1
|
Huang F, Niu P, Wang J, Suo J, Zhang L, Wang J, Fang D, Gao Q. Reproductive Tract Mucus May Influence the Sex of Offspring in Cattle: Study in Cows That Have Repeatedly Calved Single-Sex Offspring. Vet Sci 2024; 11:572. [PMID: 39591346 PMCID: PMC11598928 DOI: 10.3390/vetsci11110572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
This study aimed to investigate the selective effect of the reproductive tract mucus in cows that have consistently produced offspring of a single sex on X/Y spermatozoa. We collected mucus from the reproductive tract of cows that had given calvings to offspring of the same sex, or alternated between sexes, for more than five consecutive calvings. We evaluated the pH of reproductive tract mucus. Subsequently, we conducted a spermatozoa penetration assay; the proportions of X and Y spermatozoa after penetration were then identified by dual TaqMan qPCR and flow cytometry. This was followed by in vitro fertilization and embryo sex determination experiments. Immediately afterwards, computer-aided spermatozoa analysis was employed to analyze the spermatozoa that had penetrated through different types of mucus in the reproductive tract. The analysis indicated that the reproductive tract mucus of cows consistently producing male or female calves exhibited selectivity towards X/Y spermatozoa. The differences in the pH values of the reproductive tract mucus among cows continuously producing male calves, those continuously producing female calves, and those alternately giving birth to male and female calves were not significant (p ≥ 0.05). The outcome of dual TaqMan qPCR for cows consistently producing male calves was Y: 79.29 ± 4.28% vs. X: 21.67 ± 4.53%; for cows consistently producing female calves, the equation was Y: 25.05 ± 4.88% vs. X: 75.34 ± 5.13%. The results of flow cytometry processing revealed the following proportions: for cows consistently producing male calves: Y: 83.33 ± 5.52% vs. X: 17.23 ± 4.74%; for cows consistently producing female calves: Y: 24.81 ± 4.13% vs. X: 76.64 ± 4.21%. The outcomes of embryo sex determination for cows consistently producing male calves were as follows: male embryos vs. female embryos (79.60 ± 2.87% vs. 21.07 ± 2.51%); for cows consistently producing female calves, the outcomes for male embryos vs. female embryos were 25.58 ± 3.96% vs. 75.63 ± 3.55%. Computer-aided analysis revealed that the concentration of spermatozoa penetrating the reproductive tract mucus in cows alternating between male and female calves (9.09 ± 0.72 million/mL) was significantly higher than that in cows consistently producing male calves (6.01 ± 1.19 million/mL) and cows consistently producing female calves (5.61 ± 0.60 million/mL). There were no significant differences in spermatozoa motility, the proportion of progressive motile spermatozoa, and curvilinear, straight-line, and average path velocities. Collectively, these findings indicate that the reproductive tract mucus of cows consistently producing offspring of a single sex exhibits selectivity towards either X or Y spermatozoa. This finding is of great significance for studying the impact of maternal factors on offspring sex.
Collapse
Affiliation(s)
- Fei Huang
- College of Life Science and Technology, Tarim University, Alar 843300, China; (F.H.); (P.N.); (J.W.); (J.S.)
| | - Peng Niu
- College of Life Science and Technology, Tarim University, Alar 843300, China; (F.H.); (P.N.); (J.W.); (J.S.)
| | - Jieru Wang
- College of Life Science and Technology, Tarim University, Alar 843300, China; (F.H.); (P.N.); (J.W.); (J.S.)
| | - Jiajia Suo
- College of Life Science and Technology, Tarim University, Alar 843300, China; (F.H.); (P.N.); (J.W.); (J.S.)
| | - Lulu Zhang
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (L.Z.); (J.W.); (D.F.)
| | - Jie Wang
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (L.Z.); (J.W.); (D.F.)
| | - Di Fang
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (L.Z.); (J.W.); (D.F.)
| | - Qinghua Gao
- College of Life Science and Technology, Tarim University, Alar 843300, China; (F.H.); (P.N.); (J.W.); (J.S.)
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (L.Z.); (J.W.); (D.F.)
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production & Construction Corps, Alar 843300, China
| |
Collapse
|
2
|
Sheibak N, Zandieh Z, Amjadi F, Aflatoonian R. How sperm protects itself: A journey in the female reproductive system. J Reprod Immunol 2024; 163:104222. [PMID: 38489929 DOI: 10.1016/j.jri.2024.104222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/15/2024] [Accepted: 02/25/2024] [Indexed: 03/17/2024]
Abstract
Sperm must pass a complex route in the female reproductive tract (FRT) to reach the fertilization site and join the oocyte. Thus, it should employ several mechanisms to survive against the female immune system, fertilize the oocyte, and successfully transmit paternal genes to the next generation. In addition to self-protection, sperm may be involved in the immune tolerance to the developing embryo and regulating the FRT for embryo implantation and subsequent pregnancy. Hence, this review intends to summarize the mechanisms that protect sperm in the FRT: including immunomodulatory factors that are carried by seminal plasma, cell-to-cell and molecular interaction of sperm with epithelial and immune cells of the FRT, high regulated secretions of inflammatory factors such as cytokines, chemokines, and growth factors, inducing immune tolerance to paternal antigens, and specialized expression of cell receptors and binding proteins. In most of these events sperm induces the FRT to protect itself by modulating immune responses for its own benefit. However, not all sperm in the semen are able to trigger the survival mechanisms and only high-quality sperm will overcome this challenge. A clear understanding of the molecular mechanisms that maintain sperm viability and function in the FRT can lead to new knowledge about infertility etiology and a new approach in assisted reproductive technologies for the preparation and selection of the best sperm based on the criteria that physiologically happen in-vivo.
Collapse
Affiliation(s)
- Nadia Sheibak
- Reproductive Sciences and Technology Research Center, Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandieh
- Reproductive Sciences and Technology Research Center, Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Amjadi
- Reproductive Sciences and Technology Research Center, Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
3
|
Hamdi M, Sánchez JM, Fernandez-Fuertes B, Câmara DR, Bollwein H, Rizos D, Bauersachs S, Almiñana C. Oviductal extracellular vesicles miRNA cargo varies in response to embryos and their quality. BMC Genomics 2024; 25:520. [PMID: 38802796 PMCID: PMC11129498 DOI: 10.1186/s12864-024-10429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Increasing evidence points to an active role of oviductal extracellular vesicles (oEVs) in the early embryo-maternal dialogue. However, it remains unclear whether oEVs contribute to the recognition of the presence of embryos and their quality in the oviduct. Hence, we examined whether the molecular cargo of oEVs secreted by bovine oviduct epithelial cells (BOEC) differs depending on the presence of good (≥ 8 cells, G) or poor (< 8 cells, P) quality embryos. In addition, differences in RNA profiles between G and P embryos were analyzed in attempt to distinguish oEVs and embryonic EVs cargos. METHODS For this purpose, primary BOEC were co-cultured with in vitro produced embryos (IVP) 53 h post fertilization as follows: BOEC with G embryos (BGE); BOEC with P embryos (BPE); G embryos alone (GE); P embryos alone (PE); BOEC alone (B) and medium control (M). After 24 h of co-culture, conditioned media were collected from all groups and EVs were isolated and characterized. MicroRNA profiling of EVs and embryos was performed by small RNA-sequencing. RESULTS In EVs, 84 miRNAs were identified, with 8 differentially abundant (DA) miRNAs for BGE vs. B and 4 for BPE vs. B (P-value < 0.01). In embryos, 187 miRNAs were identified, with 12 DA miRNAs for BGE vs. BPE, 3 for G vs. P, 8 for BGE vs. GE, and 11 for BPE vs. PE (P-value < 0.01). CONCLUSIONS These results indicated that oEVs are involved in the oviductal-embryo recognition and pointed to specific miRNAs with signaling and supporting roles during early embryo development.
Collapse
Affiliation(s)
- Meriem Hamdi
- Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, University of Zurich, Lindau, ZH, 8315, Switzerland
| | - José María Sánchez
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Beatriz Fernandez-Fuertes
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Diogo Ribeiro Câmara
- Department of Veterinary Medicine, Federal University of Alagoas, Viçosa, AL, Brazil
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Lindau, ZH, 8315, Switzerland
| | - Dimitrios Rizos
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Stefan Bauersachs
- Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, University of Zurich, Lindau, ZH, 8315, Switzerland
| | - Carmen Almiñana
- Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, University of Zurich, Lindau, ZH, 8315, Switzerland.
- Department of Reproductive Endocrinology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Reshi QUA, Godakumara K, Ord J, Dissanayake K, Hasan MM, Andronowska A, Heath P, Fazeli A. Spermatozoa, acts as an external cue and alters the cargo and production of the extracellular vesicles derived from oviductal epithelial cells in vitro. J Cell Commun Signal 2023; 17:737-755. [PMID: 36469292 PMCID: PMC10409707 DOI: 10.1007/s12079-022-00715-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/23/2022] [Indexed: 12/09/2022] Open
Abstract
The oviduct provides optimum physiological and biochemical milieu essential for successful fertilization, early embryo development and facilitates functional maturation of spermatozoa. A study has revealed that spermatozoa alters the gene expression in bovine oviductal epithelial cells (BOECs) remotely via bio-active particles, thus acting as a cue to the oviduct prior to their arrival. However, very little attention has been paid to the question of whether spermatozoa could alter the cargo of extracellular vesicles (EVs) derived from BOECs. Therefore, the aim of this study was to investigate the alterations in small non-coding RNAs in EVs cargo derived from BOECs when incubated with spermatozoa in contact and non-contact co-culture models. After 4 h of incubation the EVs were isolated from the conditioned media, followed by small non-coding sequencing of the BOEC derived EVs. Our results revealed that EVs from both co-culture models contained distinct cargo in form of miRNA, fragmented mRNA versus control. The pathway enrichment analysis revealed that EV miRNA from direct co-culture were involved in the biological processes associated with phagocytosis, macroautophagy, placenta development, cellular responses to TNF and FGF. The mRNA fragments also varied within the different groups and mapped to the exonic regions of the transcriptome providing vital insights regarding the changes in cellular transcriptome on the arrival of spermatozoa. The findings of this study suggest that spermatozoa, in contact as well as remotely, alter the EV cargo of female reproductive tract epithelial cells which might be playing an essential role in pre and post-fertilization events.
Collapse
Affiliation(s)
- Qurat Ul Ain Reshi
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 19, 50411, Tartu, Estonia
| | - Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 19, 50411, Tartu, Estonia
| | - James Ord
- Institute for Fish and Wildlife Health, University of Bern, Längassstrasse 122, 3012, Bern, Switzerland
| | - Keerthie Dissanayake
- Department of Anatomy, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Mohammad Mehedi Hasan
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 19, 50411, Tartu, Estonia
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London, 86-96 Chenies Mews, London, WC1N 1EH, UK
| | - Aneta Andronowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima St. 10, 10-748, Olsztyn, Poland
| | - Paul Heath
- Sheffield Institute for Translational Neuroscience SITraN, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
| | - Alireza Fazeli
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006, Tartu, Estonia.
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 19, 50411, Tartu, Estonia.
