1
|
Zhang L, Lin T, Zhu G, Wu B, Zhang C, Zhu H. LncRNAs exert indispensable roles in orchestrating the interaction among diverse noncoding RNAs and enrich the regulatory network of plant growth and its adaptive environmental stress response. HORTICULTURE RESEARCH 2023; 10:uhad234. [PMID: 38156284 PMCID: PMC10753412 DOI: 10.1093/hr/uhad234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/01/2023] [Indexed: 12/30/2023]
Abstract
With the advent of advanced sequencing technologies, non-coding RNAs (ncRNAs) are increasingly pivotal and play highly regulated roles in the modulation of diverse aspects of plant growth and stress response. This includes a spectrum of ncRNA classes, ranging from small RNAs to long non-coding RNAs (lncRNAs). Notably, among these, lncRNAs emerge as significant and intricate components within the broader ncRNA regulatory networks. Here, we categorize ncRNAs based on their length and structure into small RNAs, medium-sized ncRNAs, lncRNAs, and circle RNAs. Furthermore, the review delves into the detailed biosynthesis and origin of these ncRNAs. Subsequently, we emphasize the diverse regulatory mechanisms employed by lncRNAs that are located at various gene regions of coding genes, embodying promoters, 5'UTRs, introns, exons, and 3'UTR regions. Furthermore, we elucidate these regulatory modes through one or two concrete examples. Besides, lncRNAs have emerged as novel central components that participate in phase separation processes. Moreover, we illustrate the coordinated regulatory mechanisms among lncRNAs, miRNAs, and siRNAs with a particular emphasis on the central role of lncRNAs in serving as sponges, precursors, spliceosome, stabilization, scaffolds, or interaction factors to bridge interactions with other ncRNAs. The review also sheds light on the intriguing possibility that some ncRNAs may encode functional micropeptides. Therefore, the review underscores the emergent roles of ncRNAs as potent regulatory factors that significantly enrich the regulatory network governing plant growth, development, and responses to environmental stimuli. There are yet-to-be-discovered roles of ncRNAs waiting for us to explore.
Collapse
Affiliation(s)
- Lingling Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Tao Lin
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Guoning Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Bin Wu
- Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang 830091, China
| | - Chunjiao Zhang
- Supervision, Inspection & Testing Center of Agricultural Products Quality, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Hongliang Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
2
|
Jha UC, Nayyar H, Roychowdhury R, Prasad PVV, Parida SK, Siddique KHM. Non-coding RNAs (ncRNAs) in plant: Master regulators for adapting to extreme temperature conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108164. [PMID: 38008006 DOI: 10.1016/j.plaphy.2023.108164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/28/2023]
Abstract
Unusual daily temperature fluctuations caused by climate change and climate variability adversely impact agricultural crop production. Since plants are immobile and constantly receive external environmental signals, such as extreme high (heat) and low (cold) temperatures, they have developed complex molecular regulatory mechanisms to cope with stressful situations to sustain their natural growth and development. Among these mechanisms, non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), small-interfering RNAs (siRNAs), and long-non-coding RNAs (lncRNAs), play a significant role in enhancing heat and cold stress tolerance. This review explores the pivotal findings related to miRNAs, siRNAs, and lncRNAs, elucidating how they functionally regulate plant adaptation to extreme temperatures. In addition, this review addresses the challenges associated with uncovering these non-coding RNAs and understanding their roles in orchestrating heat and cold tolerance in plants.
Collapse
Affiliation(s)
- Uday Chand Jha
- Sustainable Intensification Innovation Lab, Kansas State University, Department of Agronomy, Manhattan, KS 66506, USA; ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh 208024, India.
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Rajib Roychowdhury
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - The Volcani Institute, Rishon Lezion 7505101, Israel
| | - P V Vara Prasad
- Sustainable Intensification Innovation Lab, Kansas State University, Department of Agronomy, Manhattan, KS 66506, USA
| | - Swarup K Parida
- National Institute of Plant Genomic Research, New Delhi, 110067, India
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
3
|
Asha S, Mohammad S, Makeshkumar T. High throughput sRNA sequencing revealed gene regulatory role mediated by pathogen-derived small RNAs during Sri Lankan Cassava Mosaic Virus infection in Cassava. 3 Biotech 2023; 13:95. [PMID: 36845076 PMCID: PMC9950310 DOI: 10.1007/s13205-023-03494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/25/2023] [Indexed: 02/25/2023] Open
Abstract
Small RNA (sRNA) mediated gene regulation during Sri Lankan Cassava Mosaic Virus (SLCMV) infection was studied from the Indian Cassava Cultivar H226. Our study generated high throughput sRNA dataset of 23.64 million reads from the control and SLCMV infected H226 leaf libraries. mes-miR9386 was detected as the most prominent miRNA expressed in control and infected leaf. Among the differentially expressed miRNAs, mes-miR156, mes- miR395 and mes-miR535a/b showed significant down regulation in the infected leaf. Genome-wide analysis of the three small RNA profiles revealed critical role of virus-derived small RNAs (vsRNAs) from the infected leaf tissues of H226. The vsRNAs were mapped to the bipartite SLCMV genome and high expression of siRNAs generated from the virus genomic region encoding AV1/AV2 genes in the infected leaf pointed towards the susceptibility of H226 cultivars to SLCMV. Furthermore, the sRNA reads mapped to the antisense strand of the SLCMV ORFs was higher than the sense strand. These vsRNAs were potential to target key host genes involved in virus interaction such as aldehyde dehydrogenase, ADP-ribosylation factor1 and ARF1-like GTP-binding proteins. The sRNAome-assisted analysis also revealed the origin of virus-encoded miRNAs from the SLCMV genome in the infected leaf. These virus-derived miRNAs were predicted to have hair-pin like secondary structures, and have different isoforms. Moreover, our study revealed that the pathogen sRNAs play a critical role in the infection process in H226 plants. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03494-2.
Collapse
Affiliation(s)
- Srinivasan Asha
- Division of Crop Protection, ICAR-Central Tuber Crops Research Institute, Sreekaryam, Thiruvananthapuram, Kerala 695017 India
- Department of Molecular Biology and Biotechnology, College of Agriculture, Kerala Agricultural University, Vellayani, Thiruvananthapuram, 695522 India
| | - Sumayya Mohammad
- Division of Crop Protection, ICAR-Central Tuber Crops Research Institute, Sreekaryam, Thiruvananthapuram, Kerala 695017 India
| | - T. Makeshkumar
- Division of Crop Protection, ICAR-Central Tuber Crops Research Institute, Sreekaryam, Thiruvananthapuram, Kerala 695017 India
| |
Collapse
|
4
|
Antisense Transcription in Plants: A Systematic Review and an Update on cis-NATs of Sugarcane. Int J Mol Sci 2022; 23:ijms231911603. [PMID: 36232906 PMCID: PMC9569758 DOI: 10.3390/ijms231911603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/09/2022] Open
Abstract
Initially, natural antisense transcripts (NATs, natRNAs, or asRNAs) were considered repressors; however, their functions in gene regulation are diverse. Positive, negative, or neutral correlations to the cognate gene expression have been noted. Although the first studies were published about 50 years ago, there is still much to be investigated regarding antisense transcripts in plants. A systematic review of scientific publications available in the Web of Science databases was conducted to contextualize how the studying of antisense transcripts has been addressed. Studies were classified considering three categories: “Natural antisense” (208), artificial antisense used in “Genetic Engineering” (797), or “Natural antisense and Genetic Engineering”-related publications (96). A similar string was used for a systematic search in the NCBI Gene database. Of the 1132 antisense sequences found for plants, only 0.8% were cited in PubMed and had antisense information confirmed. This value was the lowest when compared to fungi (2.9%), bacteria (2.3%), and mice (54.1%). Finally, we present an update for the cis-NATs identified in Saccharum spp. Of the 1413 antisense transcripts found in different experiments, 25 showed concordant expressions, 22 were discordant, 1264 did not correlate with the cognate genes, and 102 presented variable results depending on the experiment.
