1
|
Gundappa MK, Robledo D, Hamilton A, Houston RD, Prendergast JGD, Macqueen DJ. High performance imputation of structural and single nucleotide variants using low-coverage whole genome sequencing. Genet Sel Evol 2025; 57:16. [PMID: 40155798 PMCID: PMC11951665 DOI: 10.1186/s12711-025-00962-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/01/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Whole genome sequencing (WGS), despite its advantages, is yet to replace methods for genotyping single nucleotide variants (SNVs) such as SNP arrays and targeted genotyping assays. Structural variants (SVs) have larger effects on traits than SNVs, but are more challenging to accurately genotype. Using low-coverage WGS with genotype imputation offers a cost-effective strategy to achieve genome-wide variant coverage, but is yet to be tested for SVs. METHODS Here, we investigate combined SNV and SV imputation with low-coverage WGS data in Atlantic salmon (Salmo salar). As the reference panel, we used genotypes for high-confidence SVs and SNVs for n = 365 wild individuals sampled from diverse populations. We also generated 15 × WGS data (n = 20 samples) for a commercial population external to the reference panel, and called SVs and SNVs with gold-standard approaches. An imputation method selected for its established performance using low-coverage sequencing data (GLIMPSE) was tested at WGS depths of 1 × , 2 × , 3 × , and 4 × for samples within and external to the reference panel. RESULTS SNVs were imputed with high accuracy and recall across all WGS depths, including for samples out-with the reference panel. For SVs, we compared imputation based purely on linkage disequilibrium (LD) with SNVs, to that supplemented with SV genotype likelihoods (GLs) from low-coverage WGS. Including SV GLs increased imputation accuracy, but as a trade-off with recall, requiring 3-4 × depth for best performance. Combining strategies allowed us to capture 84% of the reference panel deletions with 87% accuracy at 1 × depth. We also show that SV length affects imputation performance, with provision of SV GLs greatly enhancing accuracy for the longest SVs in the dataset. CONCLUSIONS This study highlights the promise of reference panel imputation using low-coverage WGS, including novel opportunities to enhance the resolution of genome-wide association studies by capturing SVs.
Collapse
Affiliation(s)
- Manu Kumar Gundappa
- Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands.
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
| | - Diego Robledo
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - Alastair Hamilton
- Hendrix Genetics, Villa 'de Körver', Spoorstraat, 695831 CK, Boxmeer, The Netherlands
| | - Ross D Houston
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
- Benchmark Genetics, Pioneer House, Edinburgh Technopole, Penicuik, EH26 0BB, UK
| | - James G D Prendergast
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - Daniel J Macqueen
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| |
Collapse
|
2
|
Fischer D, Tapio M, Bitz O, Iso-Touru T, Kause A, Tapio I. Fine-tuning GBS data with comparison of reference and mock genome approaches for advancing genomic selection in less studied farmed species. BMC Genomics 2025; 26:111. [PMID: 39910437 PMCID: PMC11796084 DOI: 10.1186/s12864-025-11296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Diversifying animal cultivation demands efficient genotyping for enabling genomic selection, but non-model species lack efficient genotyping solutions. The aim of this study was to optimize a genotyping-by-sequencing (GBS) double-digest RAD-sequencing (ddRAD) pipeline. Bovine data was used to automate the bioinformatic analysis. The application of the optimization was demonstrated on non-model European whitefish data. RESULTS DdRAD data generation was designed for a reliable estimation of relatedness and is scalable to up to 384 samples. The GBS sequencing yielded approximately one million reads for each of the around 100 assessed samples. Optimizing various strategies to create a de-novo reference genome for variant calling (mock reference) showed that using three samples outperformed other building strategies with single or very large number of samples. Adjustments to most pipeline tuning parameters had limited impact on high-quality data, except for the identity criterion for merging mock reference genome clusters. For each species, over 15k GBS variants based on the mock reference were obtained and showed comparable results with the ones called using an existing reference genome. Repeatability analysis showed high concordance over replicates, particularly in bovine while in European whitefish data repeatability did not exceed earlier observations. CONCLUSIONS The proposed cost-effective ddRAD strategy, coupled with an efficient bioinformatics workflow, enables broad adoption of ddRAD GBS across diverse farmed species. While beneficial, a reference genome is not obligatory. The integration of Snakemake streamlines the pipeline usage on computer clusters and supports customization. This user-friendly solution facilitates genotyping for both model and non-model species.
