1
|
Liu I, Alencastro Veiga Cruzeiro G, Bjerke L, Rogers RF, Grabovska Y, Beck A, Mackay A, Barron T, Hack OA, Quezada MA, Molinari V, Shaw ML, Perez-Somarriba M, Temelso S, Raynaud F, Ruddle R, Panditharatna E, Englinger B, Mire HM, Jiang L, Nascimento A, LaBelle J, Haase R, Rozowsky J, Neyazi S, Baumgartner AC, Castellani S, Hoffman SE, Cameron A, Morrow M, Nguyen QD, Pericoli G, Madlener S, Mayr L, Dorfer C, Geyeregger R, Rota C, Ricken G, Ligon KL, Alexandrescu S, Cartaxo RT, Lau B, Uphadhyaya S, Koschmann C, Braun E, Danan-Gotthold M, Hu L, Siletti K, Sundström E, Hodge R, Lein E, Agnihotri S, Eisenstat DD, Stapleton S, King A, Bleil C, Mastronuzzi A, Cole KA, Waanders AJ, Montero Carcaboso A, Schüller U, Hargrave D, Vinci M, Carceller F, Haberler C, Slavc I, Linnarsson S, Gojo J, Monje M, Jones C, Filbin MG. GABAergic neuronal lineage development determines clinically actionable targets in diffuse hemispheric glioma, H3G34-mutant. Cancer Cell 2024; 42:S1535-6108(24)00305-2. [PMID: 39232581 PMCID: PMC11865364 DOI: 10.1016/j.ccell.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 05/24/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
Diffuse hemispheric gliomas, H3G34R/V-mutant (DHG-H3G34), are lethal brain tumors lacking targeted therapies. They originate from interneuronal precursors; however, leveraging this origin for therapeutic insights remains unexplored. Here, we delineate a cellular hierarchy along the interneuron lineage development continuum, revealing that DHG-H3G34 mirror spatial patterns of progenitor streams surrounding interneuron nests, as seen during human brain development. Integrating these findings with genome-wide CRISPR-Cas9 screens identifies genes upregulated in interneuron lineage progenitors as major dependencies. Among these, CDK6 emerges as a targetable vulnerability: DHG-H3G34 tumor cells show enhanced sensitivity to CDK4/6 inhibitors and a CDK6-specific degrader, promoting a shift toward more mature interneuron-like states, reducing tumor growth, and prolonging xenograft survival. Notably, a patient with progressive DHG-H3G34 treated with a CDK4/6 inhibitor achieved 17 months of stable disease. This study underscores interneuronal progenitor-like states, organized in characteristic niches, as a distinct vulnerability in DHG-H3G34, highlighting CDK6 as a promising clinically actionable target.
Collapse
Affiliation(s)
- Ilon Liu
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin und Humboldt-Universität zu Berlin, 10117 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Digital Clinician Scientist Program, 10117 Berlin, Germany
| | - Gustavo Alencastro Veiga Cruzeiro
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Lynn Bjerke
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK
| | - Rebecca F Rogers
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK
| | - Yura Grabovska
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK
| | - Alexander Beck
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Alan Mackay
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK
| | - Tara Barron
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Olivia A Hack
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Michael A Quezada
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Valeria Molinari
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK
| | - McKenzie L Shaw
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Marta Perez-Somarriba
- Children & Young People's Unit, Royal Marsden Hospital NHS Trust, Sutton, Surrey SM2 5 NG, UK
| | - Sara Temelso
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK
| | - Florence Raynaud
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RK, UK
| | - Ruth Ruddle
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RK, UK
| | - Eshini Panditharatna
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Bernhard Englinger
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Hafsa M Mire
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Li Jiang
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Andrezza Nascimento
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jenna LaBelle
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Rebecca Haase
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jacob Rozowsky
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Sina Neyazi
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Alicia-Christina Baumgartner
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Sophia Castellani
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Samantha E Hoffman
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Amy Cameron
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Murry Morrow
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Giulia Pericoli
- Department of Onco-haematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, 00165 Rome, Italy
| | - Sibylle Madlener
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Lisa Mayr
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Rene Geyeregger
- Clinical Cell Biology, Children's Cancer Research Institute (CCRI), Vienna 1090, Austria
| | - Christopher Rota
- Department of Neurobiology, Harvard Medical School, Boston, MA 02215, USA
| | - Gerda Ricken
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna 1090, Austria
| | - Keith L Ligon
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA; Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Rodrigo T Cartaxo
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benison Lau
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Carl Koschmann
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emelie Braun
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Miri Danan-Gotthold
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Lijuan Hu
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Kimberly Siletti
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Erik Sundström
- Division of Neurodegeneration, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, 17177 Stockholm, Sweden
| | - Rebecca Hodge
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Ed Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Sameer Agnihotri
- Departments of Neurosurgery and Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - David D Eisenstat
- Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Simon Stapleton
- Department of Neurosurgery, St George's Hospital NHS Trust, London SW17 0QT, UK
| | - Andrew King
- Department of Neuropathology, King's College Hospital NHS Trust, London SE5 9RS, UK
| | - Cristina Bleil
- Department of Neurosurgery, King's College Hospital NHS Trust, London SE5 9RS, UK
| | - Angela Mastronuzzi
- Department of Onco-haematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, 00165 Rome, Italy
| | - Kristina A Cole
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Angela J Waanders
- Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | | | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Darren Hargrave
- University College London Great Ormond Street Institute for Child Health, London WC1N 1EH, UK
| | - Maria Vinci
- Department of Onco-haematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, 00165 Rome, Italy
| | - Fernando Carceller
- Children & Young People's Unit, Royal Marsden Hospital NHS Trust, Sutton, Surrey SM2 5 NG, UK; Division of Clinical Studies, The Institute of Cancer Research, London SW7 3RK, UK
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna 1090, Austria
| | - Irene Slavc
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Johannes Gojo
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford, CA, USA
| | - Chris Jones
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK.
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
2
|
Huang X, Zhou Y, Zhu H, Wang W, Xiao L, Wang B, Nie J. Genome-wide SNP based species identification of Chinemys reevesii, Ocadia sinensis and their hybrids. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Scheben A, Severn-Ellis AA, Patel D, Pradhan A, Rae SJ, Batley J, Edwards D. Linkage mapping and QTL analysis of flowering time using ddRAD sequencing with genotype error correction in Brassica napus. BMC PLANT BIOLOGY 2020; 20:546. [PMID: 33287721 PMCID: PMC7720618 DOI: 10.1186/s12870-020-02756-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/25/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND Brassica napus is an important oilseed crop cultivated worldwide. During domestication and breeding of B. napus, flowering time has been a target of selection because of its substantial impact on yield. Here we use double digest restriction-site associated DNA sequencing (ddRAD) to investigate the genetic basis of flowering in B. napus. An F2 mapping population was derived from a cross between an early-flowering spring type and a late-flowering winter type. RESULTS Flowering time in the mapping population differed by up to 25 days between individuals. High genotype error rates persisted after initial quality controls, as suggested by a genotype discordance of ~ 12% between biological sequencing replicates. After genotype error correction, a linkage map spanning 3981.31 cM and compromising 14,630 single nucleotide polymorphisms (SNPs) was constructed. A quantitative trait locus (QTL) on chromosome C2 was detected, covering eight flowering time genes including FLC. CONCLUSIONS These findings demonstrate the effectiveness of the ddRAD approach to sample the B. napus genome. Our results also suggest that ddRAD genotype error rates can be higher than expected in F2 populations. Quality filtering and genotype correction and imputation can substantially reduce these error rates and allow effective linkage mapping and QTL analysis.
Collapse
Affiliation(s)
- Armin Scheben
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | - Anita A Severn-Ellis
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Dhwani Patel
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Aneeta Pradhan
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Stephen J Rae
- BASF Agricultural Solutions Belgium NV, BASF Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052, Ghent, Belgium
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
4
|
Li H, Feng H, Guo C, Yang S, Huang W, Xiong X, Liu J, Chen G, Liu Q, Xiong L, Liu K, Yang W. High-throughput phenotyping accelerates the dissection of the dynamic genetic architecture of plant growth and yield improvement in rapeseed. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2345-2353. [PMID: 32367649 PMCID: PMC7589443 DOI: 10.1111/pbi.13396] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 05/21/2023]
Abstract
Rapeseed is the second most important oil crop species and is widely cultivated worldwide. However, overcoming the 'phenotyping bottleneck' has remained a significant challenge. A clear goal of high-throughput phenotyping is to bridge the gap between genomics and phenomics. In addition, it is important to explore the dynamic genetic architecture underlying rapeseed plant growth and its contribution to final yield. In this work, a high-throughput phenotyping facility was used to dynamically screen a rapeseed intervarietal substitution line population during two growing seasons. We developed an automatic image analysis pipeline to quantify 43 dynamic traits across multiple developmental stages, with 12 time points. The time-resolved i-traits could be extracted to reflect shoot growth and predict the final yield of rapeseed. Broad phenotypic variation and high heritability were observed for these i-traits across all developmental stages. A total of 337 and 599 QTLs were identified, with 33.5% and 36.1% consistent QTLs for each trait across all 12 time points in the two growing seasons, respectively. Moreover, the QTLs responsible for yield indicators colocalized with those of final yield, potentially providing a new mechanism of yield regulation. Our results indicate that high-throughput phenotyping can provide novel insights into the dynamic genetic architecture of rapeseed growth and final yield, which would be useful for future genetic improvements in rapeseed.