Collapse
|
5
|
Zhang X, Ren C, Xue Y, Tian Y, Zhang H, Li N, Sheng C, Jiang H, Bai D. Small RNA and Degradome Deep Sequencing Reveals the Roles of microRNAs in Peanut ( Arachis hypogaea L.) Cold Response. FRONTIERS IN PLANT SCIENCE 2022; 13:920195. [PMID: 35720560 PMCID: PMC9203150 DOI: 10.3389/fpls.2022.920195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/06/2022] [Indexed: 05/31/2023]
Abstract
Cold stress is a major environmental factor that affects plant growth and development, as well as fruit postharvest life and quality. MicroRNAs (miRNAs) are a class of non-coding small RNAs that play crucial roles in various abiotic stresses. Peanuts (Arachis hypogaea L.), one of the most important grain legumes and source of edible oils and proteins, are cultivated in the semi-arid tropical and subtropical regions of the world. To date, there has been no report on the role of miRNAs in the response to cold stress in cultivated peanuts. In this study, we profiled cold-responsive miRNAs in peanuts using deep sequencing in cold-sensitive (WQL20) alongside a tolerant variety (WQL30). A total of 407 known miRNAs and 143 novel peanut-specific miRNAs were identified. The expression of selected known and novel miRNAs was validated by northern blotting and six known cold-responsive miRNAs were revealed. Degradome sequencing identified six cold-responsive miRNAs that regulate 12 target genes. The correlative expression patterns of several miRNAs and their target genes were further validated using qRT-PCR. Our data showed that miR160-ARF, miR482-WDRL, miR2118-DR, miR396-GRF, miR162-DCL, miR1511-SRF, and miR1511-SPIRAL1 modules may mediate cold stress responses. Transient expression analysis in Nicotiana benthamiana found that miR160, miR482, and miR2118 may play positive roles, and miR396, miR162, and miR1511 play negative roles in the regulation of peanut cold tolerance. Our results provide a foundation for understanding miRNA-dependent cold stress response in peanuts. The characterized correlations between miRNAs and their response to cold stress could serve as markers in breeding programs or tools for improving cold tolerance of peanuts.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
- State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Chao Ren
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| | - Yunyun Xue
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| | - Yuexia Tian
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| | - Huiqi Zhang
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| | - Na Li
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| | - Cong Sheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Dongmei Bai
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
6
|
Verma S, Negi NP, Pareek S, Mudgal G, Kumar D. Auxin response factors in plant adaptation to drought and salinity stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13714. [PMID: 35560231 DOI: 10.1111/ppl.13714] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Salinity and drought stresses affect plant growth worldwide and limit crop production. Auxin is crucial in regulating plants' salinity and drought stress adaptative response. As a chemical messenger, auxin influences gene expression through a family of functionally distinct transcription factors, the DNA-binding AUXIN RESPONSE FACTORS (ARFs). Various studies have revealed the important roles of ARFs in regulating drought and salinity stress responses in plants. Different ARFs regulate soluble sugar content, promote root development, and maintain chlorophyll content under drought and saline stress conditions to help plants adapt to these stresses. The functional characterization of ARFs pertaining to the regulation of drought and salinity stress responses is still in its infancy. Interestingly, the small RNA-mediated post-transcriptional regulation of ARF expression has been shown to influence plant responses to both stresses. The current knowledge on the diverse roles of ARFs in conferring specificity to auxin-mediated drought and salinity stress responses has not been reviewed to date. In this review, we summarize the recent research concerning the role of ARFs in response to drought and salinity stresses: gene expression patterns, functional characterization, and post-transcriptional regulation under drought and salinity stresses. We have also reviewed the modulation of ARF expression by other molecular regulators in the context of drought and salt stress signaling.
Collapse
Affiliation(s)
- Swati Verma
- College of Horticulture and Forestry Thunag, Dr. Y. S. Parmar University of Horticulture and Forestry, Solan, India
| | - Neelam Prabha Negi
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Shalini Pareek
- School of Life Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Gaurav Mudgal
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
7
|
Luo L, Yang X, Guo M, Lan T, Yu Y, Mo B, Chen X, Gao L, Liu L. TRANS-ACTING SIRNA3-derived short interfering RNAs confer cleavage of mRNAs in rice. PLANT PHYSIOLOGY 2022; 188:347-362. [PMID: 34599593 PMCID: PMC8774828 DOI: 10.1093/plphys/kiab452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/29/2021] [Indexed: 05/11/2023]
Abstract
Plant TRANS-ACTING SIRNA3 (TAS3)-derived short interfering RNAs (siRNAs) include tasiR-AUXIN RESPONSE FACTORs (ARFs), which are functionally conserved in targeting ARF genes, and a set of non-tasiR-ARF siRNAs, which have rarely been studied. In this study, TAS3 siRNAs were systematically characterized in rice (Oryza sativa). Small RNA sequencing results showed that an overwhelming majority of TAS3 siRNAs belong to the non-tasiR-ARF group, while tasiR-ARFs occupy a diminutive fraction. Phylogenetic analysis of TAS3 genes across dicot and monocot plants revealed that the siRNA-generating regions were highly conserved in grass species, especially in the Oryzoideae. Target genes were identified for not only tasiR-ARFs but also non-tasiR-ARF siRNAs by analyzing rice Parallel Analysis of RNA Ends datasets, and some of these siRNA-target interactions were experimentally confirmed using tas3 mutants generated by genome editing. Consistent with the de-repression of target genes, phenotypic alterations were observed for mutants in three TAS3 loci in comparison to wild-type rice. The regulatory role of ribosomes in the TAS3 siRNA-target interactions was further revealed by the fact that TAS3 siRNA-mediated target cleavage, in particular tasiR-ARFs targeting ARF2/3/14/15, occurred extensively in rice polysome samples. Altogether, our study sheds light into TAS3 genes in plants and expands our knowledge about rice TAS3 siRNA-target interactions.
Collapse
Affiliation(s)
- Linlin Luo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Guangdong Province, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Guangdong Province, Shenzhen 518060, China
| | - Xiaoyu Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Guangdong Province, Shenzhen 518060, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Mingxi Guo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Guangdong Province, Shenzhen 518060, China
| | - Ting Lan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Guangdong Province, Shenzhen 518060, China
| | - Yu Yu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Guangdong Province, Shenzhen 518060, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Guangdong Province, Shenzhen 518060, China
| | - Xuemei Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Guangdong Province, Shenzhen 518060, China
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Guangdong Province, Shenzhen 518060, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Guangdong Province, Shenzhen 518060, China
- Author for communication:
| |
Collapse
|
8
|
Ahmed W, Xia Y, Li R, Zhang H, Siddique KHM, Guo P. Identification and Analysis of Small Interfering RNAs Associated With Heat Stress in Flowering Chinese Cabbage Using High-Throughput Sequencing. Front Genet 2021; 12:746816. [PMID: 34790225 PMCID: PMC8592252 DOI: 10.3389/fgene.2021.746816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Endogenous small interfering RNAs (siRNAs) are substantial gene regulators in eukaryotes and play key functions in plant development and stress tolerance. Among environmental factors, heat is serious abiotic stress that severely influences the productivity and quality of flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee). However, how siRNAs are involved in regulating gene expression during heat stress is not fully understood in flowering Chinese cabbage. Combining bioinformatical and next-generation sequencing approaches, we identified heat-responsive siRNAs in four small RNA libraries of flowering Chinese cabbage using leaves collected at 0, 1, 6, and 12 h after a 38°C heat-stress treatment; 536, 816, and 829 siRNAs exhibited substantial differential expression at 1, 6, and 12 h, respectively. Seventy-five upregulated and 69 downregulated differentially expressed siRNAs (DE-siRNAs) were common for the three time points of heat stress. We identified 795 target genes of DE-siRNAs, including serine/threonine-protein kinase SRK2I, CTR1-like, disease resistance protein RML1A-like, and RPP1, which may play a role in regulating heat tolerance. Gene ontology showed that predictive targets of DE-siRNAs may have key roles in the positive regulation of biological processes, organismal processes, responses to temperature stimulus, signaling, and growth and development. These novel results contribute to further understanding how siRNAs modulate the expression of their target genes to control heat tolerance in flowering Chinese cabbage.