- Academic Unit of Reproductive and Developmental Medicine, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, S10 2SF, UK.
| |
Collapse
|
5
|
Aguilera C, Velásquez AE, Gutierrez-Reinoso MA, Wong YS, Melo-Baez B, Cabezas J, Caamaño D, Navarrete F, Rojas D, Riadi G, Castro FO, Rodriguez-Alvarez L. Extracellular Vesicles Secreted by Pre-Hatching Bovine Embryos Produced In Vitro and In Vivo Alter the Expression of IFNtau-Stimulated Genes in Bovine Endometrial Cells. Int J Mol Sci 2023; 24:ijms24087438. [PMID: 37108601 PMCID: PMC10138918 DOI: 10.3390/ijms24087438] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The embryo-maternal interaction occurs during the early stages of embryo development and is essential for the implantation and full-term development of the embryo. In bovines, the secretion of interferon Tau (IFNT) during elongation is the main signal for pregnancy recognition, but its expression starts around the blastocyst stage. Embryos release extracellular vesicles (EVs) as an alternative mechanism of embryo-maternal communication. The aim of the study was to determine whether EVs secreted by bovine embryos during blastulation (D5-D7) could induce transcriptomic modifications, activating IFNT signaling in endometrial cells. Additionally, it aims to assess whether the EVs secreted by embryos produced in vivo (EVs-IVV) or in vitro (EVs-IVP) have different effects on the transcriptomic profiles of the endometrial cells. In vitro- and in vivo-produced bovine morulae were selected and individually cultured for 48 h to collect embryonic EVs (E-EVs) secreted during blastulation. E-EVs stained with PKH67 were added to in vitro-cultured bovine endometrial cells to assess EV internalization. The effect of EVs on the transcriptomic profile of endometrial cells was determined by RNA sequencing. EVs from both types of embryos induced several classical and non-classical IFNT-stimulated genes (ISGs) and other pathways related to endometrial function in epithelial endometrial cells. Higher numbers of differentially expressed genes (3552) were induced by EVs released by IVP embryos compared to EVs from IVV (1838). Gene ontology analysis showed that EVs-IVP/IVV induced the upregulation of the extracellular exosome pathway, the cellular response to stimulus, and the protein modification processes. This work provides evidence regarding the effect of embryo origin (in vivo or in vitro) on the early embryo-maternal interaction mediated by extracellular vesicles.
Collapse
Affiliation(s)
- Constanza Aguilera
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile
| | - Alejandra Estela Velásquez
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile
| | - Miguel Angel Gutierrez-Reinoso
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile
| | - Yat Sen Wong
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile
| | - Barbara Melo-Baez
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile
| | - Joel Cabezas
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile
| | - Diego Caamaño
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile
| | - Felipe Navarrete
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile
| | - Daniela Rojas
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile
| | - Gonzalo Riadi
- ANID-Millennium Science Initiative Program Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Center for Bioinformatics, Simulation and Modeling, CBSM, Department of Bioinformatics, Faculty of Engineering, Campus Talca, University of Talca, Talca 3460000, Chile
| | - Fidel Ovidio Castro
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile
| | - Llretny Rodriguez-Alvarez
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile
| |
Collapse
|
6
|
Soto-Heras S, Sakkas D, Miller DJ. Sperm selection by the oviduct: perspectives for male fertility and assisted reproductive technologies†. Biol Reprod 2023; 108:538-552. [PMID: 36625382 PMCID: PMC10106845 DOI: 10.1093/biolre/ioac224] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
The contribution of sperm to embryogenesis is gaining attention with up to 50% of infertility cases being attributed to a paternal factor. The traditional methods used in assisted reproductive technologies for selecting and assessing sperm quality are mainly based on motility and viability parameters. However, other sperm characteristics, including deoxyribonucleic acid integrity, have major consequences for successful live birth. In natural reproduction, sperm navigate the male and female reproductive tract to reach and fertilize the egg. During transport, sperm encounter many obstacles that dramatically reduce the number arriving at the fertilization site. In humans, the number of sperm is reduced from tens of millions in the ejaculate to hundreds in the Fallopian tube (oviduct). Whether this sperm population has higher fertilization potential is not fully understood, but several studies in animals indicate that many defective sperm do not advance to the site of fertilization. Moreover, the oviduct plays a key role in fertility by modulating sperm transport, viability, and maturation, providing sperm that are ready to fertilize at the appropriate time. Here we present evidence of sperm selection by the oviduct with emphasis on the mechanisms of selection and the sperm characteristics selected. Considering the sperm parameters that are essential for healthy embryonic development, we discuss the use of novel in vitro sperm selection methods that mimic physiological conditions. We propose that insight gained from understanding how the oviduct selects sperm can be translated to assisted reproductive technologies to yield high fertilization, embryonic development, and pregnancy rates.
Collapse
Affiliation(s)
- Sandra Soto-Heras
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - David J Miller
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
7
|
DeVilbiss EA, Purdue-Smithe AC, Sjaarda LA, Taylor BD, Freeman JR, Perkins NJ, Silver RM, Schisterman EF, Mumford SL. The Role of Maternal Preconception Adiposity in Human Offspring Sex and Sex Ratio. Am J Epidemiol 2023; 192:587-599. [PMID: 36460625 PMCID: PMC10404066 DOI: 10.1093/aje/kwac209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 11/15/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
We evaluated relationships between preconception adiposity and human offspring sex and sex ratio. Using data from a prospective preconception cohort nested within a randomized controlled trial based at 4 US clinical sites (2006-2012), we used logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for male:female sex ratio, and log-identity regression to estimate risk differences (RDs) and 95% CIs for male and female livebirth according to preconception adiposity measures. Inverse-probability weights accounted for potential selection bias. Among 603 women attempting pregnancy, there were meaningful reductions in sex ratio for the highest category of each adiposity measure. The lowest sex ratios were observed for obesity (body mass index of ≥30, calculated as weight (kg)/height (m)2, OR = 0.48, 95% CI: 0.26, 0.88) relative to normal body mass index, and the top tertiles (tertile 3) of serum leptin (OR = 0.50, 95% CI: 0.32, 0.80) and skinfold measurements (OR = 0.50, 95% CI: 0.32, 0.79) relative to the lowest tertiles. Reductions were driven by 11-15 fewer male livebirths per 100 women (for obesity, RD = -15, 95% CI: -23, -6.7; for leptin tertile 3, RD = -11, 95% CI: -20, -3.2; and for skinfolds tertile 3, RD = -11, 95% CI: -19, -3.3). We found that relationships between preconception adiposity measures and reduced sex ratio were driven by a reduction in male births.
Collapse
Affiliation(s)
- Elizabeth A DeVilbiss
- Correspondence to Dr. Elizabeth DeVilbiss, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Drive, MSC 7004, Bethesda, MD 20892-7004 (e-mail: )
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Xiong Y, Wang DY, Guo W, Gong G, Chen ZX, Tang Q, Mei J. Sexually Dimorphic Gene Expression in X and Y Sperms Instructs Sexual Dimorphism of Embryonic Genome Activation in Yellow Catfish ( Pelteobagrus fulvidraco). BIOLOGY 2022; 11:1818. [PMID: 36552327 PMCID: PMC9775105 DOI: 10.3390/biology11121818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Paternal factors play an important role in embryonic morphogenesis and contribute to sexual dimorphism in development. To assess the effect of paternal DNA on sexual dimorphism of embryonic genome activation, we compared X and Y sperm and different sexes of embryos before sex determination. Through transcriptome sequencing (RNA-seq) and whole-genome bisulfite sequencing (WGBS) of X and Y sperm, we found a big proportion of upregulated genes in Y sperm, supported by the observation that genome-wide DNA methylation level is slightly lower than in X sperm. Cytokine-cytokine receptor interaction, TGF-beta, and toll-like receptor pathways play important roles in spermatogenesis. Through whole-genome re-sequencing (WGRS) of parental fish and RNA-seq of five early embryonic stages, we found the low-blastocyst time point is a key to maternal transcriptome degradation and zygotic genome activation. Generally, sexual differences emerged from the bud stage. Moreover, through integrated analysis of paternal SNPs and gene expression, we evaluated the influence of paternal inheritance on sexual dimorphism of genome activation. Besides, we screened out gata6 and ddx5 as potential instructors for early sex determination and gonad development in yellow catfish. This work is meaningful for revealing the molecular mechanisms of sex determination and sexual dimorphism of fish species.
Collapse
Affiliation(s)
- Yang Xiong
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan-Yang Wang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjie Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Gaorui Gong
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen-Xia Chen
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qin Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
9
|
Holt WV, Comizzoli P. Conservation Biology and Reproduction in a Time of Developmental Plasticity. Biomolecules 2022; 12:1297. [PMID: 36139136 PMCID: PMC9496186 DOI: 10.3390/biom12091297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
The objective of this review is to ask whether, and how, principles in conservation biology may need to be revisited in light of new knowledge about the power of epigenetics to alter developmental pathways. Importantly, conservation breeding programmes, used widely by zoological parks and aquariums, may appear in some cases to reduce fitness by decreasing animals' abilities to cope when confronted with the 'wild side' of their natural habitats. Would less comfortable captive conditions lead to the selection of individuals that, despite being adapted to life in a captive environment, be better able to thrive if relocated to a more natural environment? While threatened populations may benefit from advanced reproductive technologies, these may actually induce undesirable epigenetic changes. Thus, there may be inherent risks to the health and welfare of offspring (as is suspected in humans). Advanced breeding technologies, especially those that aim to regenerate the rarest species using stem cell reprogramming and artificial gametes, may also lead to unwanted epigenetic modifications. Current knowledge is still incomplete, and therefore ethical decisions about novel breeding methods remain controversial and difficult to resolve.
Collapse
Affiliation(s)
- William V. Holt
- Department of Oncology & Metabolism, The Medical School Beech Hill Road, Sheffield S10 2RX, UK
| | - Pierre Comizzoli
- Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC 20008, USA
| |
Collapse
|
10
|
Gurunathan S, Kang MH, Song H, Kim NH, Kim JH. The role of extracellular vesicles in animal reproduction and diseases. J Anim Sci Biotechnol 2022; 13:62. [PMID: 35681164 PMCID: PMC9185900 DOI: 10.1186/s40104-022-00715-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/05/2022] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) are nanosized membrane-enclosed compartments that serve as messengers in cell-to-cell communication, both in normal physiology and in pathological conditions. EVs can transfer functional proteins and genetic information to alter the phenotype and function of recipient cells, which undergo different changes that positively affect their structural and functional integrity. Biological fluids are enriched with several subpopulations of EVs, including exosomes, microvesicles (MVs), and apoptotic bodies carrying several cargoes, such as lipids, proteins, and nucleic acids. EVs associated with the reproductive system are actively involved in the regulation of different physiological events, including gamete maturation, fertilization, and embryo and fetal development. EVs can influence follicle development, oocyte maturation, embryo production, and endometrial-conceptus communication. EVs loaded with cargoes are used to diagnose various diseases, including pregnancy disorders; however, these are dependent on the type of cell of origin and pathological characteristics. EV-derived microRNAs (miRNAs) and proteins in the placenta regulate inflammatory responses and trophoblast invasion through intercellular delivery in the placental microenvironment. This review presents evidence regarding the types of extracellular vesicles, and general aspects of isolation, purification, and characterization of EVs, particularly from various types of embryos. Further, we discuss EVs as mediators and messengers in reproductive biology, the effects of EVs on placentation and pregnancy disorders, the role of EVs in animal reproduction, in the male reproductive system, and mother and embryo cross-communication. In addition, we emphasize the role of microRNAs in embryo implantation and the role of EVs in reproductive and therapeutic medicine. Finally, we discuss the future perspectives of EVs in reproductive biology.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Nam Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea.
| |
Collapse
|
11
|
Advancements in mammalian X and Y sperm differences and sex control technology. ZYGOTE 2022; 30:423-430. [DOI: 10.1017/s0967199421000939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Summary
Mammal sex determination depends on whether the X sperm or Y sperm binds to the oocyte during fertilization. If the X sperm joins in oocyte, the offspring will be female, if the Y sperm fertilizes, the offspring will be male. Livestock sex control technology has tremendous value for livestock breeding as it can increase the proportion of female offspring and improve the efficiency of livestock production. This review discusses the detailed differences between mammalian X and Y sperm with respect to their morphology, size, and motility in the reproductive tract and in in vitro conditions, as well as ’omics analysis results. Moreover, research progress in mammalian sex control technology has been summarized.