Collapse
Affiliation(s)
- Haitao Li
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural BioinformaticsHuazhong Agricultural UniversityWuhanChina
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and Hubei Collaborative Innovation Center for Green Transformation of Bio‐resourcesSchool of Life SciencesHubei UniversityWuhanChina
| | - Hui Feng
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural BioinformaticsHuazhong Agricultural UniversityWuhanChina
| | - Chaocheng Guo
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural BioinformaticsHuazhong Agricultural UniversityWuhanChina
| | - Shanjing Yang
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural BioinformaticsHuazhong Agricultural UniversityWuhanChina
| | - Wan Huang
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural BioinformaticsHuazhong Agricultural UniversityWuhanChina
| | - Xiong Xiong
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for Optoelectronics, and Key Laboratory of Ministry of Education for Biomedical PhotonicsDepartment of Biomedical EngineeringHuazhong University of Science and TechnologyWuhanChina
| | - Jianxiao Liu
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural BioinformaticsHuazhong Agricultural UniversityWuhanChina
| | - Guoxing Chen
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural BioinformaticsHuazhong Agricultural UniversityWuhanChina
| | - Qian Liu
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for Optoelectronics, and Key Laboratory of Ministry of Education for Biomedical PhotonicsDepartment of Biomedical EngineeringHuazhong University of Science and TechnologyWuhanChina
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural BioinformaticsHuazhong Agricultural UniversityWuhanChina
| | - Kede Liu
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural BioinformaticsHuazhong Agricultural UniversityWuhanChina
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural BioinformaticsHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
5
|
Guo C, Ma PF, Yang GQ, Ye XY, Guo Y, Liu JX, Liu YL, Eaton DAR, Guo ZH, Li DZ. Parallel ddRAD and Genome Skimming Analyses Reveal a Radiative and Reticulate Evolutionary History of the Temperate Bamboos. Syst Biol 2020; 70:756-773. [PMID: 33057686 PMCID: PMC8208805 DOI: 10.1093/sysbio/syaa076] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
Rapid evolutionary radiations are among the most challenging phylogenetic problems, wherein different types of data (e.g., morphology and molecular) or genetic markers (e.g., nuclear and organelle) often yield inconsistent results. The tribe Arundinarieae, that is, the temperate bamboos, is a clade of tetraploid originated 22 Ma and subsequently radiated in East Asia. Previous studies of Arundinarieae have found conflicting relationships and/or low support. Here, we obtain nuclear markers from ddRAD data for 213 Arundinarieae taxa and parallel sampling of chloroplast genomes from genome skimming for 147 taxa. We first assess the feasibility of using ddRAD-seq data for phylogenetic estimates of paleopolyploid and rapidly radiated lineages, optimize clustering thresholds, and analysis workflow for orthology identification. Reference-based ddRAD data assembly approaches perform well and yield strongly supported relationships that are generally concordant with morphology-based taxonomy. We recover five major lineages, two of which are notable (the pachymorph and leptomorph lineages), in that they correspond with distinct rhizome morphologies. By contrast, the phylogeny from chloroplast genomes differed significantly. Based on multiple lines of evidence, the ddRAD tree is favored as the best species tree estimation for temperate bamboos. Using a time-calibrated ddRAD tree, we find that Arundinarieae diversified rapidly around the mid-Miocene corresponding with intensification of the East Asian monsoon and the evolution of key innovations including the leptomorph rhizomes. Our results provide a highly resolved phylogeny of Arundinarieae, shed new light on the radiation and reticulate evolutionary history of this tribe, and provide an empirical example for the study of recalcitrant plant radiations. [Arundinarieae; ddRAD; paleopolyploid; genome skimming; rapid diversification; incongruence.]
Collapse
Affiliation(s)
- Cen Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Peng-Fei Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Guo-Qian Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xia-Ying Ye
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ying Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jing-Xia Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yun-Long Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Deren A R Eaton
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA
| | - Zhen-Hua Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
6
|
Wagner ND, He L, Hörandl E. Phylogenomic Relationships and Evolution of Polyploid Salix Species Revealed by RAD Sequencing Data. FRONTIERS IN PLANT SCIENCE 2020; 11:1077. [PMID: 32765560 PMCID: PMC7379873 DOI: 10.3389/fpls.2020.01077] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/30/2020] [Indexed: 05/19/2023]
Abstract
Polyploidy is common in the genus Salix. However, little is known about the origin, parentage and genomic composition of polyploid species because of a lack of suitable molecular markers and analysis tools. We established a phylogenomic framework including species of all described sections of Eurasian shrub willows. We analyzed the genomic composition of seven polyploid willow species in comparison to putative diploid parental species to draw conclusions on their origin and the effects of backcrossing and post-origin evolution. We applied recently developed programs like SNAPP, HyDe, and SNiPloid to establish a bioinformatic pipeline for unravelling the complexity of polyploid genomes. RAD sequencing revealed 23,393 loci and 320,010 high quality SNPs for the analysis of relationships of 35 species of Eurasian shrub willows (Salix subg. Chamaetia/Vetrix). Polyploid willow species appear to be predominantly of allopolyploid origin. More ancient allopolyploidization events were observed for two hexaploid and one octoploid species, while our data suggested a more recent allopolyploid origin for the included tetraploids and identified putative parental taxa. SNiPloid analyses disentangled the different genomic signatures resulting from hybrid origin, backcrossing, and secondary post-origin evolution in the polyploid species. Our RAD sequencing data demonstrate that willow genomes are shaped by ancient and recent reticulate evolution, polyploidization, and post-origin divergence of species.
Collapse
Affiliation(s)
- Natascha D. Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Göttingen, Germany
| | - Li He
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Göttingen, Germany
| |
Collapse
|
7
|
Huang L, Liu X, Pandey MK, Ren X, Chen H, Xue X, Liu N, Huai D, Chen Y, Zhou X, Luo H, Chen W, Lei Y, Liu K, Xiao Y, Varshney RK, Liao B, Jiang H. Genome-wide expression quantitative trait locus analysis in a recombinant inbred line population for trait dissection in peanut. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:779-790. [PMID: 31469515 PMCID: PMC7004917 DOI: 10.1111/pbi.13246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 08/16/2019] [Accepted: 08/27/2019] [Indexed: 05/26/2023]
Abstract
The transcriptome connects genome to the gene function and ultimate phenome in biology. So far, transcriptomic approach was not used in peanut for performing trait mapping in bi-parental populations. In this research, we sequenced the whole transcriptome in immature seeds in a peanut recombinant inbred line (RIL) population and explored thoroughly the landscape of transcriptomic variations and its genetic basis. The comprehensive analysis identified total 49 691 genes in RIL population, of which 92 genes followed a paramutation-like expression pattern. Expression quantitative trait locus (eQTL) analysis identified 1207 local eQTLs and 15 837 distant eQTLs contributing to the whole-genome transcriptomic variation in peanut. There were 94 eQTL hot spot regions detected across the genome with the dominance of distant eQTL. By integrating transcriptomic profile and annotation analyses, we unveiled a putative candidate gene and developed a linked marker InDel02 underlying a major QTL responsible for purple testa colour in peanut. Our result provided a first understanding of genetic basis of whole-genome transcriptomic variation in peanut and illustrates the potential of the transcriptome-aid approach in dissecting important traits in non-model plants.
Collapse
Affiliation(s)
- Li Huang
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Xia Liu
- Novogene Bioinformatics Technology Co., LtdBeijingChina
| | - Manish K. Pandey
- Center of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Xiaoping Ren
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanChina
| | - Haiwen Chen
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanChina
| | - Xiaomeng Xue
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanChina
| | - Nian Liu
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanChina
| | - Dongxin Huai
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanChina
| | - Yuning Chen
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanChina
| | - Xiaojing Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanChina
| | - Huaiyong Luo
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanChina
| | - Weigang Chen
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanChina
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanChina
| | - Kede Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Rajeev K. Varshney
- Center of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanChina
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanChina
| |
Collapse
|
8
|
Liu Y, Zhou X, Yan M, Wang P, Wang H, Xin Q, Yang L, Hong D, Yang G. Fine mapping and candidate gene analysis of a seed glucosinolate content QTL, qGSL-C2, in rapeseed (Brassica napus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:479-490. [PMID: 31832742 DOI: 10.1007/s00122-019-03479-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
QTL mapping and candidate gene analysis indicate that allelic variations in BnaC2.MYB28 resulted from homeologous exchange and determine difference in seed glucosinolate content. A low seed glucosinolate content has long been an important breeding objective in rapeseed improvement. However, the molecular mechanisms underlying seed GSL content variations remain to be elucidated in allotetraploid Brassica napus. Here, we developed a double haploid population from a cross between two B. napus accessions that possess relatively low, but significantly different seed GSL contents and identified a major QTL, qGSL-C2, on chromosome C02 that explains 30.88-72.87% of the phenotypic variation observed in five environments. Using near-isogenic lines, we further delimited qGSL-C2 to a physical region of 49 kb on the B. rapa chromosome A02 which is highly homologous to the target C02 interval. Among five candidate genes, BnaC2.MYB28, a homologue of the Arabidopsis MYB28 encoding a putative R2R3-MYB-type transcription factor functioning in aliphatic methionine-derived GSL synthesis, was most likely to be the target gene underlying the QTL. Sequence analysis revealed multiple insertion/deletion and SNP variations in the genomic region between the alleles of the NILs. Furthermore, the allelic variations in BnaC2.MYB28 in the natural B. napus population were significantly associated with seed GSL content. Remarkably, the phylogenetic analysis and sequence comparison suggested that while the BnaC2.MYB28 allele from the parental line G120 was inherited from B. oleracea BolC2.MYB28, its counterpart from the other parent, 9172, most likely evolved from B. rapa BraA2.MYB28 via possible homeologous exchange. Our study promotes greater understanding of the molecular regulation of seed GSL content and provides useful molecular markers for seed GSL improvement in B. napus.