Collapse
Affiliation(s)
- Waqas Ahmed
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yanshi Xia
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| | - Ronghua Li
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| | - Hua Zhang
- Guangzhou Academy of Agricultural Sciences, Guangzhou, China
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Peiguo Guo
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
9
|
The Dynamism of Transposon Methylation for Plant Development and Stress Adaptation. Int J Mol Sci 2021; 22:ijms222111387. [PMID: 34768817 PMCID: PMC8583499 DOI: 10.3390/ijms222111387] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Plant development processes are regulated by epigenetic alterations that shape nuclear structure, gene expression, and phenotypic plasticity; these alterations can provide the plant with protection from environmental stresses. During plant growth and development, these processes play a significant role in regulating gene expression to remodel chromatin structure. These epigenetic alterations are mainly regulated by transposable elements (TEs) whose abundance in plant genomes results in their interaction with genomes. Thus, TEs are the main source of epigenetic changes and form a substantial part of the plant genome. Furthermore, TEs can be activated under stress conditions, and activated elements cause mutagenic effects and substantial genetic variability. This introduces novel gene functions and structural variation in the insertion sites and primarily contributes to epigenetic modifications. Altogether, these modifications indirectly or directly provide the ability to withstand environmental stresses. In recent years, many studies have shown that TE methylation plays a major role in the evolution of the plant genome through epigenetic process that regulate gene imprinting, thereby upholding genome stability. The induced genetic rearrangements and insertions of mobile genetic elements in regions of active euchromatin contribute to genome alteration, leading to genomic stress. These TE-mediated epigenetic modifications lead to phenotypic diversity, genetic variation, and environmental stress tolerance. Thus, TE methylation is essential for plant evolution and stress adaptation, and TEs hold a relevant military position in the plant genome. High-throughput techniques have greatly advanced the understanding of TE-mediated gene expression and its associations with genome methylation and suggest that controlled mobilization of TEs could be used for crop breeding. However, development application in this area has been limited, and an integrated view of TE function and subsequent processes is lacking. In this review, we explore the enormous diversity and likely functions of the TE repertoire in adaptive evolution and discuss some recent examples of how TEs impact gene expression in plant development and stress adaptation.
Collapse
|
10
|
Fang L, Wang Y. MicroRNAs in Woody Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:686831. [PMID: 34531880 PMCID: PMC8438446 DOI: 10.3389/fpls.2021.686831] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/03/2021] [Indexed: 05/05/2023]
Abstract
MicroRNAs (miRNAs) are small (∼21-nucleotides) non-coding RNAs found in plant and animals. MiRNAs function as critical post-transcriptional regulators of gene expression by binding to complementary sequences in their target mRNAs, leading to mRNA destabilization and translational inhibition. Plant miRNAs have some distinct characteristics compared to their animal counterparts, including greater evolutionary conservation and unique miRNA processing methods. The lifecycle of a plant begins with embryogenesis and progresses through seed germination, vegetative growth, reproductive growth, flowering and fruiting, and finally senescence and death. MiRNAs participate in the transformation of plant growth and development and directly monitor progression of these processes and the expression of certain morphological characteristics by regulating transcription factor genes involved in cell growth and differentiation. In woody plants, a large and rapidly increasing number of miRNAs have been identified, but their biological functions are largely unknown. In this review, we summarize the progress of miRNA research in woody plants to date. In particular, we discuss the potential roles of these miRNAs in growth, development, and biotic and abiotic stresses responses in woody plants.
Collapse
Affiliation(s)
- Lisha Fang
- College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Yanmei Wang
- College of Forestry, Henan Agricultural University, Zhengzhou, China
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| |
Collapse
|
11
|
Li C, Wang M, Qiu X, Zhou H, Lu S. Noncoding RNAs in Medicinal Plants and their Regulatory Roles in Bioactive Compound Production. Curr Pharm Biotechnol 2021; 22:341-359. [PMID: 32469697 DOI: 10.2174/1389201021666200529101942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/14/2020] [Accepted: 03/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), small interfering RNAs (siRNAs) and long noncoding RNAs (lncRNAs), play significant regulatory roles in plant development and secondary metabolism and are involved in plant response to biotic and abiotic stresses. They have been intensively studied in model systems and crops for approximately two decades and massive amount of information have been obtained. However, for medicinal plants, ncRNAs, particularly their regulatory roles in bioactive compound biosynthesis, are just emerging as a hot research field. OBJECTIVE This review aims to summarize current knowledge on herbal ncRNAs and their regulatory roles in bioactive compound production. RESULTS So far, scientists have identified thousands of miRNA candidates from over 50 medicinal plant species and 11794 lncRNAs from Salvia miltiorrhiza, Panax ginseng, and Digitalis purpurea. Among them, more than 30 miRNAs and five lncRNAs have been predicted to regulate bioactive compound production. CONCLUSION The regulation may achieve through various regulatory modules and pathways, such as the miR397-LAC module, the miR12112-PPO module, the miR156-SPL module, the miR828-MYB module, the miR858-MYB module, and other siRNA and lncRNA regulatory pathways. Further functional analysis of herbal ncRNAs will provide useful information for quality and quantity improvement of medicinal plants.
Collapse
Affiliation(s)
- Caili Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Meizhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiaoxiao Qiu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Hong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|
12
|
Waititu JK, Zhang C, Liu J, Wang H. Plant Non-Coding RNAs: Origin, Biogenesis, Mode of Action and Their Roles in Abiotic Stress. Int J Mol Sci 2020; 21:E8401. [PMID: 33182372 PMCID: PMC7664903 DOI: 10.3390/ijms21218401] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 01/21/2023] Open
Abstract
As sessile species, plants have to deal with the rapidly changing environment. In response to these environmental conditions, plants employ a plethora of response mechanisms that provide broad phenotypic plasticity to allow the fine-tuning of the external cues related reactions. Molecular biology has been transformed by the major breakthroughs in high-throughput transcriptome sequencing and expression analysis using next-generation sequencing (NGS) technologies. These innovations have provided substantial progress in the identification of genomic regions as well as underlying basis influencing transcriptional and post-transcriptional regulation of abiotic stress response. Non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), short interfering RNAs (siRNAs), and long non-coding RNAs (lncRNAs), have emerged as essential regulators of plants abiotic stress response. However, shared traits in the biogenesis of ncRNAs and the coordinated cross-talk among ncRNAs mechanisms contribute to the complexity of these molecules and might play an essential part in regulating stress responses. Herein, we highlight the current knowledge of plant microRNAs, siRNAs, and lncRNAs, focusing on their origin, biogenesis, modes of action, and fundamental roles in plant response to abiotic stresses.
Collapse
Affiliation(s)
- Joram Kiriga Waititu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.K.W.); (C.Z.)
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.K.W.); (C.Z.)
| | - Jun Liu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.K.W.); (C.Z.)
| |
Collapse
|
13
|
Suksamran R, Saithong T, Thammarongtham C, Kalapanulak S. Genomic and Transcriptomic Analysis Identified Novel Putative Cassava lncRNAs Involved in Cold and Drought Stress. Genes (Basel) 2020; 11:E366. [PMID: 32231066 PMCID: PMC7230406 DOI: 10.3390/genes11040366] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 01/09/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play important roles in the regulation of complex cellular processes, including transcriptional and post-transcriptional regulation of gene expression relevant for development and stress response, among others. Compared to other important crops, there is limited knowledge of cassava lncRNAs and their roles in abiotic stress adaptation. In this study, we performed a genome-wide study of ncRNAs in cassava, integrating genomics- and transcriptomics-based approaches. In total, 56,840 putative ncRNAs were identified, and approximately half the number were verified using expression data or previously known ncRNAs. Among these were 2229 potential novel lncRNA transcripts with unmatched sequences, 250 of which were differentially expressed in cold or drought conditions, relative to controls. We showed that lncRNAs might be involved in post-transcriptional regulation of stress-induced transcription factors (TFs) such as zinc-finger, WRKY, and nuclear factor Y gene families. These findings deepened our knowledge of cassava lncRNAs and shed light on their stress-responsive roles.