Collapse
Affiliation(s)
- Daniel Fischer
- Applied Statistical Methods, Natural Resources, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland.
| | - Miika Tapio
- Genomics and Breeding, Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland
| | - Oliver Bitz
- Genomics and Breeding, Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland
| | - Terhi Iso-Touru
- Genomics and Breeding, Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland
| | - Antti Kause
- Genomics and Breeding, Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland
| | - Ilma Tapio
- Genomics and Breeding, Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland
| |
Collapse
|
3
|
Thompson NF, Sutherland BJG, Green TJ, Delomas TA. A free lunch: microhaplotype discovery in an existing amplicon panel improves parentage assignment for the highly polymorphic Pacific oyster. G3 (BETHESDA, MD.) 2025; 15:jkae280. [PMID: 39700397 PMCID: PMC11797050 DOI: 10.1093/g3journal/jkae280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024]
Abstract
Amplicon panels using genotyping by sequencing methods are now common, but have focused on characterizing SNP markers. We investigate how microhaplotype (MH) discovery within a recently developed Pacific oyster (Magallana gigas) amplicon panel could increase the statistical power for relationship assignment. Trios (offspring and two parents) from three populations in a newly established breeding program were genotyped on a 592 locus panel. After processing, 92% of retained amplicons contained polymorphic MH variants and 85% of monomorphic SNP markers contained MH variation. The increased allelic richness resulted in substantially improved power for relationship assignment with much lower estimated false positive rates. No substantive differences in assignment accuracy occurred between SNP and MH datasets, but using MHs increased the separation in log-likelihood values between true parents and highly related potential parents (aunts and uncles). A high number of Mendelian incompatibilities among trios were observed, likely due to null alleles. Further development of a MH panel, including removing loci with high rates of null alleles, would enable high-throughput genotyping by reducing panel size and therefore cost for Pacific oyster research and breeding programs.
Collapse
Affiliation(s)
- Neil F Thompson
- Pacific Shellfish Research Unit, USDA Agricultural Research Service, 2030 SE Marine Science Drive, Newport, OR 97365, USA
| | - Ben J G Sutherland
- Sutherland Bioinformatics, Lantzville, BC V0R 2H0, Canada
- Faculty of Science and Technology, Vancouver Island University, 900 Fifth Street, Nanaimo, BC V9R 5S5, Canada
| | - Timothy J Green
- Faculty of Science and Technology, Vancouver Island University, 900 Fifth Street, Nanaimo, BC V9R 5S5, Canada
| | - Thomas A Delomas
- National Cold Water Marine Aquaculture Center, USDA Agricultural Research Service, 483 CBLS, 120 Flagg Road, Kingston, RI 02881, USA
| |
Collapse
|
4
|
Ma Y, Xiao Y, Xiao Z, Li J. Development of DNA Insertion-specific Markers Based on the Intron Region of Oplegnathus punctatus itih4b for Genetic Sex Identification. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1120-1128. [PMID: 39136869 DOI: 10.1007/s10126-024-10359-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/08/2024] [Indexed: 11/07/2024]
Abstract