Collapse
Affiliation(s)
- Ying Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianming Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiang Xin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liyong Yang
- Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
9
|
Sudan J, Singh R, Sharma S, Salgotra RK, Sharma V, Singh G, Sharma I, Sharma S, Gupta SK, Zargar SM. ddRAD sequencing-based identification of inter-genepool SNPs and association analysis in Brassica juncea. BMC PLANT BIOLOGY 2019; 19:594. [PMID: 31888485 PMCID: PMC6937933 DOI: 10.1186/s12870-019-2188-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/05/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Narrow genetic base, complex allo-tetraploid genome and presence of repetitive elements have led the discovery of single nucleotide polymorphisms (SNPs) in Brassica juncea (AABB; 2n = 4x = 36) at a slower pace. Double digest RAD (ddRAD) - a genome complexity reduction technique followed by NGS was used to generate a total of 23 million paired-end reads from three genotypes each of Indian (Pusa Tarak, RSPR-01 and Urvashi) and Exotic (Donskaja IV, Zem 1 and EC287711) genepools. RESULTS Sequence data analysis led to the identification of 10,399 SNPs in six genotypes at a read depth of 10x coverage among the genotypes of two genepools. A total of 44 hyper-variable regions (nucleotide variation hotspots) were also found in the genome, of which 93% were found to be a part of coding genes/regions. The functionality of the identified SNPs was estimated by genotyping a subset of SNPs on MassARRAY® platform among a diverse set of B. juncea genotypes. SNP genotyping-based genetic diversity and population studies placed the genotypes into two distinct clusters based mostly on the place of origin. The genotypes were also characterized for six morphological traits, analysis of which revealed a significant difference in the mean values between Indian and Exotic genepools for six traits. The association analysis for six traits identified a total of 45 significant marker-trait associations on 11 chromosomes of A- and B- group of progenitor genomes. CONCLUSIONS Despite narrow diversity, the ddRAD sequencing was able to identify large number of nucleotide polymorphisms between the two genepools. Association analysis led to the identification of common SNPs/genomic regions associated between flowering and maturity traits, thereby underscoring the possible role of common chromosomal regions-harboring genes controlling flowering and maturity in Brassica juncea.
Collapse
Affiliation(s)
- Jebi Sudan
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, J&K, India
- JECRC University- Jaipur, Jaipur, Rajasthan, India
| | - Ravinder Singh
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, J&K, India.
| | - Susheel Sharma
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, J&K, India
| | - Romesh K Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, J&K, India
| | - Varun Sharma
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, J&K, India
| | - Gurvinder Singh
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, J&K, India
| | - Indu Sharma
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, J&K, India
| | - Swarkar Sharma
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, J&K, India
| | - Surinder K Gupta
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jaipur, J&K, India
| | - Sajad Majeed Zargar
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu, J&K, India
| |
Collapse
|
10
|
Vilaça ST, Bienentreu JF, Brunetti CR, Lesbarrères D, Murray DL, Kyle CJ. Frog Virus 3 Genomes Reveal Prevalent Recombination between Ranavirus Lineages and Their Origins in Canada. J Virol 2019; 93:e00765-19. [PMID: 31341053 PMCID: PMC6798099 DOI: 10.1128/jvi.00765-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/10/2019] [Indexed: 12/14/2022] Open
Abstract
Ranaviruses are pathogens associated with the decline of amphibian populations across much of their distribution. In North America, frog virus 3 (FV3) is a widely distributed pathogen with wild populations of amphibians harboring different lineages and putative recombinants between FV3 and common midwife toad virus (CMTV). These recombinants have higher pathogenicity, and CMTV-derived genes associated with virulence are reported in wild strains in Canada. However, while FV3 is linked to amphibian die-offs in North America, CMTVs have been reported only in commercial frog farms in North America. We sequenced complete genomes of 18 FV3 isolates from three amphibian species to characterize genetic diversity of the lineages in Canada and infer possible recombinant regions. The 18 FV3 isolates displayed different signals of recombination, varying from none to interspersed recombination with previously isolated CMTV-like viruses. In general, most recombination breakpoints were located within open reading frames (ORFs), generating new ORFs and proteins that were a mixture between FV3 and CMTV. A combined spatial and temporal phylogeny suggests the presence of the FV3 lineage in Canada is relatively contemporary (<100 years), corroborating the hypothesis that both CMTV- and FV3-like viruses spread to North America when the international commercial amphibian trade started. Our results highlight the importance of pathogen surveillance and viral dynamics using full genomes to more clearly understand the mechanisms of disease origin and spread.IMPORTANCE Amphibian populations are declining worldwide, and these declines have been linked to a number of anthropogenic factors, including disease. Among the pathogens associated with amphibian mortality, ranaviruses have caused massive die-offs across continents. In North America, frog virus 3 (FV3) is a widespread ranavirus that can infect wild and captive amphibians. In this study, we sequenced full FV3 genomes isolated from frogs in Canada. We report widespread recombination between FV3 and common midwife toad virus (CMTV). Phylogenies indicate a recent origin for FV3 in Canada, possibly as a result of international amphibian trade.
Collapse
Affiliation(s)
- Sibelle T Vilaça
- Biology Department, Trent University, Peterborough, Ontario, Canada
| | - Joe-Felix Bienentreu
- Genetics and Ecology of Amphibian Research Group (GEARG), Department of Biology, Laurentian University, Sudbury, Ontario, Canada
| | - Craig R Brunetti
- Biology Department, Trent University, Peterborough, Ontario, Canada
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - David Lesbarrères
- Genetics and Ecology of Amphibian Research Group (GEARG), Department of Biology, Laurentian University, Sudbury, Ontario, Canada
| | - Dennis L Murray
- Biology Department, Trent University, Peterborough, Ontario, Canada
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Christopher J Kyle
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
- Forensic Science Department, Trent University, Peterborough, Ontario, Canada
- Natural Resources DNA Profiling and Forensics Centre, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
11
|
Malmberg MM, Spangenberg GC, Daetwyler HD, Cogan NOI. Assessment of low-coverage nanopore long read sequencing for SNP genotyping in doubled haploid canola (Brassica napus L.). Sci Rep 2019; 9:8688. [PMID: 31213642 PMCID: PMC6582154 DOI: 10.1038/s41598-019-45131-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/28/2019] [Indexed: 11/16/2022] Open
Abstract
Despite the high accuracy of short read sequencing (SRS), there are still issues with attaining accurate single nucleotide polymorphism (SNP) genotypes at low sequencing coverage and in highly duplicated genomes due to misalignment. Long read sequencing (LRS) systems, including the Oxford Nanopore Technologies (ONT) minION, have become popular options for de novo genome assembly and structural variant characterisation. The current high error rate often requires substantial post-sequencing correction and would appear to prevent the adoption of this system for SNP genotyping, but nanopore sequencing errors are largely random. Using low coverage ONT minION sequencing for genotyping of pre-validated SNP loci was examined in 9 canola doubled haploids. The minION genotypes were compared to the Illumina sequences to determine the extent and nature of genotype discrepancies between the two systems. The significant increase in read length improved alignment to the genome and the absence of classical SRS biases results in a more even representation of the genome. Sequencing errors are present, primarily in the form of heterozygous genotypes, which can be removed in completely homozygous backgrounds but requires more advanced bioinformatics in heterozygous genomes. Developments in this technology are promising for routine genotyping in the future.
Collapse
Affiliation(s)
- M M Malmberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - G C Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - H D Daetwyler
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - N O I Cogan
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3083, Australia. .,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3086, Australia.
| |
Collapse
|
12
|
Hu D, Zhang W, Zhang Y, Chang S, Chen L, Chen Y, Shi Y, Shen J, Meng J, Zou J. Reconstituting the genome of a young allopolyploid crop, Brassica napus, with its related species. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1106-1118. [PMID: 30467941 PMCID: PMC6523605 DOI: 10.1111/pbi.13041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 05/20/2023]
Abstract
Brassica napus (An An Cn Cn ) is an important worldwide oilseed crop, but it is a young allotetraploid with a short evolutionary history and limited genetic diversity. To significantly broaden its genetic diversity and create a novel heterotic population for sustainable rapeseed breeding, this study reconstituted the genome of B. napus by replacing it with the subgenomes from 122 accessions of Brassica rapa (Ar Ar ) and 74 accessions of Brassica carinata (Bc Bc Cc Cc ) and developing a novel gene pool of B. napus through five rounds of extensive recurrent selection. When compared with traditional B. napus using SSR markers and high-throughput SNP/Indel markers through genotyping by sequencing, the newly developed gene pool and its homozygous progenies exhibited a large genetic distance, rich allelic diversity, new alleles and exotic allelic introgression across all 19 AC chromosomes. In addition to the abundant genomic variation detected in the AC genome, we also detected considerable introgression from the eight chromosomes of the B genome. Extensive trait variation and some genetic improvements were present from the early recurrent selection to later generations. This novel gene pool produced equally rich phenotypic variation and should be valuable for rapeseed genetic improvement. By reconstituting the genome of B. napus by introducing subgenomic variation within and between the related species using intense selection and recombination, the whole genome could be substantially reorganized. These results serve as an example of the manipulation of the genome of a young allopolyploid and provide insights into its rapid genome evolution affected by interspecific and intraspecific crosses.
