1
|
Aseev LV, Koledinskaya LS, Boni IV. Extraribosomal Functions of Bacterial Ribosomal Proteins-An Update, 2023. Int J Mol Sci 2024; 25:2957. [PMID: 38474204 DOI: 10.3390/ijms25052957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Ribosomal proteins (r-proteins) are abundant, highly conserved, and multifaceted cellular proteins in all domains of life. Most r-proteins have RNA-binding properties and can form protein-protein contacts. Bacterial r-proteins govern the co-transcriptional rRNA folding during ribosome assembly and participate in the formation of the ribosome functional sites, such as the mRNA-binding site, tRNA-binding sites, the peptidyl transferase center, and the protein exit tunnel. In addition to their primary role in a cell as integral components of the protein synthesis machinery, many r-proteins can function beyond the ribosome (the phenomenon known as moonlighting), acting either as individual regulatory proteins or in complexes with various cellular components. The extraribosomal activities of r-proteins have been studied over the decades. In the past decade, our understanding of r-protein functions has advanced significantly due to intensive studies on ribosomes and gene expression mechanisms not only in model bacteria like Escherichia coli or Bacillus subtilis but also in little-explored bacterial species from various phyla. The aim of this review is to update information on the multiple functions of r-proteins in bacteria.
Collapse
Affiliation(s)
- Leonid V Aseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | | | - Irina V Boni
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| |
Collapse
|
2
|
Schroeder GM, Akinyemi O, Malik J, Focht CM, Pritchett E, Baker C, McSally JP, Jenkins JL, Mathews D, Wedekind J. A riboswitch separated from its ribosome-binding site still regulates translation. Nucleic Acids Res 2023; 51:2464-2484. [PMID: 36762498 PMCID: PMC10018353 DOI: 10.1093/nar/gkad056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/14/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Riboswitches regulate downstream gene expression by binding cellular metabolites. Regulation of translation initiation by riboswitches is posited to occur by metabolite-mediated sequestration of the Shine-Dalgarno sequence (SDS), causing bypass by the ribosome. Recently, we solved a co-crystal structure of a prequeuosine1-sensing riboswitch from Carnobacterium antarcticum that binds two metabolites in a single pocket. The structure revealed that the second nucleotide within the gene-regulatory SDS, G34, engages in a crystal contact, obscuring the molecular basis of gene regulation. Here, we report a co-crystal structure wherein C10 pairs with G34. However, molecular dynamics simulations reveal quick dissolution of the pair, which fails to reform. Functional and chemical probing assays inside live bacterial cells corroborate the dispensability of the C10-G34 pair in gene regulation, leading to the hypothesis that the compact pseudoknot fold is sufficient for translation attenuation. Remarkably, the C. antarcticum aptamer retained significant gene-regulatory activity when uncoupled from the SDS using unstructured spacers up to 10 nucleotides away from the riboswitch-akin to steric-blocking employed by sRNAs. Accordingly, our work reveals that the RNA fold regulates translation without SDS sequestration, expanding known riboswitch-mediated gene-regulatory mechanisms. The results infer that riboswitches exist wherein the SDS is not embedded inside a stable fold.