Collapse
|
12
|
Naidu SJ, Arangasamy A, Selvaraju S, Binsila BK, Reddy IJ, Ravindra JP, Bhatta R. Maternal influence on the skewing of offspring sex ratio: a review. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Comizzoli P, Holt WV. Recent Progress in Spermatology Contributing to the Knowledge and Conservation of Rare and Endangered Species. Annu Rev Anim Biosci 2021; 10:469-490. [PMID: 34758275 DOI: 10.1146/annurev-animal-020420-040600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is a remarkable diversity in the animal kingdom regarding mechanisms underlying the production, maturation, structure, and function of sperm cells. Spermatology studies contribute to the knowledge of species diversity and also provide information about individual or population fitness. Furthermore, this fundamental research is required before collected spermatozoa can be used for conservation breeding, including assisted reproduction and cryobanking. This article aims to (a) review the most recent knowledge on sperm morphology and function in wild animal species, (b) analyze how this knowledge can be used to save species in their natural habitat or ex situ, and (c) propose future scientific directions in wildlife spermatology that could positively impact animal conservation. Variations in sperm structure and performance within and between species have multiple origins and significance. This collective body of knowledge enables the design and implementation of conservation strategies and action plans that integrate several disciplines. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA;
| | - William V Holt
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, United Kingdom;
| |
Collapse
|
14
|
Abstract
Sperm selection in the female reproductive tract (FRT) is sophisticated. Only about 1,000 sperm out of millions in an ejaculate reach the fallopian tube and thus have a chance of fertilizing an oocyte. In assisted reproduction techniques, sperm are usually selected using their density or motility, characteristics that do not reflect their fertilization competence and, therefore, might result in failure to fertilize the oocyte. Although sperm processing in in vitro fertilization (IVF) and intrauterine insemination (IUI) bypasses many of the selection processes in the FRT, selection by the cumulus mass and the zona pellucida remain intact. By contrast, the direct injection of a sperm into an oocyte in intracytoplasmic sperm injection (ICSI) bypasses all natural selection barriers and, therefore, increases the risk of transferring paternal defects such as fragmented DNA and genomic abnormalities in sperm to the resulting child. Research into surrogate markers of fertilization potential and into simulating the natural sperm selection processes has progressed. However, methods of sperm isolation - such as hyaluronic acid-based selection and microfluidic isolation based on sperm tactic responses - use only one or two parameters and are not comparable with the multistep sperm selection processes naturally occurring within the FRT. Fertilization-competent sperm require a panel of molecules, including zona pellucida-binding proteins and ion channel proteins, that enable them to progress through the FRT to achieve fertilization. The optimal artificial sperm selection method will, therefore, probably need to use a multiparameter tool that incorporates the molecular signature of sperm with high fertilization potential, and their responses to external cues, within a microfluidic system that can replicate the physiological processes of the FRT in vitro.
Collapse
|
15
|
New Insights into the Mammalian Egg Zona Pellucida. Int J Mol Sci 2021; 22:ijms22063276. [PMID: 33806989 PMCID: PMC8005149 DOI: 10.3390/ijms22063276] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/19/2021] [Indexed: 12/23/2022] Open
Abstract
Mammalian oocytes are surrounded by an extracellular coat called the zona pellucida (ZP), which, from an evolutionary point of view, is the most ancient of the coats that envelope vertebrate oocytes and conceptuses. This matrix separates the oocyte from cumulus cells and is responsible for species-specific recognition between gametes, preventing polyspermy and protecting the preimplantation embryo. The ZP is a dynamic structure that shows different properties before and after fertilization. Until very recently, mammalian ZP was believed to be composed of only three glycoproteins, ZP1, ZP2 and ZP3, as first described in mouse. However, studies have revealed that this composition is not necessarily applicable to other mammals. Such differences can be explained by an analysis of the molecular evolution of the ZP gene family, during which ZP genes have suffered pseudogenization and duplication events that have resulted in differing models of ZP protein composition. The many discoveries made in recent years related to ZP composition and evolution suggest that a compilation would be useful. Moreover, this review analyses ZP biosynthesis, the role of each ZP protein in different mammalian species and how these proteins may interact among themselves and with other proteins present in the oviductal lumen.
Collapse
|
16
|
Bovine sperm-oviduct interactions are characterized by specific sperm behaviour, ultrastructure and tubal reactions which are impacted by sex sorting. Sci Rep 2020; 10:16522. [PMID: 33020549 PMCID: PMC7536416 DOI: 10.1038/s41598-020-73592-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
To date sperm-oviduct interactions have largely been investigated under in vitro conditions. Therefore we set out to characterize the behaviour of bovine spermatozoa within the sperm reservoir under near in vivo conditions and in real-time using a novel live cell imaging technology and a newly established fluorescent sperm binding assay. Sperm structure and tubal reactions after sperm binding were analysed using scanning and transmission electron microscopy and histochemistry. As a model to specify the impact of stress on sperm-oviduct interactions, frozen-thawed conventional and sex-sorted spermatozoa from the same bulls (n = 7) were co-incubated with oviducts obtained from cows immediately after slaughter. Our studies revealed that within the oviductal sperm reservoir agile (bound at a tangential angle of about 30°, actively beating undulating tail), lagging (bound at a lower angle, reduced tail movement), immotile (absence of tail movement) and hyperactivated (whip-like movement of tail) spermatozoa occur, the prevalence of which changes in a time-dependent pattern. After formation of the sperm reservoir, tubal ciliary beat frequency is significantly increased (p = 0.022) and the epithelial cells show increased activity of endoplasmic reticula. After sex sorting, spermatozoa occasionally display abnormal movement patterns characterized by a 360° rotating head and tail. Sperm binding in the oviduct is significantly reduced (p = 0.008) following sexing. Sex-sorted spermatozoa reveal deformations in the head, sharp bends in the tail and a significantly increased prevalence of damaged mitochondria (p < 0.001). Our results imply that the oviductal cells specifically react to the binding of spermatozoa, maintaining sperm survival within the tubal reservoir. The sex-sorting process, which is associated with mechanical, chemical and time stress, impacts sperm binding to the oviduct and mitochondrial integrity affecting sperm motility and function.
Collapse
|
17
|
Comizzoli P, Holt WV. Breakthroughs and new horizons in reproductive biology of rare and endangered animal species. Biol Reprod 2020; 101:514-525. [PMID: 30772911 DOI: 10.1093/biolre/ioz031] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/08/2019] [Accepted: 02/15/2019] [Indexed: 12/22/2022] Open
Abstract
Because of higher extinction rates due to human and natural factors, more basic and applied research in reproductive biology is required to preserve wild species and design proper strategies leading to sustainable populations. The objective of the review is to highlight recent, inspiring breakthroughs in wildlife reproduction science that will set directions for future research and lead to more successes in conservation biology. Despite new tools and approaches allowing a better and faster understanding of key mechanisms, we still know little about reproduction in endangered species. Recently, the most striking advances have been obtained in nonmammalian species (fish, birds, amphibians, or corals) with the development of alternative solutions to preserve fertility or new information about parental nutritional influence on embryo development. A novel way has also been explored to consider the impact of environmental changes on reproduction-the allostatic load-in a vast array of species (from primates to fish). On the horizon, genomic tools are expected to considerably change the way we study wildlife reproduction and develop a concept of "precision conservation breeding." When basic studies in organismal physiology are conducted in parallel, new approaches using stem cells to create artificial gametes and gonads, innovations in germplasm storage, and more research on reproductive microbiomes will help to make a difference. Lastly, multiple challenges (for instance, poor integration of new tools in conservation programs, limited access to study animals, or few publication options) will have to be addressed if we want reproductive biology to positively impact conservation of biodiversity.
Collapse
Affiliation(s)
- Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington DC, USA
| | - William V Holt
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|
18
|
Xie Y, Xu Z, Wu Z, Hong L. Sex Manipulation Technologies Progress in Livestock: A Review. Front Vet Sci 2020; 7:481. [PMID: 32923466 PMCID: PMC7456994 DOI: 10.3389/fvets.2020.00481] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
Sex manipulation technologies allow predetermination of the sex of animal offspring by altering the normal reproductive process. In livestock production, the difference in type and gender can translate into significant economic benefits, including alleviation of severe food shortages. In livestock, however, the commercial application of sex manipulation technologies is currently available for cattle only. In this review, we described the brief history of sex manipulation, and the research progresses of common methods used in sex manipulation thus far. Information presented in this review can inform future studies on expanding the scope and use of sex manipulation technologies in livestock.
Collapse
Affiliation(s)
- Yanshe Xie
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Zhiqian Xu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Zhenfang Wu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Linjun Hong
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| |
Collapse
|
19
|
Cresswell C, Speelman CP. Does mathematics training lead to better logical thinking and reasoning? A cross-sectional assessment from students to professors. PLoS One 2020; 15:e0236153. [PMID: 32726352 PMCID: PMC7390332 DOI: 10.1371/journal.pone.0236153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/30/2020] [Indexed: 11/18/2022] Open
Abstract
Mathematics is often promoted as endowing those who study it with transferable skills such as an ability to think logically and critically or to have improved investigative skills, resourcefulness and creativity in problem solving. However, there is scant evidence to back up such claims. This project tested participants with increasing levels of mathematics training on 11 well-studied rational and logical reasoning tasks aggregated from various psychological studies. These tasks, that included the Cognitive Reflection Test and the Wason Selection Task, are of particular interest as they have typically and reliably eluded participants in all studies, and results have been uncorrelated with general intelligence, education levels and other demographic information. The results in this study revealed that in general the greater the mathematics training of the participant, the more tasks were completed correctly, and that performance on some tasks was also associated with performance on others not traditionally associated. A ceiling effect also emerged. The work is deconstructed from the viewpoint of adding to the platform from which to approach the greater, and more scientifically elusive, question: are any skills associated with mathematics training innate or do they arise from skills transfer?
Collapse
Affiliation(s)
- Clio Cresswell
- School of Mathematics and Statistics, The University of Sydney, Sydney, Australia
| | - Craig P. Speelman
- School of Arts and Humanities, Edith Cowan University, Joondalup, Australia
- * E-mail:
| |
Collapse
|
20
|
The Expression of Cold-Inducible RNA-Binding Protein mRNA in Sow Genital Tract Is Modulated by Natural Mating, But Not by Seminal Plasma. Int J Mol Sci 2020; 21:ijms21155333. [PMID: 32727091 PMCID: PMC7432381 DOI: 10.3390/ijms21155333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
The RNA-binding proteins (RBPs), some of them induced by transient receptor potential (TRP) ion channels, are crucial regulators of RNA function that can contribute to reproductive pathogenesis, including inflammation and immune dysfunction. This study aimed to reveal the influence of spermatozoa, seminal plasma, or natural mating on mRNA expression of RBPs and TRP ion channels in different segments of the internal genital tract of oestrous, preovulatory sows. Particularly, we focused on mRNA expression changes of the cold-inducible proteins (CIPs) and related TRP channels. Pre-ovulatory sows were naturally mated (NM) or cervically infused with semen (Semen-AI) or sperm-free seminal plasma either from the entire ejaculate (SP-TOTAL) or the sperm-rich fraction (SP-AI). Samples (cervix to infundibulum) were collected by laparotomy under general anaesthesia for transcriptomic analysis (GeneChip® Porcine Gene 1.0 ST Array) 24 h after treatments. The NM treatment induced most of the mRNA expression changes, compared to Semen-AI, SP-AI, and SP-TOTAL treatments including unique significative changes in CIRBP, RBM11, RBM15B, RBMS1, TRPC1, TRPC4, TRPC7, and TRPM8. The findings on the differential mRNA expression on RBPs and TRP ion channels, especially to CIPs and related TRP ion channels, suggest that spermatozoa and seminal plasma differentially modulated both protein families during the preovulatory phase, probably related to a still unknown early signalling mechanism in the sow reproductive tract.