Collapse
Affiliation(s)
- Dandan Hu
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Wenshan Zhang
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yikai Zhang
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shihao Chang
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Lunlin Chen
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yingying Chen
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yongdi Shi
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jinling Meng
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jun Zou
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
13
|
Wang L, Zhou X, Ren X, Huang L, Luo H, Chen Y, Chen W, Liu N, Liao B, Lei Y, Yan L, Shen J, Jiang H. A Major and Stable QTL for Bacterial Wilt Resistance on Chromosome B02 Identified Using a High-Density SNP-Based Genetic Linkage Map in Cultivated Peanut Yuanza 9102 Derived Population. Front Genet 2018; 9:652. [PMID: 30619474 PMCID: PMC6305283 DOI: 10.3389/fgene.2018.00652] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/30/2018] [Indexed: 11/29/2022] Open
Abstract
Bacterial wilt (BW) is one of the important diseases limiting the production of peanut (Arachis hypogaea L.) worldwide. The sufficient precise information on the quantitative trait loci (QTL) for BW resistance is essential for facilitating gene mining and applying in molecular breeding. Cultivar Yuanza 9102 is BW resistant, bred from wide cross between cultivated peanut Baisha 1016 and a wild diploid peanut species A. chacoense with BW resistance. In this study, we aim to map the major QTLs related to BW-resistance in Yuanza 9102. A high density SNP-based genetic linkage map was constructed through double-digest restriction-site-associated DNA sequencing (ddRADseq) technique based on Yuanza 9102 derived recombinant inbred lines (RILs) population. The map contained 2,187 SNP markers distributed on 20 linkage groups (LGs) spanning 1566.10 cM, and showed good synteny with AA genome from A. duranensis and BB genome from A. ipaensis. Phenotypic frequencies of BW resistance among RIL population showed two-peak distribution in four environments. Four QTLs explaining 5.49 to 23.22% phenotypic variance were identified to be all located on chromosome B02. The major QTL, qBWB02.1 (12.17–23.33% phenotypic variation explained), was detected in three environments showing consistent and stable expression. Furthermore, there was positive additive effect among these major and minor QTLs. The major QTL region was mapped to a region covering 2.3 Mb of the pseudomolecule B02 of A. ipaensis which resides in 21 nucleotide-binding site -leucine-rich repeat (NBS-LRR) encoding genes. The result of the major stable QTL (qBWB02.1) not only offers good foundation for discovery of BW resistant gene but also provide opportunity for deployment of the QTL in marker-assisted breeding in peanut.
Collapse
Affiliation(s)
- Lifang Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaojing Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaoping Ren
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Li Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Huaiyong Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yuning Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Weigang Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Nian Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Liying Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jinxiong Shen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
14
|
Malmberg MM, Barbulescu DM, Drayton MC, Shinozuka M, Thakur P, Ogaji YO, Spangenberg GC, Daetwyler HD, Cogan NOI. Evaluation and Recommendations for Routine Genotyping Using Skim Whole Genome Re-sequencing in Canola. FRONTIERS IN PLANT SCIENCE 2018; 9:1809. [PMID: 30581450 PMCID: PMC6292936 DOI: 10.3389/fpls.2018.01809] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/21/2018] [Indexed: 05/25/2023]
Abstract
Whole genome sequencing offers genome wide, unbiased markers, and inexpensive library preparation. With the cost of sequencing decreasing rapidly, many plant genomes of modest size are amenable to skim whole genome resequencing (skim WGR). The use of skim WGR in diverse sample sets without the use of imputation was evaluated in silico in 149 canola samples representative of global diversity. Fastq files with an average of 10x coverage of the reference genome were used to generate skim samples representing 0.25x, 0.5x, 1x, 2x, 3x, 4x, and 5x sequencing coverage. Applying a pre-defined list of SNPs versus de novo SNP discovery was evaluated. As skim WGR is expected to result in some degree of insufficient allele sampling, all skim coverage levels were filtered at a range of minimum read depths from a relaxed minimum read depth of 2 to a stringent read depth of 5, resulting in 28 list-based SNP sets. As a broad recommendation, genotyping pre-defined SNPs between 1x and 2x coverage with relatively stringent depth filtering is appropriate for a diverse sample set of canola due to a balance between marker number, sufficient accuracy, and sequencing cost, but depends on the intended application. This was experimentally examined in two sample sets with different genetic backgrounds: 1x coverage of 1,590 individuals from 84 Australian spring type four-parent crosses aimed at maximizing diversity as well as one commercial F1 hybrid, and 2x coverage of 379 doubled haploids (DHs) derived from a subset of the four-parent crosses. To determine optimal coverage in a simpler genetic background, the DH sample sequence coverage was further down sampled in silico. The flexible and cost-effective nature of the protocol makes it highly applicable across a range of species and purposes.
Collapse
Affiliation(s)
- M. Michelle Malmberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | | | - Michelle C. Drayton
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Maiko Shinozuka
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Preeti Thakur
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Yvonne O. Ogaji
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - German C. Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Hans D. Daetwyler
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Noel O. I. Cogan
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
15
|
Yang S, Zhang B, Liu G, Hong B, Xu J, Chen X, Wang B, Wu Z, Hou F, Yue X, Wang J, Zhang Q, King GJ, Liu K. A comprehensive and precise set of intervarietal substitution lines to identify candidate genes and quantitative trait loci in oilseed rape (Brassica napus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2117-2129. [PMID: 29998372 DOI: 10.1007/s00122-018-3140-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/01/2018] [Indexed: 06/08/2023]
Abstract
A set of intervarietal substitution lines were developed in rapeseed by recurrent backcrossing and marker-assisted selection and employed for mapping both qualitative and quantitative traits. Intervarietal substitution lines (ISLs) may be assembled into advanced secondary mapping populations that have remarkable potential for resolving trait loci and mapping candidate genes. To facilitate the identification of important genes in oilseed rape (canola, Brassica napus), we developed 89 ISLs using an elite cultivar 'Zhongyou 821' (ZY821) as the recipient and a re-synthesized line 'No.2127' as the donor. In the whole process of ISLs development, the target chromosome segments were selected based on the genotypes of 300 microsatellite markers evenly distributed across the genome. Eighty-nine ISLs fixed at BC5F4 were genotyped by sequencing using double digestion to survey the lengths of target substitution segments from the donor parent and the background segments from the recurrent parent. The total length of the substituted chromosome segments was 3030.27 Mb, representing 3.56 × of the Darmor-bzh reference genome sequence (version 4.1). Gene mapping was conducted for two qualitative traits, flower colour and seed-coat colour, and nine quantitative traits including yield- and quality-related traits, with 19 QTLs identified for the latter. Overlapping substitution segments were identified for flower colour and seed-coat colour loci, as well as for QTLs consistently detected in 2 or 3 years. These results demonstrate the value of these ISLs for locus resolution and subsequent cloning, targeted mutation or editing of genes controlling important traits in oilseed rape.
Collapse
Affiliation(s)
- Shanjing Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bao Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gang Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Baohua Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinsong Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xun Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhikun Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fan Hou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaopeng Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
16
|
Wang G, Chen B, Du H, Zhang F, Zhang H, Wang Y, He H, Geng S, Zhang X. Genetic mapping of anthocyanin accumulation-related genes in pepper fruits using a combination of SLAF-seq and BSA. PLoS One 2018; 13:e0204690. [PMID: 30261055 PMCID: PMC6160195 DOI: 10.1371/journal.pone.0204690] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/11/2018] [Indexed: 12/22/2022] Open
Abstract
Anthocyanins have significant functions in stress tolerance in pepper (Capsicum annuum L.) and also benefit human health. Nevertheless, the key structural genes and regulatory genes involved in anthocyanin accumulation in pepper fruits are still not well understood and fine mapped. For the present study, 383 F2 plants from a cross between the green-fruited C. annuum line Z5 and the purple-fruited line Z6 was developed. Two separate bulked DNA pools were constructed with DNAs extracted from either 37 plants with high anthocyanin content or from 18 plants with no anthocyanin. A combination of specific-locus amplified fragment sequencing (SLAF-seq) and bulked segregant analysis (BSA) was used to identify candidates for regions associated with anthocyanin accumulation. We identified a total of 127,004 high-quality single nucleotide polymorphism (SNP) markers, and detected 1674 high-quality SNP markers associated with anthocyanin accumulation. Three candidate anthocyanin-associated regions including the intervals from 12.48 to 20.00 Mb, from 54.67 to 56.59 Mb, and from 192.17 to 196.82 Mb were identified within a 14.10-Mb interval on chromosome 10 containing 126 candidate genes. Based on their annotations, we identified 12 candidate genes that are predicted to be associated with anthocyanin expression. The present results provide an efficient strategy for genetic mapping of and valuable insights into the genetic mechanisms of anthocyanin accumulation in pepper fruit, and allow us to clone and functionally analyze the genes that influence anthocyanin accumulation in this species.
Collapse
Affiliation(s)
- Guoyun Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, P.R. China
| | - Bin Chen
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, P.R. China
| | - Heshan Du
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, P.R. China
| | - Fenglan Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, P.R. China
| | - Haiying Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, P.R. China
| | - Yaqin Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, P.R. China
| | - Hongju He
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, P.R. China
| | - Sansheng Geng
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, P.R. China
- * E-mail: (SG); (XZ)
| | - Xiaofen Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, P.R. China
- * E-mail: (SG); (XZ)
| |
Collapse
|
17
|
Zhang J, Long Y, Wang L, Dang Z, Zhang T, Song X, Dang Z, Pei X. Consensus genetic linkage map construction and QTL mapping for plant height-related traits in linseed flax (Linum usitatissimum L.). BMC PLANT BIOLOGY 2018. [PMID: 30086718 DOI: 10.1186/s128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Flax is an important field crop that can be used for either oilseed or fiber production. Plant height and technical length are important characters for flax. For linseed flax, plants usually have a short technical length and plant height than those for fiber flax. As an important agronomical character for fiber and linseed flax, plant height is usually a selection target for breeding. However, because of limited technologies and methods available, there has been little research focused on discovering the molecular mechanism controlling plant height. RESULTS In this study, two related recombinant inbred line (RIL) populations developed from crosses of linseed and fiber parents were developed and phenotyped for plant height and technical length in four environments. A consensus linkage map based on two RIL populations was constructed using SNP markers generated by genotyping by sequencing (GBS) technology. A total of 4497 single nucleotide polymorphism (SNP) markers were included on 15 linkage groups with an average marker density of one marker every 2.71 cM. Quantitative trait locus (QTL) mapping analysis was performed for plant height and technical length using the two populations. A total of 19 QTLs were identified for plant height and technical length. For the MH population, eight plant height QTLs and seven technical length QTLs were identified, five of which were common QTLs for both traits. For the PH population, six plant height and three technical length QTLs were identified. By comparing the QTLs and candidate gene information in the two population, two common QTLs and three candidate genes were discovered. CONCLUSIONS This study provides a foundation for map-based cloning of QTLs and marker-assisted selection for plant height-related traits in linseed and fiber flax.