Collapse
Affiliation(s)
- Griffin M Schroeder
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Olayinka Akinyemi
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Department of Physics, University of Rochester, Rochester, NY 14642, USA
| | - Jeffrey Malik
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Caroline M Focht
- Department of Molecular Biophysics and Biochemistry and the Institute of Biomolecular Design and Discovery, Yale University, New Haven, CT 06516, USA
| | - Elizabeth M Pritchett
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Cameron D Baker
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - James P McSally
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Jermaine L Jenkins
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - David H Mathews
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Joseph E Wedekind
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
3
|
Tsui CKM, Sorrentino F, Narula G, Mendoza-Losana A, del Rio RG, Herrán EP, Lopez A, Bojang A, Zheng X, Remuiñán-Blanco MJ, Av-Gay Y. Hit Compounds and Associated Targets in Intracellular Mycobacterium tuberculosis. Molecules 2022; 27:molecules27144446. [PMID: 35889319 PMCID: PMC9324642 DOI: 10.3390/molecules27144446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, is one of the most devastating infectious agents in the world. Chemical-genetic characterization through in vitro evolution combined with whole genome sequencing analysis was used identify novel drug targets and drug resistance genes in Mtb associated with its intracellular growth in human macrophages. We performed a genome analysis of 53 Mtb mutants resistant to 15 different hit compounds. We found nonsynonymous mutations/indels in 30 genes that may be associated with drug resistance acquisitions. Beyond confirming previously identified drug resistance mechanisms such as rpoB and lead targets reported in novel anti-tuberculosis drug screenings such as mmpL3, ethA, and mbtA, we have discovered several unrecognized candidate drug targets including prrB. The exploration of the Mtb chemical mutant genomes could help novel drug discovery and the structural biology of compounds and associated mechanisms of action relevant to tuberculosis treatment.
Collapse
Affiliation(s)
- Clement K. M. Tsui
- Department of Medicine and Microbiology and Immunology, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (C.K.M.T.); (F.S.); (G.N.); (A.L.); (A.B.); (X.Z.)
- National Centre for Infectious Diseases, Tan Tock Seng Hospital, Singapore 308442, Singapore
| | - Flavia Sorrentino
- Department of Medicine and Microbiology and Immunology, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (C.K.M.T.); (F.S.); (G.N.); (A.L.); (A.B.); (X.Z.)
- GSK, Global Health Medicines R&D, PTM, Tres Cantos, 28760 Madrid, Spain; (A.M.-L.); (R.G.d.R.); (E.P.H.); (M.J.R.-B.)
| | - Gagandeep Narula
- Department of Medicine and Microbiology and Immunology, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (C.K.M.T.); (F.S.); (G.N.); (A.L.); (A.B.); (X.Z.)
| | - Alfonso Mendoza-Losana
- GSK, Global Health Medicines R&D, PTM, Tres Cantos, 28760 Madrid, Spain; (A.M.-L.); (R.G.d.R.); (E.P.H.); (M.J.R.-B.)
- Department of Bioengineering and Aerospace Engineering, Carlos III University of Madrid, 28040 Madrid, Spain
| | - Ruben Gonzalez del Rio
- GSK, Global Health Medicines R&D, PTM, Tres Cantos, 28760 Madrid, Spain; (A.M.-L.); (R.G.d.R.); (E.P.H.); (M.J.R.-B.)
| | - Esther Pérez Herrán
- GSK, Global Health Medicines R&D, PTM, Tres Cantos, 28760 Madrid, Spain; (A.M.-L.); (R.G.d.R.); (E.P.H.); (M.J.R.-B.)
| | - Abraham Lopez
- Department of Medicine and Microbiology and Immunology, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (C.K.M.T.); (F.S.); (G.N.); (A.L.); (A.B.); (X.Z.)
- GSK, Global Health Medicines R&D, PTM, Tres Cantos, 28760 Madrid, Spain; (A.M.-L.); (R.G.d.R.); (E.P.H.); (M.J.R.-B.)
| | - Adama Bojang
- Department of Medicine and Microbiology and Immunology, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (C.K.M.T.); (F.S.); (G.N.); (A.L.); (A.B.); (X.Z.)
| | - Xingji Zheng
- Department of Medicine and Microbiology and Immunology, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (C.K.M.T.); (F.S.); (G.N.); (A.L.); (A.B.); (X.Z.)
| | - Modesto Jesus Remuiñán-Blanco
- GSK, Global Health Medicines R&D, PTM, Tres Cantos, 28760 Madrid, Spain; (A.M.-L.); (R.G.d.R.); (E.P.H.); (M.J.R.-B.)
| | - Yossef Av-Gay
- Department of Medicine and Microbiology and Immunology, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (C.K.M.T.); (F.S.); (G.N.); (A.L.); (A.B.); (X.Z.)