Collapse
|
21
|
Ruiz-Conca M, Gardela J, Martínez CA, Wright D, López-Bejar M, Rodríguez-Martínez H, Álvarez-Rodríguez M. Natural Mating Differentially Triggers Expression of Glucocorticoid Receptor (NR3C1)-Related Genes in the Preovulatory Porcine Female Reproductive Tract. Int J Mol Sci 2020; 21:ijms21124437. [PMID: 32580389 PMCID: PMC7352215 DOI: 10.3390/ijms21124437] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 06/20/2020] [Indexed: 12/15/2022] Open
Abstract
Mating initiates dynamic modifications of gene transcription in the female reproductive tract, preparing the female for fertilization and pregnancy. Glucocorticoid signaling is essential for the homeostasis of mammalian physiological functions. This complex glucocorticoid regulation is mediated through the glucocorticoid receptor, also known as nuclear receptor subfamily 3 group C member 1 (NR3C1/GR) and related genes, like 11β-hydroxysteroid dehydrogenases (HSD11Bs) and the FK506-binding immunophilins, FKBP5 and FKBP4. This study tested the transcriptome changes in NR3C1/GR regulation in response to natural mating and/or cervical deposition of the sperm-peak ejaculate fraction collected using the gloved-hand method (semen or only its seminal plasma), in the preovulatory pig reproductive tract (cervix to infundibulum, 24 h after mating/insemination/infusion treatments). Porcine cDNA microarrays revealed 22 NR3C1-related transcripts, and changes in gene expression were triggered by all treatments, with natural mating showing the largest differences, including NR3C1, FKBP5, FKBP4, hydroxysteroid 11-beta dehydrogenase 1 and 2 (HSD11B1, HSD11B2), and the signal transducer and activator of transcription 5A (STAT5A). Our data suggest that natural mating induces expression changes that might promote a reduction of the cortisol action in the oviductal sperm reservoir. Together with the STAT-mediated downregulation of cytokine immune actions, this reduction may prevent harmful effects by promoting tolerance towards the spermatozoa stored in the oviduct and perhaps elicit spermatozoa activation and detachment after ovulation.
Collapse
Affiliation(s)
- Mateo Ruiz-Conca
- Department Biomedical and Clinical Sciences (BKV), BKH/OG, Linköping University, 58185 Linköping, Sweden; (M.R.-C.); (J.G.); (C.A.M.); (H.R.-M.)
- Department of Animal Health and Anatomy, Veterinary Faculty, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
| | - Jaume Gardela
- Department Biomedical and Clinical Sciences (BKV), BKH/OG, Linköping University, 58185 Linköping, Sweden; (M.R.-C.); (J.G.); (C.A.M.); (H.R.-M.)
- Department of Animal Health and Anatomy, Veterinary Faculty, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
| | - Cristina Alicia Martínez
- Department Biomedical and Clinical Sciences (BKV), BKH/OG, Linköping University, 58185 Linköping, Sweden; (M.R.-C.); (J.G.); (C.A.M.); (H.R.-M.)
| | - Dominic Wright
- Department of Physics, Chemistry and Biology, Faculty of Science and Engineering; Linköping University, 58183 Linköping, Sweden;
| | - Manel López-Bejar
- Department of Animal Health and Anatomy, Veterinary Faculty, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Heriberto Rodríguez-Martínez
- Department Biomedical and Clinical Sciences (BKV), BKH/OG, Linköping University, 58185 Linköping, Sweden; (M.R.-C.); (J.G.); (C.A.M.); (H.R.-M.)
| | - Manuel Álvarez-Rodríguez
- Department Biomedical and Clinical Sciences (BKV), BKH/OG, Linköping University, 58185 Linköping, Sweden; (M.R.-C.); (J.G.); (C.A.M.); (H.R.-M.)
- Department of Animal Health and Anatomy, Veterinary Faculty, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
- Correspondence: ; Tel.: +46-(0)72942-7883
| |
Collapse
|
22
|
The Use of RNAi Technology to Interfere with Zfx Gene Increases the Male Rates of Red Deer ( Cervus elaphus) Offspring. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9549765. [PMID: 32509876 PMCID: PMC7254085 DOI: 10.1155/2020/9549765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/26/2020] [Accepted: 05/02/2020] [Indexed: 12/02/2022]
Abstract
Zinc finger protein X-linked (Zfx) was regarded to be a sex determination factor and plays a critical role in spermatogenesis. RNAi is an effective method of silencing Zfx mRNA expression. However, there has been little research on the use of RNAi technology to control the sex of the offspring of red deer (Cervus elaphus). The objective of this study was first to explore an efficient method to alter the red deer offspring sex-ratio by silencing the gene Zfx during spermatogenesis. Three recombinant expression vectors pLL3.7/A, pLL3.7/B, and pLL3.7/C were constructed to interrupt the Zfx gene. The results showed that the expression of Zfx mRNA was significantly silenced by pLL3.7/A (P < 0.01), compared with the control group. The group injected with pLL3.7/A produced 94 red deer, including 68 males and 26 females. The male rates (72.34%) were significantly higher than the control groups (P < 0.01). Our result suggests that Zfx siRNA is a useful approach to control offspring sex in red deer. This study further confirms that the Zfx gene plays a significant role in the process of X spermatogenesis.
Collapse
|
23
|
Firman RC. Exposure to high male density causes maternal stress and female-biased sex ratios in a mammal. Proc Biol Sci 2020; 287:20192909. [PMID: 32370673 PMCID: PMC7282911 DOI: 10.1098/rspb.2019.2909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/14/2020] [Indexed: 12/29/2022] Open
Abstract
A shift from the traditional perspective that maternal stress is invariably costly has instigated recent interest into its adaptive role in offspring sex allocation. Stress generated by social instability has been linked to offspring sex ratio biases that favour the production of female offspring, which converges with the theoretical prediction that mothers in the poor condition are better off investing in daughters rather than sons. However, previous research has failed to disentangle two different processes: the passive consequence of maternal stress on sex-specific mortality and the adaptive effect of maternal stress at the time of conception. Here, I show that exposure to high male density social conditions leads to elevated stress hormone levels and female-biased in utero offspring sex ratios in house mice (Mus musculus domesticus), and identify that sex-specific offspring production-not sex-specific mortality-is the mechanism accounting for these sex ratio skews. This outcome reflects the optimal fitness scenario for mothers in a male-dominated environment: the production of daughters, who are guaranteed high mate availability, minimizes male-male competition for their sons. Overall, this study supports the idea that maternal stress has the potential to be adaptive and advances our understanding of how exposure to different social conditions can influence sex allocation in mammals.
Collapse
Affiliation(s)
- Renée C. Firman
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia 6009, Australia
| |
Collapse
|
24
|
Pitnick S, Wolfner MF, Dorus S. Post-ejaculatory modifications to sperm (PEMS). Biol Rev Camb Philos Soc 2020; 95:365-392. [PMID: 31737992 PMCID: PMC7643048 DOI: 10.1111/brv.12569] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022]
Abstract
Mammalian sperm must spend a minimum period of time within a female reproductive tract to achieve the capacity to fertilize oocytes. This phenomenon, termed sperm 'capacitation', was discovered nearly seven decades ago and opened a window into the complexities of sperm-female interaction. Capacitation is most commonly used to refer to a specific combination of processes that are believed to be widespread in mammals and includes modifications to the sperm plasma membrane, elevation of intracellular cyclic AMP levels, induction of protein tyrosine phosphorylation, increased intracellular Ca2+ levels, hyperactivation of motility, and, eventually, the acrosome reaction. Capacitation is only one example of post-ejaculatory modifications to sperm (PEMS) that are widespread throughout the animal kingdom. Although PEMS are less well studied in non-mammalian taxa, they likely represent the rule rather than the exception in species with internal fertilization. These PEMS are diverse in form and collectively represent the outcome of selection fashioning complex maturational trajectories of sperm that include multiple, sequential phenotypes that are specialized for stage-specific functionality within the female. In many cases, PEMS are critical for sperm to migrate successfully through the female reproductive tract, survive a protracted period of storage, reach the site of fertilization and/or achieve the capacity to fertilize eggs. We predict that PEMS will exhibit widespread phenotypic plasticity mediated by sperm-female interactions. The successful execution of PEMS thus has important implications for variation in fitness and the operation of post-copulatory sexual selection. Furthermore, it may provide a widespread mechanism of reproductive isolation and the maintenance of species boundaries. Despite their possible ubiquity and importance, the investigation of PEMS has been largely descriptive, lacking any phylogenetic consideration with regard to divergence, and there have been no theoretical or empirical investigations of their evolutionary significance. Here, we (i) clarify PEMS-related nomenclature; (ii) address the evolutionary origin, maintenance and divergence in PEMS in the context of the protracted life history of sperm and the complex, selective environment of the female reproductive tract; (iii) describe taxonomically widespread types of PEMS: sperm activation, chemotaxis and the dissociation of sperm conjugates; (iv) review the occurence of PEMS throughout the animal kingdom; (v) consider alternative hypotheses for the adaptive value of PEMS; (vi) speculate on the evolutionary implications of PEMS for genomic architecture, sexual selection, and reproductive isolation; and (vii) suggest fruitful directions for future functional and evolutionary analyses of PEMS.
Collapse
Affiliation(s)
- Scott Pitnick
- Department of Biology, Center for Reproductive Evolution, Syacuse University, Syracuse, NY 13244, USA
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Steve Dorus
- Department of Biology, Center for Reproductive Evolution, Syacuse University, Syracuse, NY 13244, USA
| |
Collapse
|
25
|
The role of semen and seminal plasma in inducing large-scale genomic changes in the female porcine peri-ovulatory tract. Sci Rep 2020; 10:5061. [PMID: 32193402 PMCID: PMC7081221 DOI: 10.1038/s41598-020-60810-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/14/2020] [Indexed: 12/15/2022] Open
Abstract
Semen modifies the expression of genes related to immune function along the porcine female internal genital tract. Whether other pathways are induced by the deposition of spermatozoa and/or seminal plasma (SP), is yet undocumented. Here, to determine their relative impact on the uterine and tubal transcriptomes, microarray analyses were performed on the endocervix, endometrium and endosalpinx collected from pre-ovulatory sows 24 h after either mating or artificial insemination (AI) with specific ejaculate fractions containing spermatozoa or sperm-free SP. After enrichment analysis, we found an overrepresentation of genes and pathways associated with sperm transport and binding, oxidative stress and cell-to-cell recognition, such as PI3K-Akt, FoxO signaling, glycosaminoglycan biosynthesis and cAMP-related transcripts, among others. Although semen (either after mating or AI) seemed to have the highest impact along the entire genital tract, our results demonstrate that the SP itself also modifies the transcriptome. The detected modifications of the molecular profiles of the pre/peri-ovulatory endometrium and endosalpinx suggest an interplay for the survival, transport and binding of spermatozoa through, for instance the up-regulation of the Estrogen signaling pathway associated with attachment and release from the oviductal reservoir.
