1
|
Khan F, Khan S, Rana N, Rahim T, Arshad A, Khan I, Ogaly HA, Ahmed DAEM, Dera AA, Zaib S. Mutational analysis of consanguineous families and their targeted therapy against dwarfism. J Biomol Struct Dyn 2024:1-18. [PMID: 38321911 DOI: 10.1080/07391102.2024.2307446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024]
Abstract
Dwarfism is a medical term used to describe individuals with a height-vertex measurement that falls below two standard deviations (-2SD) or the third percentile for their gender and age. Normal development of growth is a complicated dynamic procedure that depends upon the coordination of different aspects involving diet, genetics, and biological aspects like hormones in equilibrium. Any severe or acute pathologic procedure may disturb the individual's normal rate of growth. In this research, we examined four (A-D) Pakistani consanguineous families that exhibited syndromic dwarfism, which was inherited in an autosomal recessive pattern. The genomic DNA of each family member was extracted by using phenol-chloroform and Kit methods. Whole Exome Sequencing (WES) of affected family members (IV-11, III-5, IV-4 and III-13) from each group was performed at the Department of Medical Genetics, University of Antwerp, Belgium. After filtering the exome data, the mutations in PPM1F, FGFR3, ERCC2, and PCNT genes were determined by Sanger sequencing of each gene by using specific primers. Afterward, FGFR3 was found to be a suitable drug target among all the mutations to treat achondroplasia also known as disproportionate dwarfism. BioSolveIT softwares were used to discover the lead active inhibitory molecule against FGFR3. This research will not only provide short knowledge to the concerned pediatricians, researchers, and family physicians for the preliminary assessment and management of the disorder but also provide a lead inhibitor for the treatment of disproportionate dwarfism.
Collapse
Affiliation(s)
- Feroz Khan
- Department of Zoology Wild Life and Fishries, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Sarmir Khan
- Center of Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Nehal Rana
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Tariq Rahim
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Abida Arshad
- Department of Zoology Wild Life and Fishries, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Hanan A Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | | | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
2
|
Zhou W, Wang H, Yang Y, Guo F, Yu B, Su Z. Trophoblast Cell Subtypes and Dysfunction in the Placenta of Individuals with Preeclampsia Revealed by Single‑Cell RNA Sequencing. Mol Cells 2022; 45:317-328. [PMID: 35289305 PMCID: PMC9095508 DOI: 10.14348/molcells.2021.0211] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/13/2021] [Accepted: 11/16/2021] [Indexed: 12/03/2022] Open
Abstract
Trophoblasts, important functional cells in the placenta, play a critical role in maintaining placental function. The heterogeneity of trophoblasts has been reported, but little is known about the trophoblast subtypes and distinctive functions during preeclampsia (PE). In this study, we aimed to gain insight into the cell type-specific transcriptomic changes by performing unbiased single-cell RNA sequencing (scRNA-seq) of placental tissue samples, including those of patients diagnosed with PE and matched healthy controls. A total of 29,006 cells were identified in 11 cell types, including trophoblasts and immune cells, and the functions of the trophoblast subtypes in the PE group and the control group were also analyzed. As an important trophoblast subtype, extravillous trophoblasts (EVTs) were further divided into 4 subgroups, and their functions were preliminarily analyzed. We found that some biological processes related to pregnancy, hormone secretion and immunity changed in the PE group. We also identified and analyzed the regulatory network of transcription factors (TFs) identified in the EVTs, among which 3 modules were decreased in the PE group. Then, through in vitro cell experiments, we found that in one of the modules, CEBPB and GTF2B may be involved in EVT dysfunction in PE. In conclusion, our study showed the different transcriptional profiles and regulatory modules in trophoblasts between placentas in the control and PE groups at the single-cell level; these changes may be involved in the pathological process of PE, providing a new molecular theoretical basis for preeclamptic trophoblast dysfunction.