- Correspondence: ; Tel.: +1-604-822-3432
| |
Collapse
|
4
|
Aseev LV, Koledinskaya LS, Bychenko OS, Boni IV. Regulation of Ribosomal Protein Synthesis in Mycobacteria: The Autogenous Control of rpsO. Int J Mol Sci 2021; 22:9679. [PMID: 34575857 PMCID: PMC8470358 DOI: 10.3390/ijms22189679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 01/23/2023] Open
Abstract
The autogenous regulation of ribosomal protein (r-protein) synthesis plays a key role in maintaining the stoichiometry of ribosomal components in bacteria. In this work, taking the rpsO gene as a classic example, we addressed for the first time the in vivo regulation of r-protein synthesis in the mycobacteria M. smegmatis (Msm) and M. tuberculosis (Mtb). We used a strategy based on chromosomally integrated reporters under the control of the rpsO regulatory regions and the ectopic expression of Msm S15 to measure its impact on the reporter expression. Because the use of E. coli as a host appeared inefficient, a fluorescent reporter system was developed by inserting Msm or Mtb rpsO-egfp fusions into the Msm chromosome and expressing Msm S15 or E. coli S15 in trans from a novel replicative shuttle vector, pAMYC. The results of the eGFP expression measurements in Msm cells provided evidence that the rpsO gene in Msm and Mtb was feedback-regulated at the translation level. The mutagenic analysis showed that the folding of Msm rpsO 5'UTR in a pseudoknot appeared crucial for repression by both Msm S15 and E. coli S15, thus indicating a striking resemblance of the rpsO feedback control in mycobacteria and in E. coli.
Collapse
Affiliation(s)
| | | | | | - Irina V. Boni
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (L.V.A.); (L.S.K.); (O.S.B.)
| |
Collapse
|
5
|
Discovery of 20 novel ribosomal leader candidates in bacteria and archaea. BMC Microbiol 2020; 20:130. [PMID: 32448158 PMCID: PMC7247131 DOI: 10.1186/s12866-020-01823-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/14/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RNAs perform many functions in addition to supplying coding templates, such as binding proteins. RNA-protein interactions are important in multiple processes in all domains of life, and the discovery of additional protein-binding RNAs expands the scope for studying such interactions. To find such RNAs, we exploited a form of ribosomal regulation. Ribosome biosynthesis must be tightly regulated to ensure that concentrations of rRNAs and ribosomal proteins (r-proteins) match. One regulatory mechanism is a ribosomal leader (r-leader), which is a domain in the 5' UTR of an mRNA whose genes encode r-proteins. When the concentration of one of these r-proteins is high, the protein binds the r-leader in its own mRNA, reducing gene expression and thus protein concentrations. To date, 35 types of r-leaders have been validated or predicted. RESULTS By analyzing additional conserved RNA structures on a multi-genome scale, we identified 20 novel r-leader structures. Surprisingly, these included new r-leaders in the highly studied organisms Escherichia coli and Bacillus subtilis. Our results reveal several cases where multiple unrelated RNA structures likely bind the same r-protein ligand, and uncover previously unknown r-protein ligands. Each r-leader consistently occurs upstream of r-protein genes, suggesting a regulatory function. That the predicted r-leaders function as RNAs is supported by evolutionary correlations in the nucleotide sequences that are characteristic of a conserved RNA secondary structure. The r-leader predictions are also consistent with the locations of experimentally determined transcription start sites. CONCLUSIONS This work increases the number of known or predicted r-leader structures by more than 50%, providing additional opportunities to study structural and evolutionary aspects of RNA-protein interactions. These results provide a starting point for detailed experimental studies.