Collapse
Affiliation(s)
- Jianping Zhang
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Yan Long
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liming Wang
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Zhao Dang
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Tianbao Zhang
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaxia Song
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhanhai Dang
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China.
| | - Xinwu Pei
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
18
|
Zhang J, Long Y, Wang L, Dang Z, Zhang T, Song X, Dang Z, Pei X. Consensus genetic linkage map construction and QTL mapping for plant height-related traits in linseed flax (Linum usitatissimum L.). BMC PLANT BIOLOGY 2018; 18:160. [PMID: 30086718 PMCID: PMC6081803 DOI: 10.1186/s12870-018-1366-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/16/2018] [Indexed: 05/14/2023]
Abstract
BACKGROUND Flax is an important field crop that can be used for either oilseed or fiber production. Plant height and technical length are important characters for flax. For linseed flax, plants usually have a short technical length and plant height than those for fiber flax. As an important agronomical character for fiber and linseed flax, plant height is usually a selection target for breeding. However, because of limited technologies and methods available, there has been little research focused on discovering the molecular mechanism controlling plant height. RESULTS In this study, two related recombinant inbred line (RIL) populations developed from crosses of linseed and fiber parents were developed and phenotyped for plant height and technical length in four environments. A consensus linkage map based on two RIL populations was constructed using SNP markers generated by genotyping by sequencing (GBS) technology. A total of 4497 single nucleotide polymorphism (SNP) markers were included on 15 linkage groups with an average marker density of one marker every 2.71 cM. Quantitative trait locus (QTL) mapping analysis was performed for plant height and technical length using the two populations. A total of 19 QTLs were identified for plant height and technical length. For the MH population, eight plant height QTLs and seven technical length QTLs were identified, five of which were common QTLs for both traits. For the PH population, six plant height and three technical length QTLs were identified. By comparing the QTLs and candidate gene information in the two population, two common QTLs and three candidate genes were discovered. CONCLUSIONS This study provides a foundation for map-based cloning of QTLs and marker-assisted selection for plant height-related traits in linseed and fiber flax.
Collapse
Affiliation(s)
- Jianping Zhang
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070 China
| | - Yan Long
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Liming Wang
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070 China
| | - Zhao Dang
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070 China
| | - Tianbao Zhang
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiaxia Song
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Zhanhai Dang
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070 China
| | - Xinwu Pei
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
19
|
Zhang X, Wang G, Chen B, Du H, Zhang F, Zhang H, Wang Q, Geng S. Candidate genes for first flower node identified in pepper using combined SLAF-seq and BSA. PLoS One 2018; 13:e0194071. [PMID: 29558466 PMCID: PMC5860747 DOI: 10.1371/journal.pone.0194071] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/23/2018] [Indexed: 02/05/2023] Open
Abstract
First flower node (FFN) is an important trait for evaluating fruit earliness in pepper (Capsicum annuum L.), but the genetic mechanisms that control FFN are still poorly understood. In the present study, we developed 249 F2 plants derived from an intraspecific cross between the inbred pepper lines Z4 and Z5. Thirty plants with the highest FFN and 30 plants with the lowest FFN were chosen and their DNAs were pooled according to phenotype to construct two bulked DNA pools. Specific-locus amplified fragment sequencing (SLAF-seq) was combined with bulked segregant analysis (BSA) to identify candidate regions related to FFN. According to our genetic analysis, the FFN trait is quantitatively inherited. A total of 106,848 high-quality single nucleotide polymorphism (SNP) markers were obtained, and 393 high-quality SNP markers associated with FFN were detected. Ten candidate regions within an interval of 3.98 Mb on chromosome 12 harboring 23 candidate genes were identified as closely correlated with FFN. Five genes (CA12g15130, CA12g15160, CA12g15370, CA12g15360, and CA12g15390) are predicted based on their annotations to be associated with expression of the FFN trait. The present study demonstrates an efficient genetic mapping strategy and lays a good foundation for molecular marker-assisted breeding using SNP markers linked to FFN and for cloning and functional analysis of the key genes controlling FFN.
Collapse
Affiliation(s)
- Xiaofen Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, P.R. China
- College of Horticulture, China Agricultural University, Beijing, P.R. China
| | - Guoyun Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, P.R. China
| | - Bin Chen
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, P.R. China
| | - Heshan Du
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, P.R. China
| | - Fenglan Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, P.R. China
| | - Haiying Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, P.R. China
| | - Qian Wang
- College of Horticulture, China Agricultural University, Beijing, P.R. China
- * E-mail: (SG); (QW)
| | - Sansheng Geng
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, P.R. China
- * E-mail: (SG); (QW)
| |
Collapse
|
20
|
van Wesemael J, Hueber Y, Kissel E, Campos N, Swennen R, Carpentier S. Homeolog expression analysis in an allotriploid non-model crop via integration of transcriptomics and proteomics. Sci Rep 2018; 8:1353. [PMID: 29358676 PMCID: PMC5777989 DOI: 10.1038/s41598-018-19684-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/08/2018] [Indexed: 01/14/2023] Open
Abstract
The fate of doubled genes, from allopolyploid or autopolyploid origin, is controlled at multiple levels, resulting in the modern day cultivars. We studied the root growth of 3 different triploid banana cultivars under control and osmotic stress conditions. The root growth of the allopolyploid ABB cultivar was 42% higher under control and 61% higher under osmotic stress. By integrating transcriptomics and proteomics, we studied the gene expression of all 3 cultivars, resulting in 2,749 identified root proteins. 383 gene loci displayed genotype specific differential expression whereof 252 showed at least one Single Amino Acid Polymorphism (SAAP). In the ABB cultivar, allele expressions supposedly follow a 1/3 and 2/3 pattern for respectively the A and the B allele. Using transcriptome read alignment to assess the homeoallelic contribution we found that 63% of the allele specific genes deviated from this expectation. 32 gene loci even did not express the A allele. The identified ABB allele- specific proteins correlate well with the observed growth phenotype as they are enriched in energy related functions such as ATP metabolic processes, nicotinamide nucleotide metabolic processes, and glycolysis.
Collapse
Affiliation(s)
- Jelle van Wesemael
- Laboratory of Tropical Crop Improvement, KU Leuven, Willem Decroylaan 42, Leuven, Belgium
| | - Yann Hueber
- Bioversity International, Parc Scientifique Argropolis II, Montpellier, France
| | - Ewaut Kissel
- Laboratory of Tropical Crop Improvement, KU Leuven, Willem Decroylaan 42, Leuven, Belgium
| | - Nádia Campos
- Laboratory of Tropical Crop Improvement, KU Leuven, Willem Decroylaan 42, Leuven, Belgium
| | - Rony Swennen
- Laboratory of Tropical Crop Improvement, KU Leuven, Willem Decroylaan 42, Leuven, Belgium
- Bioversity International, Willem Decroylaan 42, Leuven, Belgium
- International Institute for Tropical Agriculture, C/O Nelson Mandela Institute of Science and technology, P.O. Box 44, Arusha, Tanzania
| | - Sebastien Carpentier
- Laboratory of Tropical Crop Improvement, KU Leuven, Willem Decroylaan 42, Leuven, Belgium.
- Bioversity International, Willem Decroylaan 42, Leuven, Belgium.
- Facility for SYstems BIOlogy based MAss spectrometry, Herestraat 49, Leuven, Belgium.
| |
Collapse
|
21
|
Hu J, Guo C, Wang B, Ye J, Liu M, Wu Z, Xiao Y, Zhang Q, Li H, King GJ, Liu K. Genetic Properties of a Nested Association Mapping Population Constructed With Semi-Winter and Spring Oilseed Rapes. FRONTIERS IN PLANT SCIENCE 2018; 9:1740. [PMID: 30534135 PMCID: PMC6275288 DOI: 10.3389/fpls.2018.01740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/08/2018] [Indexed: 05/17/2023]
Abstract
Nested association mapping (NAM) populations have been widely applied to dissect the genetic basis of complex quantitative traits in a variety of crops. In this study, we developed a Brassica napus NAM (BN-NAM) population consisting of 15 recombination inbred line (RIL) families with 2,425 immortal genotypes. Fifteen high-density genetic linkage maps were constructed by genotyping by sequencing (GBS) based on all RIL families, with further integration into a joint linkage map (JLM) having 30,209 unique markers in common with multiple linkage maps. Furthermore, an ultra-density whole-genome variation map was constructed by projecting 4,444,309 high-quality variants onto the JLM. The NAM population captured a total of 88,542 recombination events (REs). The uneven distribution of recombination rate along chromosomes is positively correlated with the densities of genes and markers, but negatively correlated with the density of transposable elements and linkage disequilibrium (LD). Analyses of population structure and principal components revealed that the BN-NAM population could be divided into three groups with weak stratification. The LD decay distance across genome varied between 170 and 2,400 Kb, with LD decay more rapid in the A than in the C sub-genome. The pericentromeric regions contained large LD blocks, especially in the C sub-genome. This NAM population provides a valuable resource for dissecting the genetic basis of important traits in rapeseed, especially in semi-winter oilseed rape.