Collapse
|
26
|
Martinez CA, Alvarez-Rodriguez M, Wright D, Rodriguez-Martinez H. Does the Pre-Ovulatory Pig Oviduct Rule Sperm Capacitation In Vivo Mediating Transcriptomics of Catsper Channels? Int J Mol Sci 2020; 21:ijms21051840. [PMID: 32155986 PMCID: PMC7084628 DOI: 10.3390/ijms21051840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022] Open
Abstract
Spermatozoa need to conduct a series of biochemical changes termed capacitation in order to fertilize. In vivo, capacitation is sequentially achieved during sperm transport and interaction with the female genital tract, by mechanisms yet undisclosed in detail. However, when boar spermatozoa are stored in the tubal reservoir pre-ovulation, most appear to be in a non-capacitated state. This study aimed at deciphering the transcriptomics of capacitation-related genes in the pig pre-ovulatory oviduct, following the entry of semen or of sperm-free seminal plasma (SP). Ex-vivo samples of the utero-tubal junction (UTJ) and isthmus were examined with a microarray chip (GeneChip® Porcine Gene 1.0 ST Array, Thermo Fisher Scientific) followed by bioinformatics for enriched analysis of functional categories (GO terms) and restrictive statistics. The results confirmed that entry of semen or of relative amounts of sperm-free SP modifies gene expression of these segments, pre-ovulation. It further shows that enriched genes are differentially associated with pathways relating to sperm motility, acrosome reaction, single fertilization, and the regulation of signal transduction GO terms. In particular, the pre-ovulation oviduct stimulates the Catsper channels for sperm Ca2+ influx, with AKAPs, CATSPERs, and CABYR genes being positive regulators while PKIs and CRISP1 genes appear to be inhibitors of the process. We postulate that the stimulation of PKIs and CRISP1 genes in the pre-ovulation sperm reservoir/adjacent isthmus, mediated by SP, act to prevent premature massive capacitation prior to ovulation.
Collapse
Affiliation(s)
- Cristina A. Martinez
- Department of Biomedical and Clinical Sciences (BKV), BKH/Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden; (M.A.-R.); (H.R.-M.)
- Correspondence: ; Tel.: +34-678077708
| | - Manuel Alvarez-Rodriguez
- Department of Biomedical and Clinical Sciences (BKV), BKH/Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden; (M.A.-R.); (H.R.-M.)
| | - Dominic Wright
- Department of Physics, Chemistry and Biology, Faculty of Science and Engineering; Linköping University, SE-58183 Linköping, Sweden;
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical and Clinical Sciences (BKV), BKH/Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden; (M.A.-R.); (H.R.-M.)
| |
Collapse
|
27
|
Alvarez-Rodriguez M, Martinez C, Wright D, Barranco I, Roca J, Rodriguez-Martinez H. The Transcriptome of Pig Spermatozoa, and Its Role in Fertility. Int J Mol Sci 2020; 21:ijms21051572. [PMID: 32106598 PMCID: PMC7084236 DOI: 10.3390/ijms21051572] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
In the study presented here we identified transcriptomic markers for fertility in the cargo of pig ejaculated spermatozoa using porcine-specific micro-arrays (GeneChip® miRNA 4.0 and GeneChip® Porcine Gene 1.0 ST). We report (i) the relative abundance of the ssc-miR-1285, miR-16, miR-4332, miR-92a, miR-671-5p, miR-4334-5p, miR-425-5p, miR-191, miR-92b-5p and miR-15b miRNAs, and (ii) the presence of 347 up-regulated and 174 down-regulated RNA transcripts in high-fertility breeding boars, based on differences of farrowing rate (FS) and litter size (LS), relative to low-fertility boars in the (Artificial Insemination) AI program. An overrepresentation analysis of the protein class (PANTHER) identified significant fold-increases for C-C chemokine binding (GO:0019957): CCR7, which activates B- and T-lymphocytes, 8-fold increase), XCR1 and CXCR4 (with ubiquitin as a natural ligand, 1.24-fold increase), cytokine receptor activity (GO:0005126): IL23R receptor of the IL23 protein, associated to JAK2 and STAT3, 3.4-fold increase), the TGF-receptor (PC00035) genes ACVR1C and ACVR2B (12-fold increase). Moreover, two micro-RNAs (miR-221 and mir-621) were down- and up-regulated, respectively, in high-fertility males. In conclusion, boars with different fertility performance possess a wide variety of differentially expressed RNA present in spermatozoa that would be attractive targets as non-invasive molecular markers for predicting fertility.
Collapse
Affiliation(s)
- Manuel Alvarez-Rodriguez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden; (C.M.); (H.R.-M.)
- Correspondence: e-mail: ; Phone: +46-(0)729427883
| | - Cristina Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden; (C.M.); (H.R.-M.)
| | - Dominic Wright
- Department of Physics, Chemistry and Biology, Faculty of Science and Engineering, Linköping University, SE-58183 Linköping, Sweden
| | - Isabel Barranco
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, 17003 Girona, Spain;
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden; (C.M.); (H.R.-M.)
| |
Collapse
|
28
|
Rickard JP, de Graaf SP. Sperm surface changes and their consequences for sperm transit through the female reproductive tract. Theriogenology 2020; 150:96-105. [PMID: 32067798 DOI: 10.1016/j.theriogenology.2020.02.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 12/17/2022]
Abstract
Spermatozoa are faced with considerable challenges during their passage through the female reproductive tract. Following deposition, they must deal with several physical and biochemical barriers as well as an aggressive immune defence system before they reach the site of fertilisation. While many factors are at play, the surface characteristics of spermatozoa are central to communication with the female and successful transit. The surface proteome of spermatozoa has been extensively studied and shown to vary considerably between species that deposit semen in the vagina (ram and bull) and uterus (boar and stallion), likely due to major differences in accessory sex gland anatomy. Comparing the surface characteristics of spermatozoa from these domestic species and how individual components may equip spermatozoa to interact with different features of the female tract could help understand how spermatozoa navigate from vagina or uterus to oviduct ampulla. Furthermore, we can begin to explain why use of high quality preserved spermatozoa in artificial insemination programs may still result in reduced fertility due to altered interaction with the female. In this review, we describe the sperm surface characteristics of the ram, bull, boar and stallion and compare changes as a result of mixture with seminal plasma and/or in vitro processing. The role of these seminal components in facilitating sperm survival and transit within the female reproductive tract is summarised, drawing attention to potential implications for applied reproductive technologies.
Collapse
Affiliation(s)
- J P Rickard
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, NSW, 2006, Australia.
| | - S P de Graaf
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, NSW, 2006, Australia
| |
Collapse
|
29
|
Rahman MS, Pang MG. New Biological Insights on X and Y Chromosome-Bearing Spermatozoa. Front Cell Dev Biol 2020; 7:388. [PMID: 32039204 PMCID: PMC6985208 DOI: 10.3389/fcell.2019.00388] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/23/2019] [Indexed: 12/28/2022] Open
Abstract
A spermatozoon is a male germ cell capable of fertilizing an oocyte and carries genetic information for determining the sex of the offspring. It comprises autosomes and an X (X spermatozoa) or a Y chromosome (Y spermatozoa). The origin and maturation of both X and Y spermatozoa are the same, however, certain differences may exist. Previous studies proposed a substantial difference between X and Y spermatozoa, however, recent studies suggest negligible or no differences between these spermatozoa with respect to ratio, shape and size, motility and swimming pattern, strength, electric charge, pH, stress response, and aneuploidy. The only difference between X and Y spermatozoa lies in their DNA content. Moreover, recent proteomic and genomic studies have identified a set of proteins and genes that are differentially expressed between X and Y spermatozoa. Therefore, the difference in DNA content might be responsible for the differential expression of certain genes and proteins between these cells. In this review, we have compiled our present knowledge to compare X and Y spermatozoa with respect to their structural, functional, and molecular features. In addition, we have highlighted several areas that could be explored in future studies in this field.
Collapse
Affiliation(s)
- Md Saidur Rahman
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, South Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, South Korea
| |
Collapse
|
30
|
Composing the Early Embryonic Microenvironment: Physiology and Regulation of Oviductal Secretions. Int J Mol Sci 2019; 21:ijms21010223. [PMID: 31905654 PMCID: PMC6982147 DOI: 10.3390/ijms21010223] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/19/2019] [Accepted: 12/25/2019] [Indexed: 12/22/2022] Open
Abstract
The oviductal fluid is the first environment experienced by mammalian embryos at the very beginning of life. However, it has long been believed that the oviductal environment was not essential for proper embryonic development. Successful establishment of in vitro embryo production techniques (which completely bypass the oviduct) have reinforced this idea. Yet, it became evident that in vitro produced embryos differ markedly from their in vivo counterparts, and these differences are associated with lower pregnancy outcomes and more health issues after birth. Nowadays, researchers consider the oviduct as the most suitable microenvironment for early embryonic development and a substantial effort is made to understand its dynamic, species-specific functions. In this review, we touch on the origin and molecular components of the oviductal fluid in mammals, where recent progress has been made thanks to the wider use of mass spectrometry techniques. Some of the factors and processes known to regulate oviductal secretions, including the embryo itself, as well as ovulation, insemination, endogenous and exogenous hormones, and metabolic and heat stress, are summarized. Special emphasis is laid on farm animals because, owing to the availability of sample material and the economic importance of fertility in livestock husbandry, a large part of the work on this topic has been carried out in domestic animals used for dairy and/or meat production.
Collapse
|
31
|
Machado SA, Sharif M, Wang H, Bovin N, Miller DJ. Release of Porcine Sperm from Oviduct Cells is Stimulated by Progesterone and Requires CatSper. Sci Rep 2019; 9:19546. [PMID: 31862909 PMCID: PMC6925244 DOI: 10.1038/s41598-019-55834-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/29/2019] [Indexed: 01/07/2023] Open
Abstract
Sperm storage in the female reproductive tract after mating and before ovulation is a reproductive strategy used by many species. When insemination and ovulation are poorly synchronized, the formation and maintenance of a functional sperm reservoir improves the possibility of fertilization. In mammals, the oviduct regulates sperm functions, such as Ca2+ influx and processes associated with sperm maturation, collectively known as capacitation. A fraction of the stored sperm is released by unknown mechanisms and moves to the site of fertilization. There is an empirical association between the hormonal milieu in the oviduct and sperm detachment; therefore, we tested directly the ability of progesterone to induce sperm release from oviduct cell aggregates. Sperm were allowed to bind to oviduct cells or an immobilized oviduct glycan and then challenged with progesterone, which stimulated the release of 48% of sperm from oviduct cells or 68% of sperm from an immobilized oviduct glycan. The effect of progesterone on sperm release was specific; pregnenolone and 17α-OH-progesterone did not affect sperm release. Ca2+ influx into sperm is associated with capacitation and development of hyperactivated motility. Progesterone increased sperm intracellular Ca2+, which was abrogated by blocking the sperm–specific Ca2+ channel CatSper with NNC 055-0396. NNC 055-0396 also blocked the progesterone-induced sperm release from oviduct cells or immobilized glycan. An inhibitor of the non-genomic progesterone receptor that activates CatSper similarly blocked sperm release. This is the first report indicating that release of sperm from the sperm reservoir is induced by progesterone action through CatSper channels.