Collapse
|
6
|
Ram-Mohan N, Meyer MM. Comparative Metatranscriptomics of Periodontitis Supports a Common Polymicrobial Shift in Metabolic Function and Identifies Novel Putative Disease-Associated ncRNAs. Front Microbiol 2020; 11:482. [PMID: 32328037 PMCID: PMC7160235 DOI: 10.3389/fmicb.2020.00482] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/05/2020] [Indexed: 01/08/2023] Open
Abstract
Periodontitis is an inflammatory disease that deteriorates bone supporting teeth afflicting ∼743 million people worldwide. Bacterial communities associated with disease have been classified into red, orange, purple, blue, green, and yellow complexes based on their roles in the periodontal pocket. Previous metagenomic and metatranscriptomics analyses suggest a common shift in metabolic signatures in disease vs. healthy communities with up-regulated processes including pyruvate fermentation, histidine degradation, amino acid metabolism, TonB-dependent receptors. In this work, we examine existing metatranscriptome datasets to identify the commonly differentially expressed transcripts and potential underlying RNA regulatory mechanisms behind the metabolic shifts. Raw RNA-seq reads from three studies (including 49 healthy and 48 periodontitis samples) were assembled into transcripts de novo. Analyses revealed 859 differentially expressed (DE) transcripts, 675 more- and 174 less-expressed. Only ∼20% of the DE transcripts originate from the pathogenic red/orange complexes, and ∼50% originate from organisms unaffiliated with a complex. Comparison of expression profiles revealed variations among disease samples; while specific metabolic processes are commonly up-regulated, the underlying organisms are diverse both within and across disease associated communities. Surveying DE transcripts for known ncRNAs from the Rfam database identified a large number of tRNAs and tmRNAs as well as riboswitches (FMN, glycine, lysine, and SAM) in more prevalent transcripts and the cobalamin riboswitch in both more and less prevalent transcripts. In silico discovery identified many putative ncRNAs in DE transcripts. We report 15 such putative ncRNAs having promising covariation in the predicted secondary structure and interesting genomic context. Seven of these are antisense of ribosomal proteins that are novel and may involve maintaining ribosomal protein stoichiometry during the disease associated metabolic shift. Our findings describe the role of organisms previously unaffiliated with disease and identify the commonality in progression of disease across three metatranscriptomic studies. We find that although the communities are diverse between individuals, the switch in metabolic signatures characteristic of disease is typically achieved through the contributions of several community members. Furthermore, we identify many ncRNAs (both known and putative) which may facilitate the metabolic shifts associated with periodontitis.
Collapse
Affiliation(s)
- Nikhil Ram-Mohan
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Michelle M Meyer
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
7
|
Stav S, Atilho RM, Mirihana Arachchilage G, Nguyen G, Higgs G, Breaker RR. Genome-wide discovery of structured noncoding RNAs in bacteria. BMC Microbiol 2019; 19:66. [PMID: 30902049 PMCID: PMC6429828 DOI: 10.1186/s12866-019-1433-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 03/07/2019] [Indexed: 12/15/2022] Open
Abstract
Background Structured noncoding RNAs (ncRNAs) play essential roles in many biological processes such as gene regulation, signaling, RNA processing, and protein synthesis. Among the most common groups of ncRNAs in bacteria are riboswitches. These cis-regulatory, metabolite-binding RNAs are present in many species where they regulate various metabolic and signaling pathways. Collectively, there are likely to be hundreds of novel riboswitch classes that remain hidden in the bacterial genomes that have already been sequenced, and potentially thousands of classes distributed among various other species in the biosphere. The vast majority of these undiscovered classes are proposed to be exceedingly rare, and so current bioinformatics search techniques are reaching their limits for differentiating between true riboswitch candidates and false positives. Results Herein, we exploit a computational search pipeline that can efficiently identify intergenic regions most likely to encode structured ncRNAs. Application of this method to five bacterial genomes yielded nearly 70 novel genetic elements including 30 novel candidate ncRNA motifs. Among the riboswitch candidates identified is an RNA motif involved in the regulation of thiamin biosynthesis. Conclusions Analysis of other genomes will undoubtedly lead to the discovery of many additional novel structured ncRNAs, and provide insight into the range of riboswitches and other kinds of ncRNAs remaining to be discovered in bacteria and archaea. Electronic supplementary material The online version of this article (10.1186/s12866-019-1433-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shira Stav