Collapse
Affiliation(s)
- Rungaroon Suksamran
- Biotechnology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang KhunThian), Bangkok 10150, Thailand
| | - Treenut Saithong
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang KhunThian), Bangkok 10150, Thailand
- Center for Agricultural Systems Biology, Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang KhunThian), Bangkok 10150, Thailand
| | - Chinae Thammarongtham
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology at King Mongkut's University of Technology Thonburi (Bang KhunThian), Bangkok 10150, Thailand
| | - Saowalak Kalapanulak
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang KhunThian), Bangkok 10150, Thailand
- Center for Agricultural Systems Biology, Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang KhunThian), Bangkok 10150, Thailand
| |
Collapse
|
14
|
Lunardon A, Johnson NR, Hagerott E, Phifer T, Polydore S, Coruh C, Axtell MJ. Integrated annotations and analyses of small RNA-producing loci from 47 diverse plants. Genome Res 2020; 30:497-513. [PMID: 32179590 PMCID: PMC7111516 DOI: 10.1101/gr.256750.119] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/27/2020] [Indexed: 01/25/2023]
Abstract
Plant endogenous small RNAs (sRNAs) are important regulators of gene expression. There are two broad categories of plant sRNAs: microRNAs (miRNAs) and endogenous short interfering RNAs (siRNAs). MicroRNA loci are relatively well-annotated but compose only a small minority of the total sRNA pool; siRNA locus annotations have lagged far behind. Here, we used a large data set of published and newly generated sRNA sequencing data (1333 sRNA-seq libraries containing more than 20 billion reads) and a uniform bioinformatic pipeline to produce comprehensive sRNA locus annotations of 47 diverse plants, yielding more than 2.7 million sRNA loci. The two most numerous classes of siRNA loci produced mainly 24- and 21-nucleotide (nt) siRNAs, respectively. Most often, 24-nt-dominated siRNA loci occurred in intergenic regions, especially at the 5′-flanking regions of protein-coding genes. In contrast, 21-nt-dominated siRNA loci were most often derived from double-stranded RNA precursors copied from spliced mRNAs. Genic 21-nt-dominated loci were especially common from disease resistance genes, including from a large number of monocots. Individual siRNA sequences of all types showed very little conservation across species, whereas mature miRNAs were more likely to be conserved. We developed a web server where our data and several search and analysis tools are freely accessible.
Collapse
Affiliation(s)
- Alice Lunardon
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Nathan R Johnson
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Emily Hagerott
- Department of Biology, Knox College, Galesburg, Illinois 61401, USA
| | - Tamia Phifer
- Department of Biology, Knox College, Galesburg, Illinois 61401, USA
| | - Seth Polydore
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ceyda Coruh
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Michael J Axtell
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
15
|
Esposito S, Aversano R, Bradeen JM, Di Matteo A, Villano C, Carputo D. Deep-sequencing of Solanum commersonii small RNA libraries reveals riboregulators involved in cold stress response. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22 Suppl 1:133-142. [PMID: 30597710 DOI: 10.1111/plb.12955] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Among wild species used in potato breeding, Solanum commersonii displays the highest tolerance to low temperatures under both acclimated (ACC) and non-acclimated (NACC) conditions. It is also the first wild potato relative with a known whole genome sequence. Recent studies have shown that abiotic stresses induce changes in the expression of many small non-coding RNA (sncRNA). We determined the small non-coding RNA (sncRNAome) of two clones of S. commersonii contrasting in their cold response phenotypes via smRNAseq. Differential analysis provided evidence that expression of several miRNAs changed in response to cold stress conditions. Conserved miR408a and miR408b changed their expression under NACC conditions, whereas miR156 and miR169 were differentially expressed only under ACC conditions. We also report changes in tasiRNA and secondary siRNA expression under both stress conditions. Our results reveal possible roles of sncRNA in the regulatory networks associated with tolerance to low temperatures and provide useful information for a more strategic use of genomic resources in potato breeding.
Collapse
Affiliation(s)
- S Esposito
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - R Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - J M Bradeen
- Department of Plant Pathology and The Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | - A Di Matteo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - C Villano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - D Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
16
|
Li MH, Liu DK, Zhang GQ, Deng H, Tu XD, Wang Y, Lan SR, Liu ZJ. A perspective on crassulacean acid metabolism photosynthesis evolution of orchids on different continents: Dendrobium as a case study. JOURNAL OF EXPERIMENTAL BOTANY 2019; 71:422-434. [PMID: 31625570 DOI: 10.1093/jxb/erz444] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/24/2019] [Indexed: 05/24/2023]
Abstract
Members of the Orchidaceae, one of the largest families of flowering plants, evolved the crassulacean acid metabolism (CAM) photosynthesis strategy. It is thought that CAM triggers adaptive radiation into new niche spaces, yet very little is known about its origin and diversification on different continents. Here, we assess the prevalence of CAM in Dendrobium, which is one of the largest genera of flowering plants and found in a wide range of environments, from the high altitudes of the Himalayas to relatively arid habitats in Australia. Based on phylogenetic time trees, we estimated that CAM, as determined by δ 13C values less negative than -20.0‰, evolved independently at least eight times in Dendrobium. The oldest lineage appeared in the Asian clade during the middle Miocene, indicating the origin of CAM was associated with a pronounced climatic cooling that followed a period of aridity. Divergence of the four CAM lineages in the Asian clade appeared to be earlier than divergence of those in the Australasian clade. However, CAM species in the Asian clade are much less diverse (25.6%) than those in the Australasian clade (57.9%). These findings shed new light on CAM evolutionary history and the aridity levels of the paleoclimate on different continents.
Collapse
Affiliation(s)
- Ming-He Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ding-Kun Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guo-Qiang Zhang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, the Orchid Conservation & Research Center of Shenzhen, Shenzhen, China
| | - Hua Deng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xiong-De Tu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Si-Ren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
17
|
Dong MY, Fan XW, Li YZ. Cassava AGPase genes and their encoded proteins are different from those of other plants. PLANTA 2019; 250:1621-1635. [PMID: 31399791 DOI: 10.1007/s00425-019-03247-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/21/2019] [Indexed: 05/10/2023]
Abstract
Cassava AGPase and AGPase genes have some unique characteristics. ADP-glucose pyrophosphorylase (AGPase) is a rate-limiting enzyme for starch synthesis. In this study, cassava AGPase genes (MeAGP) were analyzed based on six cultivars and one wild species. A total of seven MeAGPs was identified, including four encoding AGPase large subunits (MeAGPLs 1, 2, 3 and 4) and three encoding AGPase small subunits (MeAGPSs 1, 2 and 3). The copy number of MeAGPs varied in cassava germplasm materials. There were 14 introns for MeAGPLs 1, 2 and 3, 13 introns for MeAGPL4, and 8 introns for other three MeAGPSs. Multiple conservative amino acid sequence motifs were found in the MeAGPs. There were differences in amino acids at binding sites of substrates and regulators among different MeAGP subunits and between MeAGPs and a potato AGPase small subunit (1YP2:B). MeAGPs were all located in chloroplasts. MeAGP expression was not only associated with gene copy number and types/combinations, regions and levels of the DNA methylation but was also affected by environmental factors with the involvement of various transcription factors in multiple regulation networks and in various cis-elements in the gene promoter regions. The MeAGP activity also changed with environmental conditions and had potential differences among the subunits. Taken together, MeAGPs differ in number from those of Arabidopsis, potato, maize, banana, sweet potato, and tomato.
Collapse
Affiliation(s)
- Ming-You Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Xian-Wei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - You-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China.
| |
Collapse
|
18
|
Genome-Wide Identification of Putative MicroRNAs in Cassava ( Manihot esculenta Crantz) and Their Functional Landscape in Cellular Regulation. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2019846. [PMID: 31321230 PMCID: PMC6607727 DOI: 10.1155/2019/2019846] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/14/2019] [Accepted: 05/22/2019] [Indexed: 11/18/2022]
Abstract
MicroRNAs are small noncoding RNAs, involved in the regulation of many cellular processes in plants. Hundreds of miRNAs have been identified in cassava by various techniques, yet these identifications were constrained by a lack of miRNA templates and the narrow range of conditions in transcriptome study. In this research, we conducted genome-wide analysis identification, whereby miRNAs from cassava genome were thoroughly screened using bioinformatics approach independent of predefined templates and studied conditions. Our work provided a catalog of putative mature miRNAs and explored the landscape of miRNAome in cassava. These putative miRNAs were validated using statistical analysis as well as available cassava expression data. We showed that the crowded locations of cassava miRNAs are consistent with other plants and animals and hypothesized to have the same evolutionary origin. At least 10 conserved miRNAs were identified in cassava based on the comparative study of miRNA conservation. Finally, investigation of miRNAs and target gene relationships enabled us to envisage the complexities of cellular regulatory systems modulated at posttranscriptional level.