Collapse
Affiliation(s)
- Wenbo Zhou
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
- Changzhou Maternal and Child Health Care Hospital, Nanjing Medical University, Changzhou 213000, China
| | - Huiyan Wang
- Changzhou Maternal and Child Health Care Hospital, Nanjing Medical University, Changzhou 213000, China
| | - Yuqi Yang
- Changzhou Maternal and Child Health Care Hospital, Nanjing Medical University, Changzhou 213000, China
| | - Fang Guo
- Changzhou Maternal and Child Health Care Hospital, Nanjing Medical University, Changzhou 213000, China
| | - Bin Yu
- Changzhou Maternal and Child Health Care Hospital, Nanjing Medical University, Changzhou 213000, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Murase H, El-Sheikh Ali H, Ruby RE, Scoggin KE, Ball BA. Transcriptomic analysis of the chorioallantois in equine premature placental separation. Equine Vet J 2022; 55:405-418. [PMID: 35622344 DOI: 10.1111/evj.13602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/12/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Equine premature placental separation (PPS) is poorly understood and represents an important risk factor for fetal/neonatal hypoxia. OBJECTIVES To examine transcriptomic changes in the chorioallantois (CA) from mares with clinical PPS compared to the CA from normal foaling mares. Differential gene expression was determined and gene ontology as well as molecular pathways related to PPS were characterised. STUDY DESIGN Retrospective case: control study. METHODS CA were collected from Thoroughbred mares with a clinical history of PPS (n=33) and from control Thoroughbred mares (n=4) with normal parturition for examination of transcriptional changes in the placenta associated with PPS. Transcriptomic changes in the villous CA near the cervical star were determined by Illumina® sequencing and subsequent bioinformatic analysis. PPS samples were divided by k-means clustering, and differentially expressed genes (DEGs) in each PPS cluster were identified by comparing to controls. Shared DEGs between PPS clusters were used for gene ontology analysis and pathway analysis. RESULTS A total of 1204 DEGs were identified between PPS and control. Gene ontology revealed extracellular matrix (ECM) and cell adhesion, and pathway analysis revealed fatty acid, p-53, hypoxia, and inflammation. Eleven key regulator genes of PPS including growth factors (IGF1, TGFB2, TGFB3), transcription factors (HIF1A, JUNB, SMAD3), and transmembrane receptors (FGFR1, TNFRSF1A, TYROBP) were also identified. MAIN LIMITATIONS The use of clinical history of PPS, in the absence of other criteria, may have led to misidentification of some cases as PPS. CONCLUSIONS Transcriptomic analysis indicated that changes in ECM and cell adhesion were important factors in equine PPS. Key predicted upstream events include genes associated with hypoxia, inflammation and growth factors related to the pathogenesis of equine PPS.
Collapse
Affiliation(s)
- Harutaka Murase
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.,Equine Science Division, Hidaka Training and Research Center, Japan Racing Association, Urakawa, Hokkaido, Japan
| | - Hossam El-Sheikh Ali
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.,Faculty of Veterinary Medicine, Mansoura University, Egypt
| | - Rebecca E Ruby
- Veterinary Diagnostic Laboratory, University of Kentucky, Lexington, KY, USA
| | - Kirsten E Scoggin
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Barry A Ball
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
4
|
Moslehi R, Tsao HS, Zeinomar N, Stagnar C, Fitzpatrick S, Dzutsev A. Integrative genomic analysis implicates ERCC6 and its interaction with ERCC8 in susceptibility to breast cancer. Sci Rep 2020; 10:21276. [PMID: 33277540 PMCID: PMC7718875 DOI: 10.1038/s41598-020-77037-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Up to 30% of all breast cancer cases may be inherited and up to 85% of those may be due to segregation of susceptibility genes with low and moderate risk [odds ratios (OR) ≤ 3] for (mostly peri- and post-menopausal) breast cancer. The majority of low/moderate-risk genes, particularly those with minor allele frequencies (MAF) of < 30%, have not been identified and/or validated due to limitations of conventional association testing approaches, which include the agnostic nature of Genome Wide Association Studies (GWAS). To overcome these limitations, we used a hypothesis-driven integrative genomics approach to test the association of breast cancer with candidate genes by analyzing multi-omics data. Our candidate-gene association analyses of GWAS datasets suggested an increased risk of breast cancer with ERCC6 (main effect: 1.29 ≤ OR ≤ 2.91, 0.005 ≤ p ≤ 0.04, 11.8 ≤ MAF ≤ 40.9%), and implicated its interaction with ERCC8 (joint effect: 3.03 ≤ OR ≤ 5.31, 0.01 ≤ pinteraction ≤ 0.03). We found significant upregulation of ERCC6 (p = 7.95 × 10-6) and ERCC8 (p = 4.67 × 10-6) in breast cancer and similar frequencies of ERCC6 (1.8%) and ERCC8 (0.3%) mutations in breast tumors to known breast cancer susceptibility genes such as BLM (1.9%) and LSP1 (0.3%). Our integrative genomics approach suggests that ERCC6 may be a previously unreported low- to moderate-risk breast cancer susceptibility gene, which may also interact with ERCC8.
