastid gene sequences, was estimated to have occurred approximately 12 mya, coinciding with the divergence of the three genomes participating in the b event. Divergence of B. juncea A and B genome homoeologues was estimated to have taken place around 7 mya. Based on divergence time estimates and the presence of distinct plastid lineages in tribe Brassiceae, it is concluded that at least two independent triplication events involving reciprocal crosses at the time of the b event have given rise to Rapa/Oleracea and Nigra lineages.
Collapse
Affiliation(s)
- Sarita Sharma
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - K. Lakshmi Padmaja
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Vibha Gupta
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Kumar Paritosh
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Akshay K. Pradhan
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Deepak Pental
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
27
|
Cao HX, Schmidt R. Screening of a Brassica napus bacterial artificial chromosome library using highly parallel single nucleotide polymorphism assays. BMC Genomics 2013; 14:603. [PMID: 24010766 PMCID: PMC3846124 DOI: 10.1186/1471-2164-14-603] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/23/2013] [Indexed: 11/18/2022] Open
Abstract
Background Efficient screening of bacterial artificial chromosome (BAC) libraries with polymerase chain reaction (PCR)-based markers is feasible provided that a multidimensional pooling strategy is implemented. Single nucleotide polymorphisms (SNPs) can be screened in multiplexed format, therefore this marker type lends itself particularly well for medium- to high-throughput applications. Combining the power of multiplex-PCR assays with a multidimensional pooling system may prove to be especially challenging in a polyploid genome. In polyploid genomes two classes of SNPs need to be distinguished, polymorphisms between accessions (intragenomic SNPs) and those differentiating between homoeologous genomes (intergenomic SNPs). We have assessed whether the highly parallel Illumina GoldenGate® Genotyping Assay is suitable for the screening of a BAC library of the polyploid Brassica napus genome. Results A multidimensional screening platform was developed for a Brassica napus BAC library which is composed of almost 83,000 clones. Intragenomic and intergenomic SNPs were included in Illumina’s GoldenGate® Genotyping Assay and both SNP classes were used successfully for screening of the multidimensional BAC pools of the Brassica napus library. An optimized scoring method is proposed which is especially valuable for SNP calling of intergenomic SNPs. Validation of the genotyping results by independent methods revealed a success of approximately 80% for the multiplex PCR-based screening regardless of whether intra- or intergenomic SNPs were evaluated. Conclusions Illumina’s GoldenGate® Genotyping Assay can be efficiently used for screening of multidimensional Brassica napus BAC pools. SNP calling was specifically tailored for the evaluation of BAC pool screening data. The developed scoring method can be implemented independently of plant reference samples. It is demonstrated that intergenomic SNPs represent a powerful tool for BAC library screening of a polyploid genome.
Collapse
Affiliation(s)
- Hieu Xuan Cao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, D-06466 Stadt Seeland, Germany.
| | | |
Collapse
|