Spotted knifejaw (Oplegnathus punctatus) is a significant marine fish species that exhibits pronounced sexual dimorphism, with males generally exhibiting greater weight and growth rates than females. Therefore, the farming of O. punctatus with a high proportion of males is beneficial for improving the quality and efficiency of the O. punctatus aquaculture industry. Furthermore, the development of a rapid technique in sexing O. punctatus fry will facilitate the selection and breeding of superior male varieties of O. punctatus. In this study, genome-wide scanning, comparative genomics, and structural variation analysis methods were employed to identify and extract the homologous region of the inter-alpha-trypsin inhibitor heavy chain 4 (itih4b) gene on the X and Y chromosomes from the complete genome sequence of O. punctatus. This analysis revealed the presence of a large segment of DNA insertion markers on the Y chromosome in the region. Itih4b plays an important role in the mechanisms that regulate inflammatory and immune responses in multicellular organisms. The method described here involved the design of a pair of primers to amplify two bands of 532 bp and 333 bp in males (individuals with DNA insertion variants in the intron of the itih4b gene). In females (individuals without DNA insertion), only one band of 333 bp could be distinguished by agarose gel electrophoresis. This method shortened the time required to accurately characterize intronic DNA insertion variants and genetic sexes in O. punctatus, thereby improving detection efficiency. This study has significant value for the large-scale breeding of O. punctatus all-male seedlings and provides a reference point for the study of intron variation regulation and RNA shearing in the itih4b gene.
Collapse
Affiliation(s)
- Yuting Ma
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Yongshuang Xiao
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Zhizhong Xiao
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jun Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
5
|
Zhou Q, Wang J, Li J, Chen Z, Wang N, Li M, Wang L, Si Y, Lu S, Cui Z, Liu X, Chen S. Decoding the fish genome opens a new era in important trait research and molecular breeding in China. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2064-2083. [PMID: 39145867 DOI: 10.1007/s11427-023-2670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/01/2024] [Indexed: 08/16/2024]
Abstract
Aquaculture represents the fastest-growing global food production sector, as it has become an essential component of the global food supply. China has the world's largest aquaculture industry in terms of production volume. However, the sustainable development of fish culture is hindered by several concerns, including germplasm degradation and disease outbreaks. The practice of genomic breeding, which relies heavily on genome information and genotypephenotype relationships, has significant potential for increasing the efficiency of aquaculture production. In 2014, the completion of the genome sequencing and annotation of the Chinese tongue sole signified the beginning of the fish genomics era in China. Since then, domestic researchers have made dramatic progress in functional genomic studies. To date, the genomes of more than 60 species of fish in China have been assembled and annotated. Based on these reference genomes, evolutionary, comparative, and functional genomic studies have revolutionized our understanding of a wide range of biologically and economically important traits of fishes, including growth and development, sex determination, disease resistance, metamorphosis, and pigmentation. Furthermore, genomic tools and breeding techniques such as SNP arrays, genomic selection, and genome editing have greatly accelerated genetic improvement through the incorporation of functional genomic information into breeding activities. This review aims to summarize the current status, advances, and perspectives of the genome resources, genomic study of important traits, and genomic breeding techniques of fish in China. The review will provide aquaculture researchers, fish breeders, and farmers with updated information concerning fish genomic research and breeding technology. The summary will help to promote the genetic improvement of production traits and thus will support the sustainable development of fish aquaculture.