Collapse
Affiliation(s)
- Sergio A Machado
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA.,Department of Veterinary Medicine, Western Santa Catarina University, Xanxere, Brazil
| | - Momal Sharif
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA.,Department of Obstetrics and Gynecology and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Huijing Wang
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA.,Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nicolai Bovin
- Shemyakin Institute of Bioorganic Chemistry, Moscow, Russia
| | - David J Miller
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA.
| |
Collapse
|
32
|
Dolebo AT, Khayatzadeh N, Melesse A, Wragg D, Rekik M, Haile A, Rischkowsky B, Rothschild MF, Mwacharo JM. Genome-wide scans identify known and novel regions associated with prolificacy and reproduction traits in a sub-Saharan African indigenous sheep (Ovis aries). Mamm Genome 2019; 30:339-352. [PMID: 31758253 PMCID: PMC6884434 DOI: 10.1007/s00335-019-09820-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/12/2019] [Indexed: 02/05/2023]
Abstract
Maximizing the number of offspring born per female is a key functionality trait in commercial- and/or subsistence-oriented livestock enterprises. Although the number of offspring born is closely associated with female fertility and reproductive success, the genetic control of these traits remains poorly understood in sub-Saharan Africa livestock. Using selection signature analysis performed on Ovine HD BeadChip data from the prolific Bonga sheep in Ethiopia, 41 candidate regions under selection were identified. The analysis revealed one strong selection signature on a candidate region on chromosome X spanning BMP15, suggesting this to be the primary candidate prolificacy gene in the breed. The analysis also identified several candidate regions spanning genes not reported before in prolific sheep but underlying fertility and reproduction in other species. The genes associated with female reproduction traits included SPOCK1 (age at first oestrus), GPR173 (mediator of ovarian cyclicity), HB-EGF (signalling early pregnancy success) and SMARCAL1 and HMGN3a (regulate gene expression during embryogenesis). The genes involved in male reproduction were FOXJ1 (sperm function and successful fertilization) and NME5 (spermatogenesis). We also observed genes such as PKD2L2, MAGED1 and KDM3B, which have been associated with diverse fertility traits in both sexes of other species. The results confirm the complexity of the genetic mechanisms underlying reproduction while suggesting that prolificacy in the Bonga sheep, and possibly African indigenous sheep is partly under the control of BMP15 while other genes that enhance male and female fertility are essential for reproductive fitness.
Collapse
Affiliation(s)
- Asrat Tera Dolebo
- Southern Agricultural Research Institute (SARI), P.O. Box 06, Hawassa, Ethiopia
- Department of Animal and Range Sciences, Hawassa University, P.O Box 5, Hawassa, Ethiopia
| | - Negar Khayatzadeh
- Department of Sustainable Agricultural Systems, Division of Livestock Sciences, University of Natural Resources and Life Sciences (BOKU), Gregor-Mendel-Strasse, 1180, Vienna, Austria
| | - Aberra Melesse
- Department of Animal and Range Sciences, Hawassa University, P.O Box 5, Hawassa, Ethiopia
| | - David Wragg
- Centre for Tropical Livestock Genetics and Health, The Roslin Institute, Edinburgh, UK
| | - Mourad Rekik
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 5689, Addis Ababa, Ethiopia
| | - Aynalem Haile
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 5689, Addis Ababa, Ethiopia
| | - Barbara Rischkowsky
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 5689, Addis Ababa, Ethiopia
| | - Max F Rothschild
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011-3150, USA
| | - Joram M Mwacharo
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 5689, Addis Ababa, Ethiopia.
| |
Collapse
|
33
|
Gonella-Diaza AM, Silveira Mesquita F, Lopes E, Ribeiro da Silva K, Cogliati B, De Francisco Strefezzi R, Binelli M. Sex steroids drive the remodeling of oviductal extracellular matrix in cattle. Biol Reprod 2019; 99:590-599. [PMID: 29659700 DOI: 10.1093/biolre/ioy083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/04/2018] [Indexed: 12/27/2022] Open
Abstract
The extracellular matrix (ECM) is a group of molecules that offer structural and biochemical support to cells and interact with them to regulate their function. Also, growth factors (GFs) stored in the ECM can be locally released during ECM remodeling. Here, we hypothesize that the balance between ECM components and remodelers is regulated according to the ovarian steroid milieu to which the oviduct is exposed during the periovulatory period. Follicular growth was manipulated to generate cows that ovulated small follicles (SF-small corpus luteum [SCL]; n = 20) or large follicles (LF-large corpus luteum [LCL]; n = 21) and possess corresponding Estradiol (E2) and Progesterone (P4) plasmatic concentrations. Ampulla and isthmus samples were collected on day 4 (day 0 = ovulation induction) and immediately frozen or fixed. The transcriptional profile (n = 3/group) was evaluated by RNA sequencing. MMP Antibody Array was used to quantify ECM remodelers' protein abundance and immunohistochemistry to quantify type I collagen. Transcriptome analysis revealed the over-representation of ECM organization and remodeling pathways in the LF-LCL group. Transcription of ECM components (collagens), remodelers (ADAMs and MMPs), and related GFs were upregulated in LF-LCL. Protein intensities for MMP3, MMP8, MMP9, MMP13, and TIMP4 were greater for the LF-LCL group. Type I collagen content in the mucosa was greater in SF-SCL group. In conclusion, that the earlier and more intense exposure to E2 and P4 during the periovulatory period in LF-LCL animals stimulates ECM remodeling. We speculate that differential ECM regulation may contribute to oviductal receptivity to the embryo.
Collapse
Affiliation(s)
- Angela Maria Gonella-Diaza
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | | | - Everton Lopes
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Kauê Ribeiro da Silva
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Bruno Cogliati
- Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Mario Binelli
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
34
|
Zhang YS, Du YC, Sun LR, Wang XH, Liu SB, Xi JF, Li CC, Ying RW, Jiang S, Wang XZ, Shen H, Jia B. A genetic method for sex determination in Ovis spp. by interruption of the zinc finger protein, Y-linked (ZFY) gene on the Y chromosome. Reprod Fertil Dev 2019; 30:1161-1168. [PMID: 29505743 DOI: 10.1071/rd17339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 01/02/2018] [Indexed: 01/07/2023] Open
Abstract
The mammalian Y chromosome plays a critical role in spermatogenesis. However, the exact functions of each gene on the Y chromosome have not been completely elucidated, due, in part, to difficulties in gene targeting analysis of the Y chromosome. The zinc finger protein, Y-linked (ZFY) gene was first proposed to be a sex determination factor, although its function in spermatogenesis has recently been elucidated. Nevertheless, ZFY gene targeting analysis has not been performed to date. In the present study, RNA interference (RNAi) was used to generate ZFY-interrupted Hu sheep by injecting short hairpin RNA (shRNA) into round spermatids. The resulting spermatozoa exhibited abnormal sperm morphology, including spermatozoa without tails and others with head and tail abnormalities. Quantitative real-time polymerase chain reaction analysis showed that ZFY mRNA expression was decreased significantly in Hu sheep with interrupted ZFY compared with wild-type Hu sheep. The sex ratio of lambs also exhibited a bias towards females. Together, the experimental strategy and findings of the present study reveal that ZFY also functions in spermatogenesis in Hu sheep and facilitate the use of RNAi in the control of sex in Hu sheep.
Collapse
Affiliation(s)
- Yong Sheng Zhang
- College of Animal Science and Technology, Shihezi University, The Xinjiang Uygur Autonomous Region, China
| | - Ying Chun Du
- The Aquatic Wildlife Rescue and Conservation Center, Beijing, China
| | - Li Rong Sun
- Tongliao City Quality and Safety Centre of Agricultural and Livestock, Tongliao, China
| | - Xu Hai Wang
- College of Animal Science and Technology, Shihezi University, The Xinjiang Uygur Autonomous Region, China
| | - Shuai Bing Liu
- Nanhu District of Jiaxing City Animal Husbandry and Veterinary Bureau, Jiaxing, China
| | - Ji Feng Xi
- College of Animal Science and Technology, Shihezi University, The Xinjiang Uygur Autonomous Region, China
| | - Chao Cheng Li
- College of Animal Science and Technology, Shihezi University, The Xinjiang Uygur Autonomous Region, China
| | - Rui Wen Ying
- College of Animal Science and Technology, Shihezi University, The Xinjiang Uygur Autonomous Region, China
| | - Song Jiang
- College of Animal Science and Technology, Shihezi University, The Xinjiang Uygur Autonomous Region, China
| | - Xiang Zu Wang
- College of Animal Science and Technology, Shihezi University, The Xinjiang Uygur Autonomous Region, China
| | - Hong Shen
- College of Animal Science and Technology, Shihezi University, The Xinjiang Uygur Autonomous Region, China
| | - Bin Jia
- College of Animal Science and Technology, Shihezi University, The Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
35
|
Martins ACL, Vaz MA, Macedo MM, Santos RL, Galdino CAB, Wenceslau RR, Valle GR. Maternal age, paternal age, and litter size interact to affect the offspring sex ratio of German Shepherd dogs. Theriogenology 2019; 135:169-173. [DOI: 10.1016/j.theriogenology.2019.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/25/2019] [Accepted: 06/11/2019] [Indexed: 11/25/2022]
|
36
|
Raval NP, Shah TM, George LB, Joshi CG. Effect of the pH in the enrichment of X or Y sex chromosome-bearing sperm in bovine. Vet World 2019; 12:1299-1303. [PMID: 31641311 PMCID: PMC6755399 DOI: 10.14202/vetworld.2019.1299-1303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/05/2019] [Indexed: 12/26/2022] Open
Abstract
Background and Aim: Studies have shown that the pH of the vagina during the course of fertilization may influence the migration of X- and Y-bearing spermatozoa and thus leading to skewness in the sex of the offspring. Hence, this study was carried out to check the effect of the pH in the enrichment of X or Y sex chromosome-bearing sperm in bovine (Bos indicus). Materials and Methods: To check the effect of pH in the enrichment of X or Y sex chromosome-bearing sperm in bovine, we used buffers of various pH ranging from 5.5 to 9.0 for swim-up procedure of sperm sample and collected upper and bottom fraction from the same buffer and checked the abundance of X- and Y-bearing spermatozoa by droplet digital polymerase chain reaction using X- and Y-chromosome-specific DNA probe. Results: The abundance of X- and Y-bearing spermatozoa was not differed significantly in either of the fraction collected. Conclusion: Thus, it appears to be unlikely that an immediate impact of pH on sperm can be a solitary impact on the sex of offspring in bovine.
Collapse
Affiliation(s)
- Nidhi P Raval
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India.,Department of Zoology, Biomedical Technology and Human Genetics, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Tejas M Shah
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India
| | - Linz-Buoy George
- Department of Zoology, Biomedical Technology and Human Genetics, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Chaitanya G Joshi
- Gujarat Biotechnology Research Centre, Block B and D, 6 Floor, MS Building, Sector - 11, Gandhinagar, Gujarat, India
| |
Collapse
|
37
|
Lavoie MD, Tedeschi JN, Garcia‐Gonzalez F, Firman RC. Exposure to male-dominated environments during development influences sperm sex ratios at sexual maturity. Evol Lett 2019; 3:392-402. [PMID: 31388448 PMCID: PMC6675145 DOI: 10.1002/evl3.123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/15/2019] [Accepted: 05/21/2019] [Indexed: 11/18/2022] Open
Abstract
Different stages during development are important when it comes to phenotypic adjustments in response to external stimuli. Critical stages in mammals are the prenatal phase, where embryos are exposed to a milieu of sex steroid hormones, and the early-postnatal phase, where littermates interact and experience their incipient social environment. Further, the postmaternal environment will influence the development of traits that are linked to reproductive success in adulthood. Accumulated evidence of male-driven sex allocation establishes the currently untested hypothesis that the sperm sex ratio is a plastic trait that can be mediated to align with prevailing social conditions. Here, we used natural variation in the maternal environment and experimentally manipulated the postmaternal environment to identify the importance of these developmental phases on sperm sex ratio adjustments in wild house mice (Mus musculus domesticus). We found that male density in both environments was predictive of sperm sex ratios at sexual maturity: males from more male-biased litters and males maturing under high male density produced elevated levels of Y-chromosome-bearing sperm. Our findings indicate that the sperm sex ratio is a variable phenotypic trait that responds to the external environment, and highlight the potential that these adjustments function as a mechanism of male-driven sex allocation.