Collapse
Affiliation(s)
- Jianlin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Chaocheng Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Bo Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jiaqing Ye
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Meng Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhikun Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Haitao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Graham J. King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Kede Liu,
| |
Collapse
|
22
|
Chen J, Wang B, Zhang Y, Yue X, Li Z, Liu K. High-density ddRAD linkage and yield-related QTL mapping delimits a chromosomal region responsible for oil content in rapeseed ( Brassica napus L.). BREEDING SCIENCE 2017; 67:296-306. [PMID: 28744183 PMCID: PMC5515304 DOI: 10.1270/jsbbs.16116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 04/06/2017] [Indexed: 05/04/2023]
Abstract
Rapeseed (Brassica napus L.) is one of the most important oil crops almost all over the world. Seed-related traits, including oil content (OC), silique length (SL), seeds per silique (SS), and seed weight (SW), are primary targets for oil yield improvement. To dissect the genetic basis of these traits, 192 recombinant inbred lines (RILs) were derived from two parents with distinct oil content and silique length. High-density linkage map with a total length of 1610.4 cM were constructed using 1,329 double-digestion restriction site associated DNA (ddRAD) markers, 107 insertion/deletions (INDELs), and 90 well-distributed simple sequence repeats (SSRs) markers. A total of 37 consensus quantitative trait loci (QTLs) were detected for the four traits, with individual QTL explained 3.1-12.8% of the phenotypic variations. Interestingly, one OC consensus QTL (cqOCA10b) on chromosome A10 was consistently detected in all three environments, and explained 9.8% to 12.8% of the OC variation. The locus was further delimited into an approximately 614 kb genomic region, in which the flanking markers could be further evaluated for marker-assisted selection in rapeseed OC improvement and the candidate genes targeted for map-based cloning and genetic manipulation.
Collapse
|
23
|
Scheben A, Batley J, Edwards D. Genotyping-by-sequencing approaches to characterize crop genomes: choosing the right tool for the right application. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:149-161. [PMID: 27696619 PMCID: PMC5258866 DOI: 10.1111/pbi.12645] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/24/2016] [Accepted: 09/28/2016] [Indexed: 05/18/2023]
Abstract
In the last decade, the revolution in sequencing technologies has deeply impacted crop genotyping practice. New methods allowing rapid, high-throughput genotyping of entire crop populations have proliferated and opened the door to wider use of molecular tools in plant breeding. These new genotyping-by-sequencing (GBS) methods include over a dozen reduced-representation sequencing (RRS) approaches and at least four whole-genome resequencing (WGR) approaches. The diversity of methods available, each often producing different types of data at different cost, can make selection of the best-suited method seem a daunting task. We review the most common genotyping methods used today and compare their suitability for linkage mapping, genomewide association studies (GWAS), marker-assisted and genomic selection and genome assembly and improvement in crops with various genome sizes and complexity. Furthermore, we give an outline of bioinformatics tools for analysis of genotyping data. WGR is well suited to genotyping biparental cross populations with complex, small- to moderate-sized genomes and provides the lowest cost per marker data point. RRS approaches differ in their suitability for various tasks, but demonstrate similar costs per marker data point. These approaches are generally better suited for de novo applications and more cost-effective when genotyping populations with large genomes or high heterozygosity. We expect that although RRS approaches will remain the most cost-effective for some time, WGR will become more widespread for crop genotyping as sequencing costs continue to decrease.
Collapse
Affiliation(s)
- Armin Scheben
- School of Plant Biology and Institute of AgricultureUniversity of Western AustraliaPerthWAAustralia
| | - Jacqueline Batley
- School of Plant Biology and Institute of AgricultureUniversity of Western AustraliaPerthWAAustralia
| | - David Edwards
- School of Plant Biology and Institute of AgricultureUniversity of Western AustraliaPerthWAAustralia
| |
Collapse
|
24
|
Wu J, Luo Z, Jiang N. Design of efficient simplified genomic DNA and bisulfite sequencing in large plant populations. QUANTITATIVE BIOLOGY 2016. [DOI: 10.1007/s40484-016-0079-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Jiang N, Zhang F, Wu J, Chen Y, Hu X, Fang O, Leach LJ, Wang D, Luo Z. A highly robust and optimized sequence-based approach for genetic polymorphism discovery and genotyping in large plant populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1739-57. [PMID: 27316437 PMCID: PMC4983294 DOI: 10.1007/s00122-016-2736-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/28/2016] [Indexed: 05/14/2023]
Abstract
This optimized approach provides both a computational tool and a library construction protocol, which can maximize the number of genomic sequence reads that uniformly cover a plant genome and minimize the number of sequence reads representing chloroplast DNA and rRNA genes. One can implement the developed computational tool to feasibly design their own RAD-seq experiment to achieve expected coverage of sequence variant markers for large plant populations using information of the genome sequence and ideally, though not necessarily, information of the sequence polymorphism distribution in the genome. Advent of the next generation sequencing techniques motivates recent interest in developing sequence-based identification and genotyping of genome-wide genetic variants in large populations, with RAD-seq being a typical example. Without taking proper account for the fact that chloroplast and rRNA genes may occupy up to 60 % of the resulting sequence reads, the current RAD-seq design could be very inefficient for plant and crop species. We presented here a generic computational tool to optimize RAD-seq design in any plant species and experimentally tested the optimized design by implementing it to screen for and genotype sequence variants in four plant populations of diploid and autotetraploid Arabidopsis and potato Solanum tuberosum. Sequence data from the optimized RAD-seq experiments shows that the undesirable chloroplast and rRNA contributed sequence reads can be controlled at 3-10 %. Additionally, the optimized RAD-seq method enables pre-design of the required uniformity and density in coverage of the high quality sequence polymorphic markers over the genome of interest and genotyping of large plant or crop populations at a competitive cost in comparison to other mainstream rivals in the literature.
Collapse
Affiliation(s)
- Ning Jiang
- Department of Biostatistics and Computational Biology, SKLG, School of Life Sciences, Fudan University, Shanghai, China
| | - Fengjun Zhang
- Department of Biostatistics and Computational Biology, SKLG, School of Life Sciences, Fudan University, Shanghai, China
- Qinghai Academy of Agriculture and Forestry Sciences, Xining, Qinghai China
| | - Jinhua Wu
- Department of Biostatistics and Computational Biology, SKLG, School of Life Sciences, Fudan University, Shanghai, China
| | - Yue Chen
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Xiaohua Hu
- Department of Biostatistics and Computational Biology, SKLG, School of Life Sciences, Fudan University, Shanghai, China
| | - Ou Fang
- Department of Biostatistics and Computational Biology, SKLG, School of Life Sciences, Fudan University, Shanghai, China
| | - Lindsey J. Leach
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Di Wang
- Gansu Agricultural University, Lanzhou, Gansu China
| | - Zewei Luo
- Department of Biostatistics and Computational Biology, SKLG, School of Life Sciences, Fudan University, Shanghai, China
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| |
Collapse
|
26
|
Evaluation of Linkage Disequilibrium Pattern and Association Study on Seed Oil Content in Brassica napus Using ddRAD Sequencing. PLoS One 2016; 11:e0146383. [PMID: 26730738 PMCID: PMC4701484 DOI: 10.1371/journal.pone.0146383] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/16/2015] [Indexed: 01/15/2023] Open
Abstract
High-density genetic markers are the prerequisite for understanding linkage disequilibrium (LD) and genome-wide association studies (GWASs) of complex traits in crops. To evaluate the LD pattern in oilseed rape, we sequenced a previous association panel containing 189 B. napus inbred lines using double-digested restriction-site associated DNA (ddRAD) and genotyped 19,327 RAD tags. A total of 15,921 RAD tags were assigned to a published genetic linkage map and the majority (71.1%) of these tags was uniquely mapped to the draft reference genome “Darmor-bzh.” The distance of LD decay was 1,214 kb across the genome at the background level (r2 = 0.26), with the distances of LD decay being 405 kb and 2,111 kb in the A and C subgenomes, respectively. A total of 361 haplotype blocks with length > 100 kb were identified in the entire genome. The association panel could be classified into two groups, P1 and P2, which are essentially consistent with the geographical origins of varieties. A large number of group-specific haplotypes were identified, reflecting that varieties in the P1 and P2 groups experienced distinct selection in breeding programs to adapt their different growth habitats. GWAS repeatedly detected two loci significantly associated with oil content of seeds based on the developed SNPs, suggesting that the high-density SNPs were useful for understanding the genetic determinants of complex traits in GWAS.
Collapse
|
27
|
Chen X, Ge X, Wang J, Tan C, King GJ, Liu K. Genome-wide DNA methylation profiling by modified reduced representation bisulfite sequencing in Brassica rapa suggests that epigenetic modifications play a key role in polyploid genome evolution. FRONTIERS IN PLANT SCIENCE 2015; 6:836. [PMID: 26500672 PMCID: PMC4598586 DOI: 10.3389/fpls.2015.00836] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/23/2015] [Indexed: 05/25/2023]
Abstract
Brassica rapa includes some of the most important vegetables worldwide as well as oilseed crops. The complete annotated genome sequence confirmed its paleohexaploid origins and provides opportunities for exploring the detailed process of polyploid genome evolution. We generated a genome-wide DNA methylation profile for B. rapa using a modified reduced representation bisulfite sequencing (RRBS) method. This sampling represented 2.24% of all CG loci (2.5 × 10(5)), 2.16% CHG (2.7 × 10(5)), and 1.68% CHH loci (1.05 × 10(5)) (where H = A, T, or C). Our sampling of DNA methylation in B. rapa indicated that 52.4% of CG sites were present as (5m)CG, with 31.8% of CHG and 8.3% of CHH. It was found that genic regions of single copy genes had significantly higher methylation compared to those of two or three copy genes. Differences in degree of genic DNA methylation were observed in a hierarchical relationship corresponding to the relative age of the three ancestral subgenomes, primarily accounted by single-copy genes. RNA-seq analysis revealed that overall the level of transcription was negatively correlated with mean gene methylation content and depended on copy number or was associated with the different subgenomes. These results provide new insights into the role epigenetic variation plays in polyploid genome evolution, and suggest an alternative mechanism for duplicate gene loss.