Collapse
Affiliation(s)
- Qian Zhou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Jialin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Jiongtang Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100041, China
| | - Zhangfan Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Na Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Ming Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Lei Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Yufeng Si
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Sheng Lu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Zhongkai Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Xuhui Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| |
Collapse
|
6
|
Ulloa PE, Jilberto F, Lam N, Rincón G, Valenzuela L, Cordova-Alarcón V, Hernández AJ, Dantagnan P, Ravanal MC, Elgueta S, Araneda C. Identification of Single-Nucleotide Polymorphisms in Differentially Expressed Genes Favoring Soybean Meal Tolerance in Higher-Growth Zebrafish (Danio rerio). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:754-765. [PMID: 38958822 DOI: 10.1007/s10126-024-10343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Genetic variability within the same fish species could confer soybean meal (SBM) tolerance in some individuals, thus favoring growth. This study investigates the single-nucleotide polymorphisms (SNPs) in differentially expressed genes (DEGs) favoring SBM tolerance in higher-growth zebrafish (Danio rerio). In a previous work, nineteen families of zebrafish were fed a fish meal diet (100FM control diet) or SBM-based diets supplemented with saponin (50SBM + 2SPN-experimental diet), from juvenile to adult stages. Individuals were selected from families with a genotype-by-environment interaction higher (170 ± 18 mg) or lower (76 ± 10 mg) weight gain on 50SBM + 2SPN in relation to 100FM. Intestinal transcriptomic analysis using RNA-seq revealed six hundred and sixty-five differentially expressed genes in higher-growth fish fed 50SBM + 2SPN diet. In this work, using these results, 47 SNPs in DEGs were selected. These SNPs were genotyped by Sequenom in 340 zebrafish that were fed with a 50SBM + 2SPN diet or with 100FM diet. Marker-trait analysis revealed 4 SNPs associated with growth in 3 immunity-related genes (aif1l, arid3c, and cst14b.2) in response to the 50SBM + 2SPN diet (p-value < 0.05). Two SNPs belonging to aif1l y arid3c produce a positive (+19 mg) and negative (-26 mg) effect on fish growth, respectively. These SNPs can be used as markers to improve the early selection of tolerant fish to SBM diet or other plant-based diets. These genes can be used as biomarkers to identify SNPs in commercial fish, thus contributing to the aquaculture sustainability.
Collapse
Affiliation(s)
- Pilar E Ulloa
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Universidad de Las Américas, Avenida Manuel Montt 948, Santiago, 7500975, Chile.
| | - Felipe Jilberto
- Food Quality Research Center, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
- Laboratorio de Genética y Biotecnología en Acuicultura, Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
| | - Natalia Lam
- Food Quality Research Center, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
- Laboratorio de Genética y Biotecnología en Acuicultura, Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
| | | | - Luis Valenzuela
- INRIA Chile, Avenida Apoquindo 2827, piso 12, Santiago, 7550312, Chile
| | - Valentina Cordova-Alarcón
- Food Quality Research Center, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
- Laboratorio de Genética y Biotecnología en Acuicultura, Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
| | - Adrián J Hernández
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, 4780000, Chile
| | - Patricio Dantagnan
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, 4780000, Chile
| | - Maria Cristina Ravanal
- Instituto de Ciencia y Tecnología de los Alimentos (ICYTAL), Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile, Isla Teja, Avda. Julio Sarrazín s/n, Valdivia, 5090000, Chile
| | - Sebastian Elgueta
- Facultad de Ciencias Para El Cuidado de La Salud, Universidad San Sebastian, Sede Los Leones, Santiago, Chile
| | - Cristian Araneda
- Food Quality Research Center, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
- Laboratorio de Genética y Biotecnología en Acuicultura, Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
| |
Collapse
|
7
|
Gutierrez AP, Selly SLC, Pountney SM, Taggart JB, Kokkinias P, Cavrois-Rogacki T, Fernandez EJ, Migaud H, Lein I, Davie A, Bekaert M. Development of genomic markers associated to growth-related traits and sex determination in lumpfish (Cyclopterus lumpus). Genomics 2023; 115:110721. [PMID: 37769819 DOI: 10.1016/j.ygeno.2023.110721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Cleaner fish species have gained great importance in the control of sea lice, among them, lumpfish (Cyclopterus lumpus) has become one of the most popular. Lumpfish life cycle has been closed, and hatchery reproduction is now possible, however, current production is reliant on wild caught broodstock to meet the increasing demand. Selective breeding practices are called to play an important role in the successful breeding of most aquaculture species, including lumpfish. In this study we analysed a lumpfish population for the identification of genomic markers linked to production traits. Sequencing of RAD libraries allowed us to identify, 7193 informative markers within the sampled individuals. Genome wide association analysis for sex, weight, condition factor and standard length was performed. One single major QTL region was identified for sex, while nine QTL regions were detected for weight, and three QTL regions for standard length. A total of 177 SNP markers of interest (from QTL regions) and 399 high Fst SNP markers were combined in a low-density panel, useful to obtain relevant genetic information from lumpfish populations. Moreover, a robust combined subset of 29 SNP markers (10 associated to sex, 14 to weight and 18 to standard length) provided over 90% accuracy in predicting the animal's phenotype by machine learning. Overall, our findings provide significant insights into the genetic control of important traits in lumpfish and deliver important genomic resources that will facilitate the establishment of selective breeding programmes in lumpfish.