Collapse
|
19
|
Ruan MB, Yang YL, Li KM, Guo X, Wang B, Yu XL, Peng M. Identification and characterization of drought-responsive CC-type glutaredoxins from cassava cultivars reveals their involvement in ABA signalling. BMC PLANT BIOLOGY 2018; 18:329. [PMID: 30514219 PMCID: PMC6280520 DOI: 10.1186/s12870-018-1528-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 11/15/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND CC-type glutaredoxins (GRXs) are plant-specific glutaredoxin, play regulatory roles in response of biotic and abiotic stress. However, it is not clear whether the CC-type GRXs are involve in drought response in cassava (Manihot esculenta), an important tropical tuber root crop. RESULTS Herein, genome-wide analysis identified 18 CC-type GRXs in the cassava genome, of which six (namely MeGRXC3, C4, C7, C14, C15, and C18) were induced by drought stress in leaves of two cassava cultivars Argentina 7 (Arg7) and South China 124 (SC124). Exogenous abscisic acid (ABA) application induced the expression of all the six CC-type GRXs in leaves of both Arg7 and SC124 plants. Overexpression of MeGRXC15 in Arabidopsis (Col-0) increases tolerance of ABA on the sealed agar plates, but results in drought hypersensitivity in soil-grown plants. The results of microarray assays show that MeGRXC15 overexpression affected the expression of a set of transcription factors which involve in stress response, ABA, and JA/ET signalling pathway. The results of protein interaction analysis show that MeGRXC15 can interact with TGA5 from Arabidopsis and MeTGA074 from cassava. CONCLUSIONS CC-type glutaredoxins play regulatory roles in cassava response to drought possibly through ABA signalling pathway.
Collapse
Affiliation(s)
- Meng-Bin Ruan
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
- Key Laboratory of Biology and Genetic Resources of Torpical Crops, Ministry of Agriculture, Haikou, 571101 China
| | - Yi-Ling Yang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Kai-Mian Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Science, Danzhou, 571701 China
| | - Xin Guo
- Huazhong Agricultural University, Wuhan, 430070 China
| | - Bin Wang
- Huazhong Agricultural University, Wuhan, 430070 China
| | - Xiao-Ling Yu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
- Key Laboratory of Biology and Genetic Resources of Torpical Crops, Ministry of Agriculture, Haikou, 571101 China
| | - Ming Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
- Key Laboratory of Biology and Genetic Resources of Torpical Crops, Ministry of Agriculture, Haikou, 571101 China
| |
Collapse
|
20
|
Liu W, Cheng C, Chen F, Ni S, Lin Y, Lai Z. High-throughput sequencing of small RNAs revealed the diversified cold-responsive pathways during cold stress in the wild banana (Musa itinerans). BMC PLANT BIOLOGY 2018; 18:308. [PMID: 30486778 PMCID: PMC6263057 DOI: 10.1186/s12870-018-1483-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/15/2018] [Indexed: 05/16/2023]
Abstract
BACKGROUND Cold stress is one of the most severe abiotic stresses affecting the banana production. Although some miRNAs have been identified, little is known about the role of miRNAs in response to cold stress in banana, and up to date, there is no report about the role of miRNAs in the response to cold stress in the plants of the cultivated or wild bananas. RESULT Here, a cold-resistant line wild banana (Musa itinerans) from China was used to profile the cold-responsive miRNAs by RNA-seq during cold stress. Totally, 265 known mature miRNAs and 41 novel miRNAs were obtained. Cluster analysis of differentially expressed (DE) miRNAs indicated that some miRNAs were specific for chilling or 0 °C treated responses, and most of them were reported to be cold-responsive; however, some were seldom reported to be cold-responsive in response to cold stress, e.g., miR395, miR408, miR172, suggesting that they maybe play key roles in response to cold stress. The GO and KEGG pathway enrichment analysis of DE miRNAs targets indicated that there existed diversified cold-responsive pathways, and miR172 was found likely to play a central coordinating role in response to cold stress, especially in the regulation of CK2 and the circadian rhythm. Finally, qPCR assays indicated the related targets were negatively regulated by the tested DE miRNAs during cold stress in the wild banana. CONCLUSIONS In this study, the profiling of miRNAs by RNA-seq in response to cold stress in the plants of the wild banana (Musa itinerans) was reported for the first time. The results showed that there existed diversified cold-responsive pathways, which provided insight into the roles of miRNAs during cold stress, and would be helpful for alleviating cold stress and cold-resistant breeding in bananas.
Collapse
Affiliation(s)
- Weihua Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Chongqing Normal University, Daxuecheng Middle Rd, Chongqing, Shapingba Qu China
| | - Chunzhen Cheng
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Fanglan Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Shanshan Ni
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
21
|
Bouzroud S, Gouiaa S, Hu N, Bernadac A, Mila I, Bendaou N, Smouni A, Bouzayen M, Zouine M. Auxin Response Factors (ARFs) are potential mediators of auxin action in tomato response to biotic and abiotic stress (Solanum lycopersicum). PLoS One 2018; 13:e0193517. [PMID: 29489914 PMCID: PMC5831009 DOI: 10.1371/journal.pone.0193517] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022] Open
Abstract
Survival biomass production and crop yield are heavily constrained by a wide range of environmental stresses. Several phytohormones among which abscisic acid (ABA), ethylene and salicylic acid (SA) are known to mediate plant responses to these stresses. By contrast, the role of the plant hormone auxin in stress responses remains so far poorly studied. Auxin controls many aspects of plant growth and development, and Auxin Response Factors play a key role in the transcriptional activation or repression of auxin-responsive genes through direct binding to their promoters. As a mean to gain more insight on auxin involvement in a set of biotic and abiotic stress responses in tomato, the present study uncovers the expression pattern of SlARF genes in tomato plants subjected to biotic and abiotic stresses. In silico mining of the RNAseq data available through the public TomExpress web platform, identified several SlARFs as responsive to various pathogen infections induced by bacteria and viruses. Accordingly, sequence analysis revealed that 5' regulatory regions of these SlARFs are enriched in biotic and abiotic stress-responsive cis-elements. Moreover, quantitative qPCR expression analysis revealed that many SlARFs were differentially expressed in tomato leaves and roots under salt, drought and flooding stress conditions. Further pointing to the putative role of SlARFs in stress responses, quantitative qPCR expression studies identified some miRNA precursors as potentially involved in the regulation of their SlARF target genes in roots exposed to salt and drought stresses. These data suggest an active regulation of SlARFs at the post-transcriptional level under stress conditions. Based on the substantial change in the transcript accumulation of several SlARF genes, the data presented in this work strongly support the involvement of auxin in stress responses thus enabling to identify a set of candidate SlARFs as potential mediators of biotic and abiotic stress responses.