Collapse
Affiliation(s)
- Misha D. Lavoie
- School of Biological Sciences (M092), Centre for Evolutionary BiologyThe University of Western AustraliaCrawleyWA6009Australia
| | - Jamie N. Tedeschi
- School of Biological Sciences (M092), Centre for Evolutionary BiologyThe University of Western AustraliaCrawleyWA6009Australia
| | - Francisco Garcia‐Gonzalez
- School of Biological Sciences (M092), Centre for Evolutionary BiologyThe University of Western AustraliaCrawleyWA6009Australia
- Estacion Biológica de DoñanaCSICSevillaSpain
| | - Renée C. Firman
- School of Biological Sciences (M092), Centre for Evolutionary BiologyThe University of Western AustraliaCrawleyWA6009Australia
| |
Collapse
|
38
|
Almiñana C, Bauersachs S. Extracellular Vesicles in the Oviduct: Progress, Challenges and Implications for the Reproductive Success. Bioengineering (Basel) 2019; 6:bioengineering6020032. [PMID: 31013857 PMCID: PMC6632016 DOI: 10.3390/bioengineering6020032] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 12/11/2022] Open
Abstract
The oviduct is the anatomical part of the female reproductive tract where the early reproductive events take place, from gamete transport, fertilization and early embryo development to the delivery of a competent embryo to the uterus, which can implant and develop to term. The success of all these events rely upon a two-way dialogue between the oviduct (lining epithelium and secretions) and the gametes/embryo(s). Recently, extracellular vesicles (EVs) have been identified as major components of oviductal secretions and pointed to as mediators of the gamete/embryo-maternal interactions. EVs, comprising exosomes and microvesicles, have emerged as important agents of cell-to-cell communication by the transfer of biomolecules (i.e., mRNAs, miRNAs, proteins) that can modulate the activities of recipient cells. Here, we provide the current knowledge of EVs in the oviductal environment, from isolation to characterization, and a description of the EVs molecular content and associated functional aspects in different species. The potential role of oviductal EVs (oEVs) as modulators of gamete/embryo-oviduct interactions and their implications in the success of early reproductive events is addressed. Lastly, we discuss current challenges and future directions towards the potential application of oEVs as therapeutic vectors to improve pregnancy disorders, infertility problems and increase the success of assisted reproductive technologies.
Collapse
Affiliation(s)
- Carmen Almiñana
- Genetics and Functional Genomics Group, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland.
- UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, 37380 Nouzilly, France.
| | - Stefan Bauersachs
- Genetics and Functional Genomics Group, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
39
|
Locatelli Y, Forde N, Blum H, Graf A, Piégu B, Mermillod P, Wolf E, Lonergan P, Saint-Dizier M. Relative effects of location relative to the corpus luteum and lactation on the transcriptome of the bovine oviduct epithelium. BMC Genomics 2019; 20:233. [PMID: 30898106 PMCID: PMC6427878 DOI: 10.1186/s12864-019-5616-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 03/14/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Lactation and associated metabolic stresses during the post-partum period have been shown to impair fertility in dairy cows. The oviduct plays key roles in embryo development and the establishment of pregnancy in cattle. The aim of this study was to investigate the effects of lactation and location relative to the corpus luteum (CL) on the transcriptome of the bovine oviduct epithelium. RESULTS An original animal model was used. At 60 days post-partum, Holstein lactating (n = 4) and non-lactating (i.e. never milked after calving; n = 5) cows, as well as control nulliparous heifers (n = 5), were slaughtered on Day 3 following induced estrus, and epithelial samples from the oviductal ampulla and isthmus ipsilateral and contralateral to the corpus luteum (CL) were recovered for RNA sequencing. In the oviduct ipsilateral to the CL, differentially expressed genes (DEGs) were identified between heifers compared with both postpartum cow groups. However, only 15 DEGs were identified between post-partum lactating and non-lactating cows in the ipsilateral isthmus and none were identified in the ipsilateral ampulla. In contrast, 192 and 2583 DEGs were identified between ipsilateral and contralateral ampulla and isthmus, respectively. In both regions, more DEGs were identified between ipsilateral and contralateral oviducts in non-lactating cows and heifers than in lactating cows. Functional annotation of the DEGs associated with comparisons between metabolic groups highlighted a number of over-represented biological functions and cell pathways including immune response and cholesterol/steroid biosynthesis. CONCLUSIONS Gene expression in the oviduct epithelium, particularly in the isthmus, was more affected by the location relative to the CL than by lactation at Day 3 post-estrus. Furthermore, the effect of the proximity to the CL was modulated by the metabolic status of the cow.
Collapse
Affiliation(s)
- Yann Locatelli
- UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, Nouzilly, France
- MNHN, Laboratoire de la Réserve Zoologique de la Haute Touche, Obterre, France
| | - Niamh Forde
- Division of Reproduction and Early Development, Faculty of Medicine and Health Sciences, University of Leeds, Nouzilly, UK
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Leeds, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Leeds, Germany
| | - Benoît Piégu
- UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, Nouzilly, France
| | - Pascal Mermillod
- UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, Nouzilly, France
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Leeds, Germany
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Marie Saint-Dizier
- UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, Nouzilly, France
- Université de Tours, UFR Sciences et Techniques, Parc de Grandmont, F-37200 Tours, France
| |
Collapse
|
40
|
Valverde A, Arnau S, García-Molina A, Bompart D, Campos M, Roldán ERS, Soler C. Dog sperm swimming parameters analysed by computer-assisted semen analysis of motility reveal major breed differences. Reprod Domest Anim 2019; 54:795-803. [PMID: 30801867 DOI: 10.1111/rda.13420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/18/2019] [Indexed: 11/26/2022]
Abstract
Dogs have undergone an intensive artificial selection process ever since the beginning of their relationship with humans. As a consequence, a wide variety of well-defined breeds exist today. Due to the enormous variation in dog phenotypes and the unlikely chance of gene exchange between them, the question arises as to whether they should still be regarded as a single species or, perhaps, they be considered as different taxa that possess different reproductive traits. The aim of this study was therefore to characterize some male reproductive traits, focusing on kinematic characteristics of dog spermatozoa from several breeds. Thirty-seven dogs from the following breeds were used: Staffordshire Bull Terrier, Labrador Retriever, Spanish Mastiff, Valencian Rat Hunting Dog, British Bulldog and Chihuahua. Semen samples were obtained via manual stimulation and diluted to a final sperm concentration of 50 million/ml, and they were subsequently analysed by the computer assisted semen analysis (CASA-Mot) ISAS® v1 system. Eight kinematic parameters were evaluated automatically. All parameters showed significant different values among breeds and among individuals within each breed. The fastest sperm cells were those of Staffordshire Bull Terriers and the slowest were recorded in Chihuahuas. The intra-male coefficient of variation (CV) was higher than the inter-male CV for all breeds with the Staffordshire Bull Terrier showing the lowest values. When taking into consideration the cells by animal and breed, discriminant analyses showed a high capability to predict the breed. Cluster analyses showed a hierarchical classification very close to that obtained after phylogenetic studies with genome markers. In conclusion, future workers on dog spermatozoa should bear in mind major differences between breeds and realize that results cannot be extrapolated from one to another. Because sperm characteristics are associated with breed diversity, dogs may represent a good model to examine changes in reproductive parameters associated with selection processes.
Collapse
Affiliation(s)
- Anthony Valverde
- School of Agronomy, Costa Rica Institute of Technology, Alajuela, Costa Rica.,Department of Cellular Biology, Functional Biology and Physical Anthropology, University of Valencia, Burjassot, Spain
| | - Sandra Arnau
- Department of Cellular Biology, Functional Biology and Physical Anthropology, University of Valencia, Burjassot, Spain
| | | | - Daznia Bompart
- R+D Department, Proiser R+D, S.L., University of Valencia, Paterna, Spain
| | - Marcos Campos
- Department of Medicine and Animal Surgery, University Cardenal-Herrera-CEU, Valencia, Spain.,Global Veterinaria (Reprovalcan), València, Spain.,Clínica Veterinaria Sangüeso, València, Spain
| | - Eduardo Raúl S Roldán
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Carles Soler
- Department of Cellular Biology, Functional Biology and Physical Anthropology, University of Valencia, Burjassot, Spain.,R+D Department, Proiser R+D, S.L., University of Valencia, Paterna, Spain
| |
Collapse
|
41
|
Expression of Immune Regulatory Genes in the Porcine Internal Genital Tract Is Differentially Triggered by Spermatozoa and Seminal Plasma. Int J Mol Sci 2019; 20:ijms20030513. [PMID: 30691059 PMCID: PMC6387272 DOI: 10.3390/ijms20030513] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 01/08/2023] Open
Abstract
Mating or cervical deposition of spermatozoa or seminal plasma (SP) modifies the expression of genes affecting local immune defense processes at the oviductal sperm reservoir in animals with internal fertilization, frequently by down-regulation. Such responses may occur alongside sperm transport to or even beyond the reservoir. Here, immune-related gene expression was explored with cDNA microarrays on porcine cervix-to-infundibulum tissues, pre-/peri-ovulation. Samples were collected 24 h post-mating or cervical deposition of sperm-peak spermatozoa or SP (from the sperm-peak fraction or the whole ejaculate). All treatments of this interventional study affected gene expression. The concerted action of spermatozoa and SP down-regulated chemokine and cytokine (P00031), interferon-gamma signaling (P00035), and JAK/STAT (P00038) pathways in segments up to the sperm reservoir (utero-tubal junction (UTJ)/isthmus). Spermatozoa in the vanguard sperm-peak fraction (P1-AI), uniquely displayed an up-regulatory effect on these pathways in the ampulla and infundibulum. Sperm-free SP, on the other hand, did not lead to major effects on gene expression, despite the clinical notion that SP mitigates reactivity by the female immune system after mating or artificial insemination.
Collapse
|
42
|
Abstract
Who is the determining factor for the sex of the offspring—mother, father, or both parents? This fundamental hypothesis proposes a new model of sex determination, challenging the existing dogma that the male Y chromosome of the father is the sole determinant of the sex of the offspring. According to modern science, the 3 X chromosomes (male XY and female XX) are assumed to be similar, and the sex of the offspring is determined after the zygote is formed. In contrast to this, the new hypothesis based on theoretical research proposes that the 3 X chromosomes can be differentiated, based on the presence of Barr bodies. The first X in female XX chromosomes and X in male XY chromosomes are similar as they lack Barr body and are hereby denoted as ‘X’ and referred to as ancestral chromosomes. The second X chromosome in the female cells which is a Barr body, denoted as X, is different. This X chromosome along with the Y chromosome are referred to as parental chromosomes. Sperm with a Y chromosome can only fuse with an ovum containing the ‘X’ chromosome. Similarly, sperm with the ‘X’ chromosome can only fuse with an ovum containing the X chromosome. Cell biology models of gametogenesis and fertilization were simulated with the new hypothesis model and assessed. Only chromosomes that participated in recombination could unite to form the zygote. This resulted in a paradigm shift in our understanding of sex determination, as both parents were found to be equally responsible for determining the sex of the offspring. The gender of the offspring is determined during the prezygotic stage itself and is dependent on natural selection. A new dimension has been given to inheritance of chromosomes. This new model also presents a new nomenclature for pedigree charts. This work of serendipity may contribute to future research in cell biology, gender studies, genome analysis, and genetic disorders including cancer.