Collapse
Affiliation(s)
- Alejandro P Gutierrez
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Sarah-Louise Counter Selly
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Samuel M Pountney
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK; University of Victoria, Victoria, BC V8P 5C2, Canada
| | - John B Taggart
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Panagiotis Kokkinias
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | | | | | - Herve Migaud
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Ingrid Lein
- Nofima AS, Sjølsengvegen 22, Sunndalsøra 6600, Norway
| | - Andrew Davie
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Michaël Bekaert
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| |
Collapse
|
8
|
Gao G, Waldbieser GC, Youngblood RC, Zhao D, Pietrak MR, Allen MS, Stannard JA, Buchanan JT, Long RL, Milligan M, Burr G, Mejía-Guerra K, Sheehan MJ, Scheffler BE, Rexroad CE, Peterson BC, Palti Y. The generation of the first chromosome-level de novo genome assembly and the development and validation of a 50K SNP array for the St. John River aquaculture strain of North American Atlantic salmon. G3 (BETHESDA, MD.) 2023; 13:jkad138. [PMID: 37335943 PMCID: PMC10468304 DOI: 10.1093/g3journal/jkad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
Atlantic salmon (Salmo salar) in Northeastern US and Eastern Canada has high economic value for the sport fishing and aquaculture industries. Large differences exist between the genomes of Atlantic salmon of European origin and North American (N.A.) origin. Given the genetic and genomic differences between the 2 lineages, it is crucial to develop unique genomic resources for N.A. Atlantic salmon. Here, we describe the resources that we recently developed for genomic and genetic research in N.A. Atlantic salmon aquaculture. Firstly, a new single nucleotide polymorphism (SNP) database for N.A. Atlantic salmon consisting of 3.1 million putative SNPs was generated using data from whole-genome resequencing of 80 N.A. Atlantic salmon individuals. Secondly, a high-density 50K SNP array enriched for the genic regions of the genome and containing 3 sex determination and 61 putative continent of origin markers was developed and validated. Thirdly, a genetic map composed of 27 linkage groups with 36K SNP markers was generated from 2,512 individuals in 141 full-sib families. Finally, a chromosome-level de novo genome assembly from a male N.A. Atlantic salmon from the St. John River aquaculture strain was generated using PacBio long reads. Information from Hi-C proximity ligation sequences and Bionano optical mapping was used to concatenate the contigs into scaffolds. The assembly contains 1,755 scaffolds and only 1,253 gaps, with a total length of 2.83 Gb and N50 of 17.2 Mb. A BUSCO analysis detected 96.2% of the conserved Actinopterygii genes in the assembly, and the genetic linkage information was used to guide the formation of 27 chromosome sequences. Comparative analysis with the reference genome assembly of the European Atlantic salmon confirmed that the karyotype differences between the 2 lineages are caused by a fission in chromosome Ssa01 and 3 chromosome fusions including the p arm of chromosome Ssa01 with Ssa23, Ssa08 with Ssa29, and Ssa26 with Ssa28. The genomic resources we have generated for Atlantic salmon provide a crucial boost for genetic research and for management of farmed and wild populations in this highly valued species.