Collapse
Affiliation(s)
- Sarah Bouzroud
- GBF, Université de Toulouse, INRA, Castanet-Tolosan, France
- Laboratoire de physiologie et biotechnologie Végétales, Centre de biotechnologie végétale et microbienne biodiversité et environnement, Faculté des Sciences, Université Mohammed V de Rabat, Rabat, Maroc
| | - Sandra Gouiaa
- GBF, Université de Toulouse, INRA, Castanet-Tolosan, France
| | - Nan Hu
- GBF, Université de Toulouse, INRA, Castanet-Tolosan, France
| | - Anne Bernadac
- GBF, Université de Toulouse, INRA, Castanet-Tolosan, France
| | - Isabelle Mila
- GBF, Université de Toulouse, INRA, Castanet-Tolosan, France
| | - Najib Bendaou
- Laboratoire de physiologie et biotechnologie Végétales, Centre de biotechnologie végétale et microbienne biodiversité et environnement, Faculté des Sciences, Université Mohammed V de Rabat, Rabat, Maroc
| | - AbdelAziz Smouni
- Laboratoire de physiologie et biotechnologie Végétales, Centre de biotechnologie végétale et microbienne biodiversité et environnement, Faculté des Sciences, Université Mohammed V de Rabat, Rabat, Maroc
| | | | - Mohamed Zouine
- GBF, Université de Toulouse, INRA, Castanet-Tolosan, France
| |
Collapse
|
22
|
Yang X, Liu F, Zhang Y, Wang L, Cheng YF. Cold-responsive miRNAs and their target genes in the wild eggplant species Solanum aculeatissimum. BMC Genomics 2017; 18:1000. [PMID: 29287583 PMCID: PMC5747154 DOI: 10.1186/s12864-017-4341-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/21/2017] [Indexed: 11/10/2022] Open
Abstract
Background Low temperature is an important abiotic stress in plant growth and development, especially for thermophilic plants. Eggplants are thermophilic vegetables, although the molecular mechanism of their response to cold stress remains to be elucidated. MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that play an essential role during plant development and stress responses. Although the role of many plant miRNAs in facilitating chilling tolerance has been verified, little is known about the mechanisms of eggplant chilling tolerance. Results Here, we used high-throughput sequencing to extract the miRNA and target genes expression profiles of Solanum aculeatissimum (S. aculeatissimum) under low temperature stress at different time periods(0 h, 2 h, 6 h, 12 h, 24 h). Differentially regulated miRNAs and their target genes were analyzed by comparing the small RNA (sRNA) and miRBase 20.0 databases using BLAST or BOWTIE, respectively. Fifty-six down-regulated miRNAs and 28 up-regulated miRNAs corresponding to 220 up-regulated mRNAs and 94 down-regulated mRNAs, respectively, were identified in S. aculeatissimum. Nine significant differentially expressed miRNAs and twelve mRNAs were identified by quantitative Real-time PCR and association analysis, and analyzed for their GO function enrichment and KEGG pathway association. Conclusions In summary, numerous conserved and novel miRNAs involved in the chilling response were identified using high-throughput sequencing, which provides a theoretical basis for the further study of low temperature stress-related miRNAs and the regulation of cold-tolerance mechanisms of eggplant at the miRNA level. Electronic supplementary material The online version of this article (10.1186/s12864-017-4341-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xu Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Fei Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Yu Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Lu Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Yu-Fu Cheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
23
|
Zeng C, Xia J, Chen X, Zhou Y, Peng M, Zhang W. MicroRNA-like RNAs from the same miRNA precursors play a role in cassava chilling responses. Sci Rep 2017; 7:17135. [PMID: 29214993 PMCID: PMC5719433 DOI: 10.1038/s41598-017-16861-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 11/18/2017] [Indexed: 01/14/2023] Open
Abstract
MicroRNAs (miRNAs) are known to play important roles in various cellular processes and stress responses. MiRNAs can be identified by analyzing reads from high-throughput deep sequencing. The reads realigned to miRNA precursors besides canonical miRNAs were initially considered as sequencing noise and ignored from further analysis. Here we reported a small-RNA species of phased and half-phased miRNA-like RNAs different from canonical miRNAs from cassava miRNA precursors detected under four distinct chilling conditions. They can form abundant multiple small RNAs arranged along precursors in a tandem and phased or half-phased fashion. Some of these miRNA-like RNAs were experimentally confirmed by re-amplification and re-sequencing, and have a similar qRT-PCR detection ratio as their cognate canonical miRNAs. The target genes of those phased and half-phased miRNA-like RNAs function in process of cell growth metabolism and play roles in protein kinase. Half-phased miR171d.3 was confirmed to have cleavage activities on its target gene P-glycoprotein 11, a broad substrate efflux pump across cellular membranes, which is thought to provide protection for tropical cassava during sharp temperature decease. Our results showed that the RNAs from miRNA precursors are miRNA-like small RNAs that are viable negative gene regulators and may have potential functions in cassava chilling responses.
Collapse
Affiliation(s)
- Changying Zeng
- The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Jing Xia
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei, 430056, China
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Xin Chen
- The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yufei Zhou
- The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Ming Peng
- The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Weixiong Zhang
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei, 430056, China.
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63130, USA.
| |
Collapse
|
24
|
High throughput deep sequencing reveals the important roles of microRNAs during sweetpotato storage at chilling temperature. Sci Rep 2017; 7:16578. [PMID: 29185497 PMCID: PMC5707365 DOI: 10.1038/s41598-017-16871-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/06/2017] [Indexed: 01/31/2023] Open
Abstract
Sweetpotato (Impomoea batatas L.) is a globally important economic food crop with a potential of becoming a bioenergy and pharmaceutical crop. Thus, studying the molecular mechanism of tuberous root development and storage is very important. However, not too much progress has been made in this field. In this study, we employed the next generation high-throughput deep sequencing technology to sequence all small RNAs and degradome of sweetpotato for systematically investigating sweetpotato response to chilling stress during storage. A total of 190 known microRNAs (miRNAs) and 191 novel miRNAs were identified, and 428 transcripts were targeted by 184 identified miRNAs. More importantly, we identified 26 miRNAs differentially expressed between chilling stress and control conditions. The expression of these miRNAs and their targets was also confirmed by qRT-PCR. Integrated analysis of small RNAs and degradome sequencing reveals that miRNA-mediated SA signaling, ABA-dependent, and ROS response pathways are involved in sweetpotato root response to chilling stress during storage.
Collapse
|
25
|
Guo Y, Zhao S, Zhu C, Chang X, Yue C, Wang Z, Lin Y, Lai Z. Identification of drought-responsive miRNAs and physiological characterization of tea plant (Camellia sinensis L.) under drought stress. BMC PLANT BIOLOGY 2017; 17:211. [PMID: 29157225 PMCID: PMC5696764 DOI: 10.1186/s12870-017-1172-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/10/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND Drought stress is one of the major natural challenges in the main tea-producing regions of China. The tea plant (Camellia sinensis) is a traditional beverage plant whose growth status directly affects tea quality. Recent studies have revealed that microRNAs (miRNAs) play key functions in plant growth and development. Although some miRNAs have been identified in C. sinensis, little is known about their roles in the drought stress response of tea plants. RESULTS Physiological characterization of Camellia sinensis 'Tieguanyin' under drought stress showed that the malondialdehyde concentration and electrical conductivity of leaves of drought-stressed plants increased when the chlorophyll concentration decreased under severe drought stress. We sequenced four small-RNA (sRNA) libraries constructed from leaves of plants subjected to four different treatments, normal water supply (CK); mild drought stress (T1); moderate drought stress (T2) and severe drought stress (T3). A total of 299 known mature miRNA sequences and 46 novel miRNAs were identified. Gene Ontology enrichment analysis revealed that most of the differentially expressed-miRNA target genes were related to regulation of transcription. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the most highly enriched pathways under drought stress were D-alanine metabolism, sulfur metabolism, and mineral absorption pathways. Real-time quantitative PCR (qPCR) was used to validate the expression patterns of 21 miRNAs (2 up-regulated and 19 down-regulated under drought stress). The observed co-regulation of the miR166 family and their targets ATHB-14-like and ATHB-15-like indicate the presence of negative feedback regulation in miRNA pathways. CONCLUSIONS Analyses of drought-responsive miRNAs in tea plants showed that most of differentially expressed-miRNA target genes were related to regulation of transcription. The results of study revealed that the expressions of phase-specific miRNAs vary with morphological, physiological, and biochemical changes. These findings will be useful for research on drought resistance and provide insights into the mechanisms of drought adaptation and resistance in C. sinensis.
Collapse
Affiliation(s)
- Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shanshan Zhao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chen Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaojun Chang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chuan Yue
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhong Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
26
|
Liu Q, Yan S, Yang T, Zhang S, Chen YQ, Liu B. Small RNAs in regulating temperature stress response in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:774-791. [PMID: 28731217 DOI: 10.1111/jipb.12571] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/12/2017] [Indexed: 05/21/2023]
Abstract
Due to global climate change, temperature stress has become one of the primary causes of crop losses worldwide. Much progress has been made in unraveling the complex stress response mechanisms in plants, particularly in the identification of temperature stress responsive protein-coding genes. Recently discovered microRNAs (miRNAs) and endogenous small-interfering RNAs (siRN As) have also been demonstrated as important players in plant temperature stress response. Using high-throughput sequencing, many small RNAs, especially miRNAs, have been identified to be triggered by cold or heat. Subsequently, several studies have shown an important functional role for these small RNAs in cold or heat tolerance. These findings greatly broaden our understanding of endogenous small RNAs in plant stress response control. Here, we highlight new findings regarding the roles of miRNAs and siRNAs in plant temperature stress response and acclimation. We also review the current understanding of the regulatory mechanisms of small RNAs in temperature stress response, and explore the outlook for the use of these small RNAs in molecular breeding for improvement of temperature stress tolerance in plants.