Collapse
Affiliation(s)
- Roxana Moslehi
- School of Public Health, Cancer Research Center, University at Albany, State University of New York (SUNY), Albany, NY, 12144, USA.
| | - Hui-Shien Tsao
- School of Public Health, Cancer Research Center, University at Albany, State University of New York (SUNY), Albany, NY, 12144, USA
- New York State Office of Children and Family Services, New York, USA
| | - Nur Zeinomar
- School of Public Health, Cancer Research Center, University at Albany, State University of New York (SUNY), Albany, NY, 12144, USA
- Mailman School of Public Health, Columbia University, New York, USA
| | - Cristy Stagnar
- School of Public Health, Cancer Research Center, University at Albany, State University of New York (SUNY), Albany, NY, 12144, USA
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, USA
| | - Sean Fitzpatrick
- School of Public Health, Cancer Research Center, University at Albany, State University of New York (SUNY), Albany, NY, 12144, USA
| | - Amiran Dzutsev
- Cancer Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Kwiatkowski F, Perthus I, Uhrhammer N, Francannet C, Arbre M, Bidet Y, Bignon YJ. Association between hereditary predisposition to common cancers and congenital multimalformations. Congenit Anom (Kyoto) 2020; 60:22-31. [PMID: 30785647 PMCID: PMC6973007 DOI: 10.1111/cga.12329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/28/2018] [Accepted: 02/17/2019] [Indexed: 12/12/2022]
Abstract
In a previous article we reported that mutations favoring cancer at adulthood seemed to improve fertility and limit miscarriages. Because spontaneous abortion may result from anomalies in embryo, we questioned if an increased frequency of congenital malformation could be evidenced among cancer-prone families. Oncogenetics database (≈193 000 members) of the comprehensive cancer center Jean Perrin was crossed with regional registry of congenital malformations (≈10 000). Among children born between 1986 and 2011, 176 children with malformation matched in both databases. In breast/ovaries cancer-prone families, the risk for malformations was multiplied by 2.4 [1.2-4.5] in case of a BRCA1 mutation. Frequencies of malformation in BRCA2 and MMR mutated families were similar to families without a cancer syndrome. In comparison to malformations concerning a unique anatomical system, multimalformations were significantly more frequent in case of BRCA or MMR mutations: compared to families without cancer syndrome, the risk of multimalformations was multiplied by 4.1 [0.8-21.7] for cancer-prone families but with no known deleterious mutation, by 6.9 [1.2-38.6] in families with a known mutation but an unknown parental mutational status and by 10.4 [2.3-46.0] when one parent carried the familial mutation. No association with the type of anatomical system was found, nor with multiple births. These results suggest that BRCA and MMR genes play an important role in human embryogenesis and that if their function is lowered because of heterozygote mutations, congenital malformations are either more likely (BRCA1 mutations) and/or more susceptible to concern several anatomical systems.