Collapse
Affiliation(s)
- Xun Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Chen Tan
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Graham J. King
- Southern Cross Plant Science, Southern Cross UniversityLismore, NSW, Australia
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
28
|
Cai G, Yang Q, Yi B, Fan C, Zhang C, Edwards D, Batley J, Zhou Y. A bi-filtering method for processing single nucleotide polymorphism array data improves the quality of genetic map and accuracy of quantitative trait locus mapping in doubled haploid populations of polyploid Brassica napus. BMC Genomics 2015; 16:409. [PMID: 26018616 PMCID: PMC4445301 DOI: 10.1186/s12864-015-1559-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 04/20/2015] [Indexed: 01/01/2023] Open
Abstract
Background Single nucleotide polymorphism (SNP) markers have a wide range of applications in crop genetics and genomics. Due to their polyploidy nature, many important crops, such as wheat, cotton and rapeseed contain a large amount of repeat and homoeologous sequences in their genomes, which imposes a huge challenge in high-throughput genotyping with sequencing and/or array technologies. Allotetraploid Brassica napus (AACC, 2n = 4x = 38) comprises of two highly homoeologous sub-genomes derived from its progenitor species B. rapa (AA, 2n = 2x = 20) and B. oleracea (CC, 2n = 2x = 18), and is an ideal species to exploit methods for reducing the interference of extensive inter-homoeologue polymorphisms (mHemi-SNPs and Pseudo-simple SNPs) between closely related sub-genomes. Results Based on a recent B. napus 6K SNP array, we developed a bi-filtering procedure to identify unauthentic lines in a DH population, and mHemi-SNPs and Pseudo-simple SNPs in an array data matrix. The procedure utilized both monomorphic and polymorphic SNPs in the DH population and could effectively distinguish the mHemi-SNPs and Pseudo-simple SNPs that resulted from superposition of the signals from multiple SNPs. Compared with conventional procedure for array data processing, the bi-filtering method could minimize the pseudo linkage relationship caused by the mHemi-SNPs and Pseudo-simple SNPs, thus improving the quality of SNP genetic map. Furthermore, the improved genetic map could increase the accuracies of mapping of QTLs as demonstrated by the ability to eliminate non-real QTLs in the mapping population. Conclusions The bi-filtering analysis of the SNP array data represents a novel approach to effectively assigning the multi-loci SNP genotypes in polyploid B. napus and may find wide applications to SNP analyses in polyploid crops. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1559-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guangqin Cai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Rapeseed Genetics and Breeding of Agriculture Ministry of China, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Qingyong Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Rapeseed Genetics and Breeding of Agriculture Ministry of China, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - David Edwards
- School of Agriculture and Food Sciences, University of Queensland, St Lucia, QLD, Australia.
| | - Jacqueline Batley
- School of Agriculture and Food Sciences, University of Queensland, St Lucia, QLD, Australia.
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Rapeseed Genetics and Breeding of Agriculture Ministry of China, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
29
|
Chen W, Yao J, Chu L, Yuan Z, Li Y, Zhang Y. Genetic mapping of the nulliplex-branch gene (gb_nb1) in cotton using next-generation sequencing. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:539-47. [PMID: 25575840 DOI: 10.1007/s00122-014-2452-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 12/24/2014] [Indexed: 05/21/2023]
Abstract
Using bulked segregant analysis based on next-generation sequencing, the recessive nulliplex-branch gene was mapped between two SNP markers ~600 kb apart. In a "nulliplex-branch" cotton mutant, most of the flowers arise directly from leaf axils on the main shoot, which usually does not have a fruiting branch. A nulliplex-branch is a useful trait by which to study cotton architecture; however, the genetic basis of this mutant has remained elusive. In this study, bulked segregant analysis combined with next-generation sequencing technology was used to finely map the underlying genes that result in a nulliplex-branch plant. The nulliplex-branch Pima cotton variety, Xinhai-18, was crossed with the normal branch upland cotton line, TM-1, resulting in an F2 population. The nulliplex-branch trait was found to be controlled by the recessive gene gb_nb1. Allelic single-nucleotide polymorphisms (SNPs) were discovered by reduced-representation sequencing between the parents, and their profiles were also characterized in the nulliplex-branch and normal branch bulks constructed using the F2 plants. A candidate ~9.0 Mb-long region comprising 42 SNP markers was found to be associated with gb_nb1, which helped localize it at the ~600-kb interval on Chr 16 by segregation analysis in the F2 population. The closely linked markers with gb_nb1 developed in this study will facilitate the marker-assisted selection of the nulliplex-branch trait, and the fine map constructed will accelerate map-based cloning of gb_nb1.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, The Chinese Academy of Agricultural Sciences, Anyang, 455004, China
| | | | | | | | | | | |
Collapse
|
30
|
Wang H, Jin X, Zhang B, Shen C, Lin Z. Enrichment of an intraspecific genetic map of upland cotton by developing markers using parental RAD sequencing. DNA Res 2015; 22:147-60. [PMID: 25656006 PMCID: PMC4401325 DOI: 10.1093/dnares/dsu047] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/26/2014] [Indexed: 12/11/2022] Open
Abstract
RAD sequencing was performed using DH962 and Jimian5 as upland cotton mapping parents. Sequencing data for DH962 and Jimian5 were assembled into the genome sequences of ≈55.27 and ≈57.06 Mb, respectively. Analysing genome sequences of the two parents, 1,323 SSR, 3,838 insertion/deletion (InDel), and 9,366 single-nucleotide polymorphism (SNP) primer pairs were developed. All of the SSRs, 121 InDels, 441 SNPs, and other 6,747 primer pairs were screened in the two parents, and a total of 535 new polymorphic loci were identified. A genetic map including 1,013 loci was constructed using these results and 506 loci previously published for this population. Twenty-seven new QTLs for yield and fibre quality were identified, indicating that the efficiency of QTL detection was greatly improved by the increase in map density. Comparative genomics showed there to be considerable homology and collinearity between the AT and A2 genomes and between the DT and D5 genomes, although there were a few exchanges and introgressions among the chromosomes of the A2 genome. Here, the development of markers using parental RAD sequencing was effective, and a high-density intraspecific genetic map was constructed. This map can be used for molecular marker-assisted selection in cotton.
Collapse
Affiliation(s)
- Hantao Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xin Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Beibei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Chao Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
31
|
Wang X, Yu K, Li H, Peng Q, Chen F, Zhang W, Chen S, Hu M, Zhang J. High-Density SNP Map Construction and QTL Identification for the Apetalous Character in Brassica napus L. FRONTIERS IN PLANT SCIENCE 2015; 6:1164. [PMID: 26779193 PMCID: PMC4688392 DOI: 10.3389/fpls.2015.01164] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/07/2015] [Indexed: 05/09/2023]
Abstract
The apetalous genotype is a morphological ideotype for increasing seed yield and should be of considerable agricultural use; however, only a few studies have focused on the genetic control of this trait in Brassica napus. In the present study, a recombinant inbred line, the AH population, containing 189 individuals was derived from a cross between an apetalous line 'APL01' and a normally petalled variety 'Holly'. The Brassica 60 K Infinium BeadChip Array harboring 52,157 single nucleotide polymorphism (SNP) markers was used to genotype the AH individuals. A high-density genetic linkage map was constructed based on 2,755 bins involving 11,458 SNPs and 57 simple sequence repeats, and was used to identify loci associated with petalous degree (PDgr). The linkage map covered 2,027.53 cM, with an average marker interval of 0.72 cM. The AH map had good collinearity with the B. napus reference genome, indicating its high quality and accuracy. After phenotypic analyses across five different experiments, a total of 19 identified quantitative trait loci (QTLs) distributed across chromosomes A3, A5, A6, A9 and C8 were obtained, and these QTLs were further integrated into nine consensus QTLs by a meta-analysis. Interestingly, the major QTL qPD.C8-2 was consistently detected in all five experiments, and qPD.A9-2 and qPD.C8-3 were stably expressed in four experiments. Comparative mapping between the AH map and the B. napus reference genome suggested that there were 328 genes underlying the confidence intervals of the three steady QTLs. Based on the Gene Ontology assignments of 52 genes to the regulation of floral development in published studies, 146 genes were considered as potential candidate genes for PDgr. The current study carried out a QTL analysis for PDgr using a high-density SNP map in B. napus, providing novel targets for improving seed yield. These results advanced our understanding of the genetic control of PDgr regulation in B. napus.
Collapse
Affiliation(s)
- Xiaodong Wang
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural SciencesNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing, China
| | - Kunjiang Yu
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Hongge Li
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Qi Peng
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Feng Chen
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural SciencesNanjing, China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Wei Zhang
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Song Chen
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Maolong Hu
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Jiefu Zhang
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural SciencesNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing, China
- *Correspondence: Jiefu Zhang,
| |
Collapse
|
32
|
Cai G, Yang Q, Yi B, Fan C, Edwards D, Batley J, Zhou Y. A complex recombination pattern in the genome of allotetraploid Brassica napus as revealed by a high-density genetic map. PLoS One 2014; 9:e109910. [PMID: 25356735 PMCID: PMC4214627 DOI: 10.1371/journal.pone.0109910] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 09/13/2014] [Indexed: 12/29/2022] Open
Abstract
Polyploidy plays a crucial role in plant evolution. Brassica napus (2n = 38, AACC), the most important oil crop in the Brassica genus, is an allotetraploid that originated through natural doubling of chromosomes after the hybridization of its progenitor species, B. rapa (2n = 20, AA) and B. oleracea (2n = 18, CC). A better understanding of the evolutionary relationship between B. napus and B. rapa, B. oleracea, as well as Arabidopsis, which has a common ancestor with these three species, will provide valuable information about the generation and evolution of allopolyploidy. Based on a high-density genetic map with single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers, we performed a comparative genomic analysis of B. napus with Arabidopsis and its progenitor species B. rapa and B. oleracea. Based on the collinear relationship of B. rapa and B. oleracea in the B. napus genetic map, the B. napus genome was found to consist of 70.1% of the skeleton components of the chromosomes of B. rapa and B. oleracea, with 17.7% of sequences derived from reciprocal translocation between homoeologous chromosomes between the A- and C-genome and 3.6% of sequences derived from reciprocal translocation between non-homologous chromosomes at both intra- and inter-genomic levels. The current study thus provides insights into the formation and evolution of the allotetraploid B. napus genome, which will allow for more accurate transfer of genomic information from B. rapa, B. oleracea and Arabidopsis to B. napus.