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, USA
| | - Ruben M Atilho
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, USA
| | | | - Giahoa Nguyen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, USA
| | - Gadareth Higgs
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, USA
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, USA. .,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, USA. .,Howard Hughes Medical Institute, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
8
|
Babina AM, Parker DJ, Li GW, Meyer MM. Fitness advantages conferred by the L20-interacting RNA cis-regulator of ribosomal protein synthesis in Bacillus subtilis. RNA (NEW YORK, N.Y.) 2018; 24:1133-1143. [PMID: 29925569 PMCID: PMC6097659 DOI: 10.1261/rna.065011.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 06/18/2018] [Indexed: 05/09/2023]
Abstract
In many bacteria, ribosomal proteins autogenously repress their own expression by interacting with RNA structures typically located in the 5'-UTRs of their mRNA transcripts. This regulation is necessary to maintain a balance between ribosomal proteins and rRNA to ensure proper ribosome production. Despite advances in noncoding RNA discovery and validation of RNA-protein regulatory interactions, the selective pressures that govern the formation and maintenance of such RNA cis-regulators in the context of an organism remain largely undetermined. To examine the impact disruptions to this regulation have on bacterial fitness, we introduced point mutations that abolish ribosomal protein binding and regulation into the RNA structure that controls expression of ribosomal proteins L20 and L35 within the Bacillus subtilis genome. Our studies indicate that removing this regulation results in reduced log phase growth, improper rRNA maturation, and the accumulation of a kinetically trapped or misassembled ribosomal particle at low temperatures, suggesting defects in ribosome synthesis. Such work emphasizes the important role regulatory RNAs play in the stoichiometric production of ribosomal components for proper ribosome composition and overall organism viability and reinforces the potential of targeting ribosomal protein production and ribosome assembly with novel antimicrobials.
Collapse
Affiliation(s)
- Arianne M Babina
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Darren J Parker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Gene-Wei Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Michelle M Meyer
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| |
Collapse
|
9
|
Mustoe AM, Busan S, Rice GM, Hajdin CE, Peterson BK, Ruda VM, Kubica N, Nutiu R, Baryza JL, Weeks KM. Pervasive Regulatory Functions of mRNA Structure Revealed by High-Resolution SHAPE Probing. Cell 2018; 173:181-195.e18. [PMID: 29551268 DOI: 10.1016/j.cell.2018.02.034] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/02/2018] [Accepted: 02/15/2018] [Indexed: 11/25/2022]
Abstract
mRNAs can fold into complex structures that regulate gene expression. Resolving such structures de novo has remained challenging and has limited our understanding of the prevalence and functions of mRNA structure. We use SHAPE-MaP experiments in living E. coli cells to derive quantitative, nucleotide-resolution structure models for 194 endogenous transcripts encompassing approximately 400 genes. Individual mRNAs have exceptionally diverse architectures, and most contain well-defined structures. Active translation destabilizes mRNA structure in cells. Nevertheless, mRNA structure remains similar between in-cell and cell-free environments, indicating broad potential for structure-mediated gene regulation. We find that the translation efficiency of endogenous genes is regulated by unfolding kinetics of structures overlapping the ribosome binding site. We discover conserved structured elements in 35% of UTRs, several of which we validate as novel protein binding motifs. RNA structure regulates every gene studied here in a meaningful way, implying that most functional structures remain to be discovered.