Collapse
|
43
|
Dixson A. Copulatory and Postcopulatory Sexual Selection in Primates. Folia Primatol (Basel) 2018; 89:258-286. [DOI: 10.1159/000488105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/04/2018] [Indexed: 12/24/2022]
|
44
|
Kim JM, Park JE, Yoo I, Han J, Kim N, Lim WJ, Cho ES, Choi B, Choi S, Kim TH, Te Pas MFW, Ka H, Lee KT. Integrated transcriptomes throughout swine oestrous cycle reveal dynamic changes in reproductive tissues interacting networks. Sci Rep 2018; 8:5436. [PMID: 29615657 PMCID: PMC5882957 DOI: 10.1038/s41598-018-23655-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 03/12/2018] [Indexed: 12/22/2022] Open
Abstract
Female fertility is a highly regulated process involving the synchronized activities of multiple tissues. The underlying genomic regulation of the tissue synchronization is poorly understood. To understand this better we investigated the transcriptomes of the porcine ovary, endometrium, and oviduct at days 0, 3, 6, 9, 12, 15, or 18 of the oestrous cycle. We analysed the transcriptome profiles of the individual tissues and focus on the bridging genes shared by two or more tissues. The three tissue-networks were connected forming a triangular shape. We identified 65 bridging genes with a high level of connectivity to all other genes in the network. The expression levels showed negative correlations between the ovary and the other two tissues, and low correlations between endometrium and oviduct. The main functional annotations involved biosynthesis of steroid hormones, cell-to-cell adhesion, and cell apoptosis, suggesting that regulation of steroid hormone synthesis and tissue viability are major regulatory mechanisms.
Collapse
Affiliation(s)
- Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Jong-Eun Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Inkyu Yoo
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Jisoo Han
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Namshin Kim
- Personalized Genomic Medicine Research Center Genome Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Won-Jun Lim
- Personalized Genomic Medicine Research Center Genome Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Eun-Seok Cho
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Bonghwan Choi
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Sunho Choi
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Tae-Hun Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Marinus F W Te Pas
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.,Animal Breeding and Genomics, Wageningen UR Livestock Research, 6700AH, Wageningen, The Netherlands
| | - Hakhyun Ka
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea.
| | - Kyung-Tai Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Republic of Korea.
| |
Collapse
|
45
|
Abstract
Millions or billions of sperm are deposited by artificial insemination or natural mating into the cow reproductive tract but only a few arrive at the site of fertilization and only one fertilizes an oocyte. The remarkable journey that successful sperm take to reach an oocyte is long and tortuous, and includes movement through viscous fluid, avoiding dead ends and hostile immune cells. The privileged collection of sperm that complete this journey must pass selection steps in the vagina, cervix, uterus, utero-tubal junction and oviduct. In many locations in the female reproductive tract, sperm interact with the epithelium and the luminal fluid, which can affect sperm motility and function. Sperm must also be tolerated by the immune system of the female for an adequate time to allow fertilization to occur. This review emphasizes literature about cattle but also includes work in other species that emphasizes critical broad concepts. Although all parts of the female reproductive tract are reviewed, particular attention is given to the sperm destination, the oviduct.
Collapse
|
46
|
Firman RC. Postmating sexual conflict and female control over fertilization during gamete interaction. Ann N Y Acad Sci 2018. [DOI: 10.1111/nyas.13635] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Renée C. Firman
- Centre for Evolutionary Biology University of Western Australia Western Australia Australia
| |
Collapse
|
47
|
Bae J, Kim S, Chen Z, Eisenberg ML, Buck Louis GM. Human semen quality and the secondary sex ratio. Asian J Androl 2018; 19:374-381. [PMID: 26975484 PMCID: PMC5427797 DOI: 10.4103/1008-682x.173445] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to evaluate the association between semen quality and the secondary sex ratio (SSR), defined as the ratio of male to female live births. Our study cohort comprised 227 male partners who were enrolled prior to conception in Michigan and Texas between 2005 and 2009, and prospectively followed through delivery of a singleton birth. The male partners provided a baseline and a follow-up semen sample a month apart. Semen analysis was conducted to assess 27 parameters including five general characteristics, six sperm head measures, 14 morphology measures, and two sperm chromatin stability assay measures. Modified Poisson regression models with a robust error variance were used to estimate the relative risk (RR) and 95% confidence interval (95% CI) of a male birth for each semen parameter, after adjusting for potential confounders. Of the 27 semen parameters, only the percentage of bicephalic sperm was significantly associated with the SSR (2ndvs 1st quartile, RR, 0.65, 95% CI, 0.45–0.95, P = 0.03; 4thvs 1st quartile, RR, 0.61, 95% CI, 0.38–1.00, P < 0.05 before rounding to two decimal places), suggestive of a higher percentage of bicephalic sperm being associated with an excess of female births. Given the exploratory design of the present study, this preconception cohort study suggests no clear signal that human semen quality is associated with offspring sex determination.
Collapse
Affiliation(s)
- Jisuk Bae
- Department of Preventive Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Korea.,Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20852, USA
| | - Sungduk Kim
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20852, USA
| | - Zhen Chen
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20852, USA
| | - Michael L Eisenberg
- Department of Urology, Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305-5118, USA
| | - Germaine M Buck Louis
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
48
|
Do Gametes Woo? Evidence for Their Nonrandom Union at Fertilization. Genetics 2018; 207:369-387. [PMID: 28978771 DOI: 10.1534/genetics.117.300109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/10/2017] [Indexed: 12/18/2022] Open
Abstract
A fundamental tenet of inheritance in sexually reproducing organisms such as humans and laboratory mice is that gametes combine randomly at fertilization, thereby ensuring a balanced and statistically predictable representation of inherited variants in each generation. This principle is encapsulated in Mendel's First Law. But exceptions are known. With transmission ratio distortion, particular alleles are preferentially transmitted to offspring. Preferential transmission usually occurs in one sex but not both, and is not known to require interactions between gametes at fertilization. A reanalysis of our published work in mice and of data in other published reports revealed instances where any of 12 mutant genes biases fertilization, with either too many or too few heterozygotes and homozygotes, depending on the mutant gene and on dietary conditions. Although such deviations are usually attributed to embryonic lethality of the underrepresented genotypes, the evidence is more consistent with genetically-determined preferences for specific combinations of egg and sperm at fertilization that result in genotype bias without embryo loss. This unexpected discovery of genetically-biased fertilization could yield insights about the molecular and cellular interactions between sperm and egg at fertilization, with implications for our understanding of inheritance, reproduction, population genetics, and medical genetics.
Collapse
|
49
|
Binelli M, Gonella-Diaza AM, Mesquita FS, Membrive CMB. Sex Steroid-Mediated Control of Oviductal Function in Cattle. BIOLOGY 2018; 7:E15. [PMID: 29393864 PMCID: PMC5872041 DOI: 10.3390/biology7010015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/10/2018] [Accepted: 01/29/2018] [Indexed: 12/21/2022]
Abstract
In cattle, the oviduct is a tubular organ that connects the ovary and the uterus. The oviduct lumen stages a dynamic set of cellular and molecular interactions to fulfill the noble role of generating a new individual. Specific anatomical niches along the oviduct lumen provide the appropriate microenvironment for final sperm capacitation, oocyte capture and fertilization, and early embryo development and transport. To accomplish such complex tasks, the oviduct undergoes spatially and temporally-regulated morphological, biochemical, and physiological changes that are associated with endocrine events of the estrous cycle. Specifically, elevated periovulatory concentrations of estradiol (E2) and progesterone (P4) influence gene expression and morphological changes that have been associated positively to fertility in beef cattle. In this review, we explore how E2 and P4 influence oviductal function in the beginning of the estrous cycle, and prepare the oviductal lumen for interactions with gametes and embryos.
Collapse
Affiliation(s)
- Mario Binelli
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, FL 32611, USA.
| | - Angela Maria Gonella-Diaza
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Rua Duque de Caxias Norte, 255, Bairro: Jardim Elite, Pirassununga 13635-900, SP, Brazil.
| | - Fernando Silveira Mesquita
- Curso de Medicina Veterinária, Universidade Federal do Pampa, UNIPAMPA, BR 472-Km 592, Uruguaiana 97508-000, RS, Brazil.
| | - Claudia Maria Bertan Membrive
- Faculdade de Ciências Agrárias Tecnológicas-FCAT, Universidade Estadual Paulista "Júlio de Mesquita", Rodovia Comandante João Ribeiro de Barros (SP 294), Km 651, Dracena 17900-000, SP, Brazil.
| |
Collapse
|
50
|
Bae J, Kim S, Barr DB, Buck Louis GM. Maternal and paternal serum concentrations of persistent organic pollutants and the secondary sex ratio: A population-based preconception cohort study. ENVIRONMENTAL RESEARCH 2018; 161:9-16. [PMID: 29096317 PMCID: PMC5747985 DOI: 10.1016/j.envres.2017.10.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 05/24/2023]
Abstract
Recent declines in the secondary sex ratio (SSR), defined as the ratio of males to females at birth, in some industrialized countries may be attributed to exposure to environmental toxicants such as persistent organic pollutants (POPs). This study aimed to evaluate the association of couples' preconception exposure to POPs with the SSR. The study cohort comprised 235 couples who were enrolled in the Longitudinal Investigation of Fertility and the Environment (LIFE) Study between 2005 and 2009 prior to conception and prospectively followed through delivery of a singleton birth. Upon enrollment, couples' serum concentrations (ng/g) were measured for 9 organochlorine pesticides, 1 polybrominated biphenyl, 10 polybrominated diphenyl ethers, and 36 polychlorinated biphenyls (PCBs). Birth outcome data including infant sex were collected upon delivery. Modified Poisson regression models were used to estimate the relative risks (RRs) and 95% confidence intervals (CIs) of a male birth for each chemical. Of the 56 POPs examined, maternal PCB 128 and paternal hexachlorobenzene were significantly associated with a female excess (RRs, 0.75 [95% CI, 0.60-0.94] and 0.81 [95% CI, 0.68-0.97] per 1SD increase in log-transformed serum chemical concentrations, respectively), whereas maternal mirex and paternal PCB 128 and p,p'-dichlorodiphenyldichloroethylene were significantly associated with a male excess (RR range, 1.10-1.22 per 1SD increase in log-transformed serum chemical concentrations). After adjusting for multiple comparisons, only maternal mirex remained significantly associated with the SSR. This exploratory study on multiple classes of POPs demonstrated no conclusive evidence on the association between parental preconception exposure to POPs and the SSR.
Collapse
Affiliation(s)
- Jisuk Bae
- Department of Preventive Medicine, Catholic University of Daegu School of Medicine, 33 Duryugongwon-ro 17-gil Nam-gu, Daegu 42472, Republic of Korea.
| | - Sungduk Kim
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Bethesda, MD 20817, USA; Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, MD 20892, USA.
| | - Dana Boyd Barr
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA.
| | - Germaine M Buck Louis
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Bethesda, MD 20817, USA.
| |
Collapse
|