Collapse
Affiliation(s)
- Guangqin Cai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Rapeseed Genetics and Breeding of Agriculture Ministry of China, Huazhong Agricultural University, Wuhan, China
| | - Qingyong Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - David Edwards
- School of Agriculture and Food Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Jacqueline Batley
- School of Agriculture and Food Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Rapeseed Genetics and Breeding of Agriculture Ministry of China, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
33
|
Cao HX, Schmidt R. Intergenomic single nucleotide polymorphisms as a tool for bacterial artificial chromosome contig building of homoeologous Brassica napus regions. BMC Genomics 2014; 15:560. [PMID: 24996518 PMCID: PMC4102721 DOI: 10.1186/1471-2164-15-560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 06/25/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Homoeologous sequences pose a particular challenge if bacterial artificial chromosome (BAC) contigs shall be established for specific regions of an allopolyploid genome. Single nucleotide polymorphisms (SNPs) differentiating between homoeologous genomes (intergenomic SNPs) may represent a suitable screening tool for such purposes, since they do not only identify homoeologous sequences but also differentiate between them. RESULTS Sequence alignments between Brassica rapa (AA) and Brassica oleracea (CC) sequences mapping to corresponding regions on chromosomes A1 and C1, respectively were used to identify single nucleotide polymorphisms between the A and C genomes. A large fraction of these polymorphisms was also present in Brassica napus (AACC), an allopolyploid species that originated from hybridisation of A and C genome species. Intergenomic SNPs mapping throughout homoeologous chromosome segments spanning approximately one Mbp each were included in Illumina's GoldenGate® Genotyping Assay and used to screen multidimensional pools of a Brassica napus bacterial artificial chromosome library with tenfold genome coverage. Based on the results of 50 SNP assays, a BAC contig for the Brassica napus A subgenome was established that spanned the entire region of interest. The C subgenome region was represented in three BAC contigs. CONCLUSIONS This proof-of-concept study shows that sequence resources of diploid progenitor genomes can be used to deduce intergenomic SNPs suitable for multiplex polymerase chain reaction (PCR)-based screening of multidimensional BAC pools of a polyploid organism. Owing to their high abundance and ease of identification, intergenomic SNPs represent a versatile tool to establish BAC contigs for homoeologous regions of a polyploid genome.
Collapse
Affiliation(s)
| | - Renate Schmidt
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, D-06466 Stadt Seeland, Germany.
| |
Collapse
|
34
|
Lepais O, Weir JT. SimRAD: an R package for simulation-based prediction of the number of loci expected in RADseq and similar genotyping by sequencing approaches. Mol Ecol Resour 2014; 14:1314-21. [DOI: 10.1111/1755-0998.12273] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/30/2014] [Accepted: 04/30/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Olivier Lepais
- INRA; UMR 1224; Ecologie Comportementale et Biologie des Populations de Poissons; INRA; Saint Pée sur Nivelle France
- Univ Pau & Pays Adour; UMR 1224; Ecologie Comportementale et Biologie des Populations de Poissons; UFR Sciences et Techniques de la Côte Basque; Univ Pau and Pays Adour; Anglet France
| | - Jason T. Weir
- Department of Biological Sciences, and Department of Ecology and Evolutionary Biology; University of Toronto Scarborough; Toronto ON M1C 1A4 Canada
| |
Collapse
|
35
|
Zhou X, Xia Y, Ren X, Chen Y, Huang L, Huang S, Liao B, Lei Y, Yan L, Jiang H. Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq). BMC Genomics 2014; 15:351. [PMID: 24885639 PMCID: PMC4035077 DOI: 10.1186/1471-2164-15-351] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 04/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cultivated peanut, or groundnut (Arachis hypogaea L.), is an important oilseed crop with an allotetraploid genome (AABB, 2n=4x=40). In recent years, many efforts have been made to construct linkage maps in cultivated peanut, but almost all of these maps were constructed using low-throughput molecular markers, and most show a low density, directly influencing the value of their applications. With advances in next-generation sequencing (NGS) technology, the construction of high-density genetic maps has become more achievable in a cost-effective and rapid manner. The objective of this study was to establish a high-density single nucleotide polymorphism (SNP)-based genetic map for cultivated peanut by analyzing next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq) reads. RESULTS We constructed reduced representation libraries (RRLs) for two A. hypogaea lines and 166 of their recombinant inbred line (RIL) progenies using the ddRADseq technique. Approximately 175 gigabases of data containing 952,679,665 paired-end reads were obtained following Solexa sequencing. Mining this dataset, 53,257 SNPs were detected between the parents, of which 14,663 SNPs were also detected in the population, and 1,765 of the obtained polymorphic markers met the requirements for use in the construction of a genetic map. Among 50 randomly selected in silico SNPs, 47 were able to be successfully validated. One linkage map was constructed, which was comprised of 1,685 marker loci, including 1,621 SNPs and 64 simple sequence repeat (SSR) markers. The map displayed a distribution of the markers into 20 linkage groups (LGs A01-A10 and B01-B10), spanning a distance of 1,446.7 cM. The alignment of the LGs from this map was shown in comparison with a previously integrated consensus map from peanut. CONCLUSIONS This study showed that the ddRAD library combined with NGS allowed the rapid discovery of a large number of SNPs in the cultivated peanut. The first high density SNP-based linkage map for A. hypogaea was generated that can serve as a reference map for cultivated Arachis species and will be useful in genetic mapping. Our results contribute to the available molecular marker resources and to the assembly of a reference genome sequence for the peanut.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, Hubei, People's Republic of China.
| |
Collapse
|
36
|
Liu L, Qu C, Wittkop B, Yi B, Xiao Y, He Y, Snowdon RJ, Li J. A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L. PLoS One 2013; 8:e83052. [PMID: 24386142 PMCID: PMC3873396 DOI: 10.1371/journal.pone.0083052] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 11/07/2013] [Indexed: 11/18/2022] Open
Abstract
A high density genetic linkage map for the complex allotetraploid crop species Brassica napus (oilseed rape) was constructed in a late-generation recombinant inbred line (RIL) population, using genome-wide single nucleotide polymorphism (SNP) markers assayed by the Brassica 60 K Infinium BeadChip Array. The linkage map contains 9164 SNP markers covering 1832.9 cM. 1232 bins account for 7648 of the markers. A subset of 2795 SNP markers, with an average distance of 0.66 cM between adjacent markers, was applied for QTL mapping of seed colour and the cell wall fiber components acid detergent lignin (ADL), cellulose and hemicellulose. After phenotypic analyses across four different environments a total of 11 QTL were detected for seed colour and fiber traits. The high-density map considerably improved QTL resolution compared to the previous low-density maps. A previously identified major QTL with very high effects on seed colour and ADL was pinpointed to a narrow genome interval on chromosome A09, while a minor QTL explaining 8.1% to 14.1% of variation for ADL was detected on chromosome C05. Five and three QTL accounting for 4.7% to 21.9% and 7.3% to 16.9% of the phenotypic variation for cellulose and hemicellulose, respectively, were also detected. To our knowledge this is the first description of QTL for seed cellulose and hemicellulose in B. napus, representing interesting new targets for improving oil content. The high density SNP genetic map enables navigation from interesting B. napus QTL to Brassica genome sequences, giving useful new information for understanding the genetics of key seed quality traits in rapeseed.
Collapse
Affiliation(s)
- Liezhao Liu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
| | - Cunmin Qu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
| | - Benjamin Wittkop
- Department of Plant Breeding, Interdisciplinary Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Subcenter of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Yang Xiao
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
| | - Yajun He
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
| | - Rod J. Snowdon
- Department of Plant Breeding, Interdisciplinary Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
- * E-mail: (RJS); (JL)
| | - Jiana Li
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- * E-mail: (RJS); (JL)
| |
Collapse
|
37
|
Wei L, Xiao M, Hayward A, Fu D. Applications and challenges of next-generation sequencing in Brassica species. PLANTA 2013; 238:1005-24. [PMID: 24062086 DOI: 10.1007/s00425-013-1961-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 09/12/2013] [Indexed: 05/09/2023]
Abstract
Next-generation sequencing (NGS) produces numerous (often millions) short DNA sequence reads, typically varying between 25 and 400 bp in length, at a relatively low cost and in a short time. This revolutionary technology is being increasingly applied in whole-genome, transcriptome, epigenome and small RNA sequencing, molecular marker and gene discovery, comparative and evolutionary genomics, and association studies. The Brassica genus comprises some of the most agro-economically important crops, providing abundant vegetables, condiments, fodder, oil and medicinal products. Many Brassica species have undergone the process of polyploidization, which makes their genomes exceptionally complex and can create difficulties in genomics research. NGS injects new vigor into Brassica research, yet also faces specific challenges in the analysis of complex crop genomes and traits. In this article, we review the advantages and limitations of different NGS technologies and their applications and challenges, using Brassica as an advanced model system for agronomically important, polyploid crops. Specifically, we focus on the use of NGS for genome resequencing, transcriptome sequencing, development of single-nucleotide polymorphism markers, and identification of novel microRNAs and their targets. We present trends and advances in NGS technology in relation to Brassica crop improvement, with wide application for sophisticated genomics research into agronomically important polyploid crops.
Collapse
Affiliation(s)
- Lijuan Wei
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Meili Xiao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Alice Hayward
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, 4072, Australia
| | - Donghui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|