Collapse
Affiliation(s)
- Anthony M Mustoe
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA.
| | - Steven Busan
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Greggory M Rice
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA; Novartis Institutes for Biomedical Research, Inc., Cambridge, MA, USA
| | | | - Brant K Peterson
- Novartis Institutes for Biomedical Research, Inc., Cambridge, MA, USA
| | - Vera M Ruda
- Novartis Institutes for Biomedical Research, Inc., Cambridge, MA, USA
| | - Neil Kubica
- Novartis Institutes for Biomedical Research, Inc., Cambridge, MA, USA
| | - Razvan Nutiu
- Novartis Institutes for Biomedical Research, Inc., Cambridge, MA, USA
| | - Jeremy L Baryza
- Novartis Institutes for Biomedical Research, Inc., Cambridge, MA, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Meyer MM. rRNA Mimicry in RNA Regulation of Gene Expression. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0006-2017. [PMID: 29546840 PMCID: PMC11633770 DOI: 10.1128/microbiolspec.rwr-0006-2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 12/12/2022] Open
Abstract
The rRNA is the largest and most abundant RNA in bacterial and archaeal cells. It is also one of the best-characterized RNAs in terms of its structural motifs and sequence variation. Production of ribosome components including >50 ribosomal proteins (r-proteins) consumes significant cellular resources. Thus, RNA cis-regulatory structures that interact with r-proteins to repress further r-protein synthesis play an important role in maintaining appropriate stoichiometry between r-proteins and rRNA. Classically, such mRNA structures were thought to directly mimic the rRNA. However, more than 30 years of research has demonstrated that a variety of different recognition and regulatory paradigms are present. This review will demonstrate how structural mimicry between the rRNA and mRNA cis-regulatory structures may take many different forms. The collection of mRNA structures that interact with r-proteins to regulate r-protein operons are best characterized in Escherichia coli, but are increasingly found within species from nearly all phyla of bacteria and several archaea. Furthermore, they represent a unique opportunity to assess the plasticity of RNA structure in the context of RNA-protein interactions. The binding determinants imposed by r-proteins to allow regulation can be fulfilled in many ways. Some r-protein-interacting mRNAs are immediately obvious as rRNA mimics from primary sequence similarity, others are identifiable only after secondary or tertiary structure determination, and some show no obvious similarity. In addition, across different bacterial species a host of different mechanisms of action have been characterized, showing that there is no simple one-size-fits-all solution.
Collapse
|
11
|
Pei S, Slinger BL, Meyer MM. Recognizing RNA structural motifs in HT-SELEX data for ribosomal protein S15. BMC Bioinformatics 2017; 18:298. [PMID: 28587636 PMCID: PMC5461778 DOI: 10.1186/s12859-017-1704-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 05/22/2017] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Proteins recognize many different aspects of RNA ranging from single stranded regions to discrete secondary or tertiary structures. High-throughput sequencing (HTS) of in vitro selected populations offers a large scale method to study RNA-proteins interactions. However, most existing analysis methods require that the binding motifs are enriched in the population relative to earlier rounds, and that motifs are found in a loop or single stranded region of the potential RNA secondary structure. Such methods do not generalize to all RNA-protein interaction as some RNA binding proteins specifically recognize more complex structures such as double stranded RNA. RESULTS In this study, we use HT-SELEX derived populations to study the landscape of RNAs that interact with Geobacillus kaustophilus ribosomal protein S15. Our data show high sequence and structure diversity and proved intractable to existing methods. Conventional programs identified some sequence motifs, but these are found in less than 5-10% of the total sequence pool. Therefore, we developed a novel framework to analyze HT-SELEX data. Our process accounts for both sequence and structure components by abstracting the overall secondary structure into smaller substructures composed of a single base-pair stack, which allows us to leverage existing approaches already used in k-mer analysis to identify enriched motifs. By focusing on secondary structure motifs composed of specific two base-pair stacks, we identified significantly enriched or depleted structure motifs relative to earlier rounds. CONCLUSIONS Discrete substructures are likely to be important to RNA-protein interactions, but they are difficult to elucidate. Substructures can help make highly diverse sequence data more tractable. The structure motifs provide limited accuracy in predicting enrichment suggesting that G. kaustophilus S15 can either recognize many different secondary structure motifs or some aspects of the interaction are not captured by the analysis. This highlights the importance of considering secondary and tertiary structure elements and their role in RNA-protein interactions.