Collapse
Affiliation(s)
- Guangtu Gao
- USDA-ARS National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Geoffrey C Waldbieser
- USDA-ARS Warmwater Aquaculture Research Unit, 141 Experimental Station Road, Stoneville, MS 38776, USA
| | - Ramey C Youngblood
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Dongyan Zhao
- Breeding Insight, 119 CALS Surge Facility, Cornell University, 525 Tower Road, Ithaca, NY 14853, USA
| | - Michael R Pietrak
- USDA-ARS National Cold Water Marine Aquaculture Center, 25 Salmon Farm Road, Franklin, ME 04634, USA
| | - Melissa S Allen
- Center for Aquaculture Technologies, 8395 Camino Santa Fe, San Diego, CA 92121, USA
| | - Jason A Stannard
- Center for Aquaculture Technologies, 8395 Camino Santa Fe, San Diego, CA 92121, USA
| | - John T Buchanan
- Center for Aquaculture Technologies, 8395 Camino Santa Fe, San Diego, CA 92121, USA
| | - Roseanna L Long
- USDA-ARS National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Melissa Milligan
- USDA-ARS National Cold Water Marine Aquaculture Center, 25 Salmon Farm Road, Franklin, ME 04634, USA
| | - Gary Burr
- USDA-ARS National Cold Water Marine Aquaculture Center, 25 Salmon Farm Road, Franklin, ME 04634, USA
| | - Katherine Mejía-Guerra
- Breeding Insight, 119 CALS Surge Facility, Cornell University, 525 Tower Road, Ithaca, NY 14853, USA
| | - Moira J Sheehan
- Breeding Insight, 119 CALS Surge Facility, Cornell University, 525 Tower Road, Ithaca, NY 14853, USA
| | - Brian E Scheffler
- USDA-ARS Genomics and Bioinformatics Research Unit, 141 Experimental Station Road, Stoneville, MS 38776, USA
| | - Caird E Rexroad
- USDA-ARS Office of National Programs, George Washington Carver Center Room 4-2106, 5601 Sunnyside Avenue, Beltsville, MD 20705, USA
| | - Brian C Peterson
- USDA-ARS National Cold Water Marine Aquaculture Center, 25 Salmon Farm Road, Franklin, ME 04634, USA
| | - Yniv Palti
- USDA-ARS National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| |
Collapse
|
9
|
Moghadam HK, Fannemel B, Thorland I, Lozano C, Hillestad B. Identification and Genomic Localization of Autosomal sdY Locus in a Population of Atlantic Salmon (Salmo salar). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023:10.1007/s10126-023-10217-4. [PMID: 37233880 DOI: 10.1007/s10126-023-10217-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023]
Abstract
The determination of sex in salmonid fishes is controlled by genetic mechanisms, with males being the heterogametic sex. The master sex-determining gene, the sexually dimorphic gene on the Y chromosome (sdY), is a conserved gene across various salmonid species. Nevertheless, variations in the genomic location of sdY have been observed both within and between species. Furthermore, different studies have reported discordances in the association between the sdY and the phenotypic gender. While some males seem to lack this locus, there have been reports of females carrying sdY. Although the exact reasons behind this discordance remain under investigation, some recent studies have proposed the existence of an autosomal, non-functional copy of sdY as a potential cause. In this study, we confirmed the presence of this autosomal sdY in the SalmoBreed strain of Atlantic salmon using a genotyping platform through a novel approach that allows for high-throughput screening of a large number of individuals. We further characterized the segregation profile of this locus across families and found the ratio of genetically assigned female-to-male progeny to be in accordance with the expected profile of a single autosomal sdY locus. Additionally, our mapping efforts localized this locus to chromosome 3 and suggested a putative copy on chromosome 6.