Collapse
Affiliation(s)
- Qing Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shijuan Yan
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Tifeng Yang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shaohong Zhang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yue-Qin Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | - Bin Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
27
|
Wang J, Meng X, Dobrovolskaya OB, Orlov YL, Chen M. Non-coding RNAs and Their Roles in Stress Response in Plants. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:301-312. [PMID: 29017967 PMCID: PMC5673675 DOI: 10.1016/j.gpb.2017.01.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/04/2017] [Accepted: 01/26/2017] [Indexed: 02/04/2023]
Abstract
Eukaryotic genomes encode thousands of non-coding RNAs (ncRNAs), which play crucial roles in transcriptional and post-transcriptional regulation of gene expression. Accumulating evidence indicates that ncRNAs, especially microRNAs (miRNAs) and long ncRNAs (lncRNAs), have emerged as key regulatory molecules in plant stress responses. In this review, we have summarized the current progress on the understanding of plant miRNA and lncRNA identification, characteristics, bioinformatics tools, and resources, and provided examples of mechanisms of miRNA- and lncRNA-mediated plant stress tolerance.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianwen Meng
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Oxana B Dobrovolskaya
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Yuriy L Orlov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Ming Chen
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
28
|
Ruan MB, Guo X, Wang B, Yang YL, Li WQ, Yu XL, Zhang P, Peng M. Genome-wide characterization and expression analysis enables identification of abiotic stress-responsive MYB transcription factors in cassava (Manihot esculenta). JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3657-3672. [PMID: 28637218 DOI: 10.1093/jxb/erx202] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The myeloblastosis (MYB) transcription factor superfamily is the largest transcription factor family in plants, playing different roles during stress response. However, abiotic stress-responsive MYB transcription factors have not been systematically studied in cassava (Manihot esculenta), an important tropical tuber root crop. In this study, we used a genome-wide transcriptome analysis to predict 299 putative MeMYB genes in the cassava genome. Under drought and cold stresses, many MeMYB genes exhibited different expression patterns in cassava leaves, indicating that these genes might play a role in abiotic stress responses. We found that several stress-responsive MeMYB genes responded to abscisic acid (ABA) in cassava leaves. We characterize four MeMYBs, namely MeMYB1, MeMYB2, MeMYB4, and MeMYB9, as R2R3-MYB transcription factors. Furthermore, RNAi-driven repression of MeMYB2 resulted in drought and cold tolerance in transgenic cassava. Gene expression assays in wild-type and MeMYB2-RNAi cassava plants revealed that MeMYB2 may affect other MeMYBs as well as MeWRKYs under drought and cold stress, suggesting crosstalk between MYB and WRKY family genes under stress conditions in cassava.
Collapse
Affiliation(s)
- Meng-Bin Ruan
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou 571101, China
| | - Xin Guo
- Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Wang
- Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Ling Yang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Wen-Qi Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Xiao-Ling Yu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou 571101, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence and Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Science, Chinese Academy of Science, Shanghai 200032, China
| | - Ming Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou 571101, China
| |
Collapse
|
29
|
Zuo J, Wang Q, Han C, Ju Z, Cao D, Zhu B, Luo Y, Gao L. SRNAome and degradome sequencing analysis reveals specific regulation of sRNA in response to chilling injury in tomato fruit. PHYSIOLOGIA PLANTARUM 2017; 160:142-154. [PMID: 27595790 DOI: 10.1111/ppl.12509] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/12/2016] [Accepted: 07/18/2016] [Indexed: 05/15/2023]
Abstract
Plant genomes encode diverse small RNA classes that function in distinct gene-silencing pathways. To elucidate the intricate regulation of microRNAs (miRNAs) and endogenous small-interfering RNAs (siRNAs) in response to chilling injury in tomato fruit, the deep sequencing and bioinformatic methods were combined to decipher the small RNAs landscape in the control and chilling-injured groups. Except for the known miRNAs and ta-siRNAs, 85 novel miRNAs and 5 ta-siRNAs members belonging to 3 TAS families (TAS5, TAS9 and TAS10) were identified, 34 putative phased small RNAs and 740 cis/trans-natural antisense small-interfering RNAs (nat-siRNAs) were also found in our results which enriched the tomato small RNAs repository. A large number of genes targeted by those miRNAs and siRNAs were predicted to be involved in the chilling injury responsive process and five of them were verified via degradome sequencing. Based on the above results, a regulatory model that comprehensively reveals the relationships between the small RNAs and their targets was set up. This work provides a foundation for further study of the regulation of miRNAs and siRNAs in the plant in response to chilling injury.
Collapse
Affiliation(s)
- Jinhua Zuo
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing, 100097, China
| | - Qing Wang
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing, 100097, China
| | - Cong Han
- Laboratory of Postharvest Physiology and Technology of Fruits and Vegetables, Department of Food Science, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zheng Ju
- Laboratory of Postharvest Molecular Biology of Fruits and Vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Dongyan Cao
- Laboratory of Postharvest Molecular Biology of Fruits and Vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Benzhong Zhu
- Laboratory of Postharvest Molecular Biology of Fruits and Vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yunbo Luo
- Laboratory of Postharvest Molecular Biology of Fruits and Vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Lipu Gao
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing, 100097, China
| |
Collapse
|
30
|
Li S, Yu X, Lei N, Cheng Z, Zhao P, He Y, Wang W, Peng M. Genome-wide identification and functional prediction of cold and/or drought-responsive lncRNAs in cassava. Sci Rep 2017; 7:45981. [PMID: 28387315 PMCID: PMC5384091 DOI: 10.1038/srep45981] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/07/2017] [Indexed: 12/20/2022] Open
Abstract
Cold and drought stresses seriously affect cassava (Manihot esculenta) plant growth and yield. Recently, long noncoding RNAs (lncRNAs) have emerged as key regulators of diverse cellular processes in mammals and plants. To date, no systematic screening of lncRNAs under abiotic stress and their regulatory roles in cassava has been reported. In this study, we present the first reference catalog of 682 high-confidence lncRNAs based on analysis of strand-specific RNA-seq data from cassava shoot apices and young leaves under cold, drought stress and control conditions. Among them, 16 lncRNAs were identified as putative target mimics of cassava known miRNAs. Additionally, by comparing with small RNA-seq data, we found 42 lncNATs and sense gene pairs can generate nat-siRNAs. We identified 318 lncRNAs responsive to cold and/or drought stress, which were typically co-expressed concordantly or discordantly with their neighboring genes. Trans-regulatory network analysis suggested that many lncRNAs were associated with hormone signal transduction, secondary metabolites biosynthesis, and sucrose metabolism pathway. The study provides an opportunity for future computational and experimental studies to uncover the functions of lncRNAs in cassava.
Collapse
Affiliation(s)
- Shuxia Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiang Yu
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ning Lei
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zhihao Cheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Pingjuan Zhao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenquan Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Ming Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
31
|
Yao Y, Bilichak A, Golubov A, Kovalchuk I. Arabidopsis thaliana siRNA biogenesis mutants have the lower frequency of homologous recombination. PLANT SIGNALING & BEHAVIOR 2016; 11:e1151599. [PMID: 26901311 PMCID: PMC4991315 DOI: 10.1080/15592324.2016.1151599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 05/31/2023]
Abstract
Small interfering RNAs (siRNAs) are involved in the regulation of plant development and response to stress. We have previously shown that mutants impaired in Dicer-like 2 (DCL2), DCL3 and DCL4, RDR2, RDR6 and NPRD1 are partially impaired in their response to stress and dcl2 and dcl3 plants are also impaired in transgenerational response to stress, including changes in homologous recombination frequency (HRF). Here, we have analyzed genome stability of dcl2, dcl3, dcl4, dcl2 dcl3, dcl2 dcl3 dcl4 and rdr6 mutants by measuring the non-induced and the stress-induced recombination frequency. We found that all mutants had the lower spontaneous HRF. The analysis of strand breaks showed that all tested Arabidopsis mutants had a higher level of spontaneous strand breaks, suggesting that the lower HRF is not due to the unusually low level of breaks. Exposure to methyl methane sulfonate (MMS) resulted in an increase in the level of strand breaks in wild-type plants and a decrease in mutants. All mutants had the higher methylation of cytosines at CpG sites under non-induced conditions. Exposure to MMS resulted in a decrease in methylation level in wild-type plants and an increase in methylation in all dcl mutants. The expression of several DNA repair genes was altered in dcl4 plants under non-induced and induced conditions. Our data suggest that siRNA biogenesis may be essential for the maintenance of the genome stability and stress response in Arabidopsis.