Collapse
Affiliation(s)
- Shermin Pei
- Boston College, 140 Commonwealth Ave., 02467, Chestnut Hill, USA
| | - Betty L Slinger
- Boston College, 140 Commonwealth Ave., 02467, Chestnut Hill, USA
| | - Michelle M Meyer
- Boston College, 140 Commonwealth Ave., 02467, Chestnut Hill, USA.
| |
Collapse
|
12
|
Slinger BL, Meyer MM. RNA regulators responding to ribosomal protein S15 are frequent in sequence space. Nucleic Acids Res 2016; 44:9331-9341. [PMID: 27580716 PMCID: PMC5100602 DOI: 10.1093/nar/gkw754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/19/2016] [Indexed: 02/07/2023] Open
Abstract
There are several natural examples of distinct RNA structures that interact with the same ligand to regulate the expression of homologous genes in different organisms. One essential question regarding this phenomenon is whether such RNA regulators are the result of convergent or divergent evolution. Are the RNAs derived from some common ancestor and diverged to the point where we cannot identify the similarity, or have multiple solutions to the same biological problem arisen independently? A key variable in assessing these alternatives is how frequently such regulators arise within sequence space. Ribosomal protein S15 is autogenously regulated via an RNA regulator in many bacterial species; four apparently distinct regulators have been functionally validated in different bacterial phyla. Here, we explore how frequently such regulators arise within a partially randomized sequence population. We find many RNAs that interact specifically with ribosomal protein S15 from Geobacillus kaustophilus with biologically relevant dissociation constants. Furthermore, of the six sequences we characterize, four show regulatory activity in an Escherichia coli reporter assay. Subsequent footprinting and mutagenesis analysis indicates that protein binding proximal to regulatory features such as the Shine–Dalgarno sequence is sufficient to enable regulation, suggesting that regulation in response to S15 is relatively easily acquired.
Collapse
Affiliation(s)
- Betty L Slinger
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | - Michelle M Meyer
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
13
|
Slinger BL, Newman H, Lee Y, Pei S, Meyer MM. Co-evolution of Bacterial Ribosomal Protein S15 with Diverse mRNA Regulatory Structures. PLoS Genet 2015; 11:e1005720. [PMID: 26675164 PMCID: PMC4684408 DOI: 10.1371/journal.pgen.1005720] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 11/10/2015] [Indexed: 11/19/2022] Open
Abstract
RNA-protein interactions are critical in many biological processes, yet how such interactions affect the evolution of both partners is still unknown. RNA and protein structures are impacted very differently by mechanisms of genomic change. While most protein families are identifiable at the nucleotide level across large phylogenetic distances, RNA families display far less nucleotide similarity and are often only shared by closely related bacterial species. Ribosomal protein S15 has two RNA binding functions. First, it is a ribosomal protein responsible for organizing the rRNA during ribosome assembly. Second, in many bacterial species S15 also interacts with a structured portion of its own transcript to negatively regulate gene expression. While the first interaction is conserved in most bacteria, the second is not. Four distinct mRNA structures interact with S15 to enable regulation, each of which appears to be independently derived in different groups of bacteria. With the goal of understanding how protein-binding specificity may influence the evolution of such RNA regulatory structures, we examine whether examples of these mRNA structures are able to interact with, and regulate in response to, S15 homologs from organisms containing distinct mRNA structures. We find that despite their shared RNA binding function in the rRNA, S15 homologs have distinct RNA recognition profiles. We present a model to explain the specificity patterns observed, and support this model by with further mutagenesis. After analyzing the patterns of conservation for the S15 protein coding sequences, we also identified amino acid changes that alter the binding specificity of an S15 homolog. In this work we demonstrate that homologous RNA-binding proteins have different specificity profiles, and minor changes to amino acid sequences, or to RNA structural motifs, can have large impacts on RNA-protein recognition.