Collapse
Affiliation(s)
- Fabrice Kwiatkowski
- Oncogenetics Department, Centre Jean Perri (Comprehensive Cancer Center), Clermont-Ferrand, France.,Laboratory of Mathematics: Probabilities and Applied Statistics, Clermont-Auvergne University, Clermont-Ferrand, France
| | - Isabelle Perthus
- Medical Genetics Department, Study Center of Congenital Malformations in Auvergne (Centre d'Etude des Malformations Congénitales en Auvergne), Clermont-Ferrand, France
| | - Nancy Uhrhammer
- Oncogenetics Department, Centre Jean Perri (Comprehensive Cancer Center), Clermont-Ferrand, France
| | - Christine Francannet
- Medical Genetics Department, Study Center of Congenital Malformations in Auvergne (Centre d'Etude des Malformations Congénitales en Auvergne), Clermont-Ferrand, France
| | - Marie Arbre
- Oncogenetics Department, Centre Jean Perri (Comprehensive Cancer Center), Clermont-Ferrand, France
| | - Yannick Bidet
- Oncogenetics Department, Centre Jean Perri (Comprehensive Cancer Center), Clermont-Ferrand, France
| | - Yves-Jean Bignon
- Oncogenetics Department, Centre Jean Perri (Comprehensive Cancer Center), Clermont-Ferrand, France
| |
Collapse
|
6
|
Sandgren JA, Deng G, Linggonegoro DW, Scroggins SM, Perschbacher KJ, Nair AR, Nishimura TE, Zhang SY, Agbor LN, Wu J, Keen HL, Naber MC, Pearson NA, Zimmerman KA, Weiss RM, Bowdler NC, Usachev YM, Santillan DA, Potthoff MJ, Pierce GL, Gibson-Corley KN, Sigmund CD, Santillan MK, Grobe JL. Arginine vasopressin infusion is sufficient to model clinical features of preeclampsia in mice. JCI Insight 2018; 3:99403. [PMID: 30282823 DOI: 10.1172/jci.insight.99403] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 08/17/2018] [Indexed: 12/29/2022] Open
Abstract
Copeptin, a marker of arginine vasopressin (AVP) secretion, is elevated throughout human pregnancies complicated by preeclampsia (PE), and AVP infusion throughout gestation is sufficient to induce the major phenotypes of PE in mice. Thus, we hypothesized a role for AVP in the pathogenesis of PE. AVP infusion into pregnant C57BL/6J mice resulted in hypertension, renal glomerular endotheliosis, intrauterine growth restriction, decreased placental growth factor (PGF), altered placental morphology, placental oxidative stress, and placental gene expression consistent with human PE. Interestingly, these changes occurred despite a lack of placental hypoxia or elevations in placental fms-like tyrosine kinase-1 (FLT1). Coinfusion of AVP receptor antagonists and time-restricted infusion of AVP uncovered a mid-gestational role for the AVPR1A receptor in the observed renal pathologies, versus mid- and late-gestational roles for the AVPR2 receptor in the blood pressure and fetal phenotypes. These findings demonstrate that AVP is sufficient to initiate phenotypes of PE in the absence of placental hypoxia, and indicate that AVP may mechanistically (independently, and possibly synergistically with hypoxia) contribute to the development of clinical signs of PE in specific subtypes of human PE. Additionally, they identify divergent and gestational time-specific signaling mechanisms that mediate the development of PE phenotypes in response to AVP.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Donna A Santillan
- Department of Obstetrics & Gynecology.,University of Iowa Hospitals & Clinics Center for Hypertension Research
| | - Matthew J Potthoff
- Department of Pharmacology.,University of Iowa Hospitals & Clinics Center for Hypertension Research.,François M. Abboud Cardiovascular Research Center.,Fraternal Order of Eagles' Diabetes Research Center, and.,Obesity Research & Education Initiative, University of Iowa, Iowa City, Iowa USA
| | - Gary L Pierce
- Department of Health & Human Physiology.,University of Iowa Hospitals & Clinics Center for Hypertension Research.,François M. Abboud Cardiovascular Research Center
| | - Katherine N Gibson-Corley
- Department of Pathology.,University of Iowa Hospitals & Clinics Center for Hypertension Research.,Fraternal Order of Eagles' Diabetes Research Center, and
| | - Curt D Sigmund
- Department of Pharmacology.,University of Iowa Hospitals & Clinics Center for Hypertension Research.,François M. Abboud Cardiovascular Research Center.,Fraternal Order of Eagles' Diabetes Research Center, and.,Obesity Research & Education Initiative, University of Iowa, Iowa City, Iowa USA
| | - Mark K Santillan
- Department of Obstetrics & Gynecology.,University of Iowa Hospitals & Clinics Center for Hypertension Research
| | - Justin L Grobe
- Department of Pharmacology.,University of Iowa Hospitals & Clinics Center for Hypertension Research.,François M. Abboud Cardiovascular Research Center.,Fraternal Order of Eagles' Diabetes Research Center, and.,Obesity Research & Education Initiative, University of Iowa, Iowa City, Iowa USA
| |
Collapse
|
7
|