Collapse
Affiliation(s)
- Youli Yao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Andriy Bilichak
- Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Andrey Golubov
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Igor Kovalchuk
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
32
|
Rogans SJ, Rey C. Unveiling the Micronome of Cassava (Manihot esculenta Crantz). PLoS One 2016; 11:e0147251. [PMID: 26799216 PMCID: PMC4723133 DOI: 10.1371/journal.pone.0147251] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/03/2016] [Indexed: 12/03/2022] Open
Abstract
MicroRNAs (miRNAs) are an important class of endogenous non-coding single-stranded small RNAs (21-24 nt in length), which serve as post-transcriptional negative regulators of gene expression in plants. Despite the economic importance of Manihot esculenta Crantz (cassava) only 153 putative cassava miRNAs (from multiple germplasm) are available to date in miRBase (Version 21), and identification of a number of miRNAs from the cassava EST database have been limited to comparisons with Arabidopsis. In this study, mature sequences of all known plant miRNAs were used as a query for homologous searches against cassava EST and GSS databases, and additional identification of novel and conserved miRNAs were gleaned from next generation sequencing (NGS) of two cassava landraces (T200 from southern Africa and TME3 from West Africa) at three different stages post explant transplantation and acclimatization. EST and GSS derived data revealed 259 and 32 miRNAs in cassava, and one of the miRNA families (miR2118) from previous studies has not been reported in cassava. NGS data collectively displayed expression of 289 conserved miRNAs in leaf tissue, of which 230 had not been reported previously. Of the 289 conserved miRNAs identified in T200 and TME3, 208 were isomiRs. Thirty-nine novel cassava-specific miRNAs of low abundance, belonging to 29 families, were identified. Thirty-eight (98.6%) of the putative new miRNAs identified by NGS have not been previously reported in cassava. Several miRNA targets were identified in T200 and TME3, highlighting differential temporal miRNA expression between the two cassava landraces. This study contributes to the expanding knowledge base of the micronome of this important crop.
Collapse
Affiliation(s)
- Sarah Jane Rogans
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Chrissie Rey
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
33
|
Zheng C, Zhao L, Wang Y, Shen J, Zhang Y, Jia S, Li Y, Ding Z. Integrated RNA-Seq and sRNA-Seq Analysis Identifies Chilling and Freezing Responsive Key Molecular Players and Pathways in Tea Plant (Camellia sinensis). PLoS One 2015; 10:e0125031. [PMID: 25901577 PMCID: PMC4406609 DOI: 10.1371/journal.pone.0125031] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/19/2015] [Indexed: 12/17/2022] Open
Abstract
Tea [Camellia sinensis (L) O. Kuntze, Theaceae] is one of the most popular non-alcoholic beverages worldwide. Cold stress is one of the most severe abiotic stresses that limit tea plants’ growth, survival and geographical distribution. However, the genetic regulatory network and signaling pathways involved in cold stress responses in tea plants remain unearthed. Using RNA-Seq, DGE and sRNA-Seq technologies, we performed an integrative analysis of miRNA and mRNA expression profiling and their regulatory network of tea plants under chilling (4℃) and freezing (-5℃) stress. Differentially expressed (DE) miRNA and mRNA profiles were obtained based on fold change analysis, miRNAs and target mRNAs were found to show both coherent and incoherent relationships in the regulatory network. Furthermore, we compared several key pathways (e.g., ‘Photosynthesis’), GO terms (e.g., ‘response to karrikin’) and transcriptional factors (TFs, e.g., DREB1b/CBF1) which were identified as involved in the early chilling and/or freezing response of tea plants. Intriguingly, we found that karrikins, a new group of plant growth regulators, and β-primeverosidase (BPR), a key enzyme functionally relevant with the formation of tea aroma might play an important role in both early chilling and freezing response of tea plants. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis further confirmed the results from RNA-Seq and sRNA-Seq analysis. This is the first study to simultaneously profile the expression patterns of both miRNAs and mRNAs on a genome-wide scale to elucidate the molecular mechanisms of early responses of tea plants to cold stress. In addition to gaining a deeper insight into the cold resistant characteristics of tea plants, we provide a good case study to analyse mRNA/miRNA expression and profiling of non-model plant species using next-generation sequencing technology.
Collapse
Affiliation(s)
- Chao Zheng
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
- Key Laboratory of Genetic Improvement and Breeding for Horticultural Plants, Qingdao, Shandong, China
| | - Lei Zhao
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
- Key Laboratory of Genetic Improvement and Breeding for Horticultural Plants, Qingdao, Shandong, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
- Key Laboratory of Genetic Improvement and Breeding for Horticultural Plants, Qingdao, Shandong, China
| | - Jiazhi Shen
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
- Key Laboratory of Genetic Improvement and Breeding for Horticultural Plants, Qingdao, Shandong, China
| | - Yinfei Zhang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
- Key Laboratory of Genetic Improvement and Breeding for Horticultural Plants, Qingdao, Shandong, China
| | - Sisi Jia
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
- Key Laboratory of Genetic Improvement and Breeding for Horticultural Plants, Qingdao, Shandong, China
| | - Yusheng Li
- Fruit and Tea Technology Extension Station, Jinan, Shandong, China
| | - Zhaotang Ding
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
- Key Laboratory of Genetic Improvement and Breeding for Horticultural Plants, Qingdao, Shandong, China
- * E-mail:
| |
Collapse
|
34
|
Chen X, Xia J, Xia Z, Zhang H, Zeng C, Lu C, Zhang W, Wang W. Potential functions of microRNAs in starch metabolism and development revealed by miRNA transcriptome profiling of cassava cultivars and their wild progenitor. BMC PLANT BIOLOGY 2015; 15:33. [PMID: 25648603 PMCID: PMC4331152 DOI: 10.1186/s12870-014-0355-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/27/2014] [Indexed: 05/04/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are small (approximately 21 nucleotide) non-coding RNAs that are key post-transcriptional gene regulators in eukaryotic organisms. More than 100 cassava miRNAs have been identified in a conservation analysis and a repertoire of cassava miRNAs have also been characterised by next-generation sequencing (NGS) in recent studies. Here, using NGS, we profiled small non-coding RNAs and mRNA genes in two cassava cultivars and their wild progenitor to identify and characterise miRNAs that are potentially involved in plant growth and starch biosynthesis. RESULTS Six small RNA and six mRNA libraries from leaves and roots of the two cultivars, KU50 and Arg7, and their wild progenitor, W14, were subjected to NGS. Analysis of the sequencing data revealed 29 conserved miRNA families and 33 new miRNA families. Together, these miRNAs potentially targeted a total of 360 putative target genes. Whereas 16 miRNA families were highly expressed in cultivar leaves, another 13 miRNA families were highly expressed in storage roots of cultivars. Co-expression analysis revealed that the expression level of some targets had negative relationship with their corresponding miRNAs in storage roots and leaves; these targets included MYB33, ARF10, GRF1, RD19, APL2, NF-YA3 and SPL2, which are known to be involved in plant development, starch biosynthesis and response to environmental stimuli. CONCLUSION The identified miRNAs, target mRNAs and target gene ontology annotation all shed light on the possible functions of miRNAs in Manihot species. The differential expression of miRNAs between cultivars and their wild progenitor, together with our analysis of GO annotation and confirmation of miRNA: target pairs, might provide insight into know the differences between wild progenitor and cultivated cassava.
Collapse
Affiliation(s)
- Xin Chen
- The Institute of Tropical Bioscience and Biotechnology (ITBB), Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101, PR China.
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, PR China.
| | - Jing Xia
- Institute for Systems Biology, Jianghan University, Wuhan, 430056, China.
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri, MO, 63130, USA.
| | - Zhiqiang Xia
- The Institute of Tropical Bioscience and Biotechnology (ITBB), Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101, PR China.
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, PR China.
| | - Hefang Zhang
- The Institute of Tropical Bioscience and Biotechnology (ITBB), Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101, PR China.
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, PR China.
| | - Changying Zeng
- The Institute of Tropical Bioscience and Biotechnology (ITBB), Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101, PR China.
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, PR China.
| | - Cheng Lu
- The Institute of Tropical Bioscience and Biotechnology (ITBB), Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101, PR China.
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, PR China.
| | - Weixiong Zhang
- Institute for Systems Biology, Jianghan University, Wuhan, 430056, China.
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri, MO, 63130, USA.
| | - Wenquan Wang
- The Institute of Tropical Bioscience and Biotechnology (ITBB), Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101, PR China.
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, PR China.
| |
Collapse
|