Collapse
Affiliation(s)
- Betty L. Slinger
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Hunter Newman
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Younghan Lee
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Shermin Pei
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Michelle M. Meyer
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Babina AM, Soo MW, Fu Y, Meyer MM. An S6:S18 complex inhibits translation of E. coli rpsF. RNA (NEW YORK, N.Y.) 2015; 21:2039-46. [PMID: 26447183 PMCID: PMC4647458 DOI: 10.1261/rna.049544.115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 08/06/2015] [Indexed: 05/09/2023]
Abstract
More than half of the ribosomal protein operons in Escherichia coli are regulated by structures within the mRNA transcripts that interact with specific ribosomal proteins to inhibit further protein expression. This regulation is accomplished using a variety of mechanisms and the RNA structures responsible for regulation are often not conserved across bacterial phyla. A widely conserved mRNA structure preceding the ribosomal protein operon containing rpsF and rpsR (encoding S6 and S18) was recently identified through comparative genomics. Examples of this RNA from both E. coli and Bacillus subtilis were shown to interact in vitro with an S6:S18 complex. In this work, we demonstrate that in E. coli, this RNA structure regulates gene expression in response to the S6:S18 complex. β-galactosidase activity from a lacZ reporter translationally fused to the 5' UTR and first nine codons of E. coli rpsF is reduced fourfold by overexpression of a genomic fragment encoding both S6 and S18 but not by overexpression of either protein individually. Mutations to the mRNA structure, as well as to the RNA-binding site of S18 and the S6-S18 interaction surfaces of S6 and S18, are sufficient to derepress β-galactosidase activity, indicating that the S6:S18 complex is the biologically active effector. Measurement of transcript levels shows that although reporter levels do not change upon protein overexpression, levels of the native transcript are reduced fourfold, suggesting that the mRNA regulator prevents translation and this effect is amplified on the native transcript by other mechanisms.
Collapse
Affiliation(s)
- Arianne M Babina
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Mark W Soo
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Yang Fu
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Michelle M Meyer
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| |
Collapse
|
15
|
Duval M, Simonetti A, Caldelari I, Marzi S. Multiple ways to regulate translation initiation in bacteria: Mechanisms, regulatory circuits, dynamics. Biochimie 2015; 114:18-29. [PMID: 25792421 DOI: 10.1016/j.biochi.2015.03.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/08/2015] [Indexed: 11/15/2022]
Abstract
To adapt their metabolism rapidly and constantly in response to environmental variations, bacteria often target the translation initiation process, during which the ribosome assembles on the mRNA. Here, we review different mechanisms of regulation mediated by cis-acting elements, sRNAs and proteins, showing, when possible, their intimate connection with the translational apparatus. Indeed the ribosome itself could play a direct role in several regulatory mechanisms. Different features of the regulatory signals (sequences, structures and their positions on the mRNA) are contributing to the large variety of regulatory mechanisms. Ribosome heterogeneity, variation of individual cells responses and the spatial and temporal organization of the translation process add more layers of complexity. This hampers to define manageable set of rules for bacterial translation initiation control.
Collapse
Affiliation(s)
- Mélodie Duval
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, F-67084 Strasbourg, France
| | - Angelita Simonetti
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, F-67084 Strasbourg, France
| | - Isabelle Caldelari
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, F-67084 Strasbourg, France
| | - Stefano Marzi
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, F-67084 Strasbourg, France
| |
Collapse
|