Buckberry S, Bianco-Miotto T, Bent SJ, Clifton V, Shoubridge C, Shankar K, Roberts CT. Placental transcriptome co-expression analysis reveals conserved regulatory programs across gestation. BMC Genomics 2017; 18:10. [PMID: 28049421 PMCID: PMC5209944 DOI: 10.1186/s12864-016-3384-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 12/07/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Mammalian development in utero is absolutely dependent on proper placental development, which is ultimately regulated by the placental genome. The regulation of the placental genome can be directly studied by exploring the underlying organisation of the placental transcriptome through a systematic analysis of gene-wise co-expression relationships. RESULTS In this study, we performed a comprehensive analysis of human placental co-expression using RNA sequencing and intergrated multiple transcriptome datasets spanning human gestation. We identified modules of co-expressed genes that are preserved across human gestation, and also identifed modules conserved in the mouse indicating conserved molecular networks involved in placental development and gene expression patterns more specific to late gestation. Analysis of co-expressed gene flanking sequences indicated that conserved co-expression modules in the placenta are regulated by a core set of transcription factors, including ZNF423 and EBF1. Additionally, we identified a gene co-expression module enriched for genes implicated in the pregnancy pathology preeclampsia. By using an independnet transcriptome dataset, we show that these co-expressed genes are differentially expressed in preeclampsia. CONCLUSIONS This study represents a comprehensive characterisation of placental co-expression and provides insight into potential transcriptional regulators that govern conserved molecular programs fundamental to placental development.
Collapse
Affiliation(s)
- Sam Buckberry
- The Robinson Research Institute, The University of Adelaide, School of Paediatrics and Reproductive Health, Adelaide, 5005, Australia.,University of Western Australia, Harry Perkins Institute of Medical Research, Perth, 6009, Australia.,University of Western Australia, Australian Research Council Centre of Excellence in Plant Energy Biology, Perth, 6009, Australia
| | - Tina Bianco-Miotto
- The Robinson Research Institute, The University of Adelaide, School of Paediatrics and Reproductive Health, Adelaide, 5005, Australia.,The University of Adelaide, School of agriculture, food and wine, Adelaide, 5005, Australia
| | - Stephen J Bent
- The Robinson Research Institute, The University of Adelaide, School of Paediatrics and Reproductive Health, Adelaide, 5005, Australia
| | - Vicki Clifton
- The Robinson Research Institute, The University of Adelaide, School of Paediatrics and Reproductive Health, Adelaide, 5005, Australia
| | - Cheryl Shoubridge
- The Robinson Research Institute, The University of Adelaide, School of Paediatrics and Reproductive Health, Adelaide, 5005, Australia
| | - Kartik Shankar
- University of Arkansas for Medical Sciences, The Department of Pediatrics, Little Rock, 72202, USA
| | - Claire T Roberts
- The Robinson Research Institute, The University of Adelaide, School of Paediatrics and Reproductive Health, Adelaide, 5005, Australia.
| |
Collapse
|
8
|
Singh G, Miteva M. Prognosis and Management of Congenital Hair Shaft Disorders with Fragility-Part I. Pediatr Dermatol 2016; 33:473-80. [PMID: 27292719 DOI: 10.1111/pde.12894] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hair shaft disorders are characterized by congenital or acquired abnormalities of the hair shaft. The objective was to review the literature regarding the prognosis and treatment options of hair shaft disorders. We used keywords in the search engines PubMed and Medline to identify all publications in the English language related to the prognosis and management of hair shaft disorders. Data were extracted from 96 articles that met search criteria. Findings were limited to case reports and small case series, as no studies were found. Disorders that improve in childhood include pili torti, trichorrhexis invaginata, wooly hair, and pili trianguli et canaliculi. Others, such as trichorrhexis nodosa, monilethrix, pili annulati, and pili bifurcati improve with minoxidil. Oral retinoids have improved hair abnormalities in trichorrhexis invaginata and monilethrix. There is no specific treatment for congenital hair shaft abnormalities. Gentle hair care is the mainstay of care for hair shaft disorders associated with fragility. Practices for gentle care include no brushing, backcombing, chemical products, tight braids, heat exposure, or mechanical grooming. Any inherited or congenital disorder requires genetic counseling as part of management.
Collapse
Affiliation(s)
- Gaurav Singh
- Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida.
| | - Mariya Miteva
- Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|