Collapse
|
10
|
Nascimento‐Schulze JC, Bean TP, Peñaloza C, Paris JR, Whiting JR, Simon A, Fraser BA, Houston RD, Bierne N, Ellis RP. SNP discovery and genetic structure in blue mussel species using low coverage sequencing and a medium density 60 K SNP-array. Evol Appl 2023; 16:1044-1060. [PMID: 37216031 PMCID: PMC10197230 DOI: 10.1111/eva.13552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/15/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Blue mussels from the genus Mytilus are an abundant component of the benthic community, found in the high latitude habitats. These foundation species are relevant to the aquaculture industry, with over 2 million tonnes produced globally each year. Mussels withstand a wide range of environmental conditions and species from the Mytilus edulis complex readily hybridize in regions where their distributions overlap. Significant effort has been made to investigate the consequences of environmental stress on mussel physiology, reproductive isolation, and local adaptation. Yet our understanding on the genomic mechanisms underlying such processes remains limited. In this study, we developed a multi species medium-density 60 K SNP-array including four species of the Mytilus genus. SNPs included in the platform were called from 138 mussels from 23 globally distributed mussel populations, sequenced using a whole-genome low coverage approach. The array contains polymorphic SNPs which capture the genetic diversity present in mussel populations thriving across a gradient of environmental conditions (~59 K SNPs) and a set of published and validated SNPs informative for species identification and for diagnosis of transmissible cancer (610 SNPs). The array will allow the consistent genotyping of individuals, facilitating the investigation of ecological and evolutionary processes in these taxa. The applications of this array extend to shellfish aquaculture, contributing to the optimization of this industry via genomic selection of blue mussels, parentage assignment, inbreeding assessment and traceability. Further applications such as genome wide association studies (GWAS) for key production traits and those related to environmental resilience are especially relevant to safeguard aquaculture production under climate change.
Collapse
Affiliation(s)
- Jennifer C. Nascimento‐Schulze
- Biosciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
- Centre for Environment, Fisheries and Aquaculture ScienceWeymouth LaboratoryWeymouthUK
| | - Tim P. Bean
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Carolina Peñaloza
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Josephine R. Paris
- Biosciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - James R. Whiting
- Biosciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Alexis Simon
- ISEMUniversity of Montpellier, CNRS, IRDMontpellierFrance
| | - Bonnie A. Fraser
- Biosciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | | | - Nicolas Bierne
- ISEMUniversity of Montpellier, CNRS, IRDMontpellierFrance
| | - Robert P. Ellis
- Biosciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
- Centre for Sustainable Aquaculture FuturesUniversity of ExeterExeterUK
| |
Collapse
|
11
|
Guo X, Puritz JB, Wang Z, Proestou D, Allen S, Small J, Verbyla K, Zhao H, Haggard J, Chriss N, Zeng D, Lundgren K, Allam B, Bushek D, Gomez-Chiarri M, Hare M, Hollenbeck C, La Peyre J, Liu M, Lotterhos KE, Plough L, Rawson P, Rikard S, Saillant E, Varney R, Wikfors G, Wilbur A. Development and Evaluation of High-Density SNP Arrays for the Eastern Oyster Crassostrea virginica. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:174-191. [PMID: 36622459 DOI: 10.1007/s10126-022-10191-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The eastern oyster Crassostrea virginica is a major aquaculture species for the USA. The sustainable development of eastern oyster aquaculture depends upon the continued improvement of cultured stocks through advanced breeding technologies. The Eastern Oyster Breeding Consortium (EOBC) was formed to advance the genetics and breeding of the eastern oyster. To facilitate efficient genotyping needed for genomic studies and selection, the consortium developed two single-nucleotide polymorphism (SNP) arrays for the eastern oyster: one screening array with 566K SNPs and one breeders' array with 66K SNPs. The 566K screening array was developed based on whole-genome resequencing data from 292 oysters from Atlantic and Gulf of Mexico populations; it contains 566,262 SNPs including 47K from protein-coding genes with a marker conversion rate of 48.34%. The 66K array was developed using best-performing SNPs from the screening array, which contained 65,893 oyster SNPs including 22,984 genic markers with a calling rate of 99.34%, a concordance rate of 99.81%, and a much-improved marker conversion rate of 92.04%. Null alleles attributable to large indels were found in 13.1% of the SNPs, suggesting that copy number variation is pervasive. Both arrays provided easy identification and separation of selected stocks from wild progenitor populations. The arrays contain 31 mitochondrial SNPs that allowed unambiguous identification of Gulf mitochondrial genotypes in some Atlantic populations. The arrays also contain 756 probes from 13 oyster and human pathogens for possible detection. Our results show that marker conversion rate is low in high polymorphism species and that the two-step process of array development can greatly improve array performance. The two arrays will advance genomic research and accelerate genetic improvement of the eastern oyster by delineating genetic architecture of production traits and enabling genomic selection. The arrays also may be used to monitor pedigree and inbreeding, identify selected stocks and their introgression into wild populations, and assess the success of oyster restoration.
Collapse
Affiliation(s)
- Ximing Guo
- Haskin Shellfish Research Laboratory, Rutgers University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA.
| | - Jonathan B Puritz
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI, 02881, USA
| | - Zhenwei Wang
- Haskin Shellfish Research Laboratory, Rutgers University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA
| | - Dina Proestou
- USDA ARS NCWMAC Shellfish Genetics Lab, 120 Flagg Rd., Kingston, RI, 02881, USA
| | - Standish Allen
- Virginia Institute of Marine Science, 1375 Greate Rd., Gloucester Pt., VA, 23062, USA
| | - Jessica Small
- Virginia Institute of Marine Science, 1375 Greate Rd., Gloucester Pt., VA, 23062, USA
| | | | - Honggang Zhao
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, 14853, USA
| | - Jaime Haggard
- Haskin Shellfish Research Laboratory, Rutgers University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA
| | - Noah Chriss
- Haskin Shellfish Research Laboratory, Rutgers University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA
| | - Dan Zeng
- Haskin Shellfish Research Laboratory, Rutgers University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA
| | - Kathryn Lundgren
- USDA ARS NCWMAC Shellfish Genetics Lab, 120 Flagg Rd., Kingston, RI, 02881, USA
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | - David Bushek
- Haskin Shellfish Research Laboratory, Rutgers University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA
| | - Marta Gomez-Chiarri
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, 120 Flagg Road, Kingston, RI, 02881, USA
| | - Matthew Hare
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, 14853, USA
| | - Christopher Hollenbeck
- Texas A&M University - Corpus Christi, Texas A&M AgriLife Research, 6300 Ocean Drive Unit 5892, Corpus Christi, TX, 78412, USA
| | - Jerome La Peyre
- School of Animal Sciences, Louisiana State University Agricultural Center, 201 Animal and Food Sciences Laboratory Building, Forestry Lane, Baton Rouge, LA, 70803, USA
| | - Ming Liu
- Patuxent Environmental and Aquatic Research Laboratory, Morgan State University, 10545 Mackall Road, Saint Leonard, MD, 20685, USA
| | - Katie E Lotterhos
- Northeastern Marine Science Center, 430 Nahant Rd, Nahant, MA, 01908, USA
| | - Louis Plough
- Horn Point Lab, University of Maryland, 5745 Lovers Lane, Cambridge, MD, 21613, USA
| | - Paul Rawson
- School of Marine Sciences, University of Maine, 5751 Murray Hall, , Orono, ME, 04469, USA
| | - Scott Rikard
- School of Fisheries Aquaculture and Aquatic Sciences, Auburn University Shellfish Laboratory, Auburn University, 150 Agassiz St., Dauphin Island, AL, 36528, USA
| | - Eric Saillant
- School of Ocean Science and Engineering, The University of Southern Mississippi, 103 McIlwain Drive, Ocean Springs, MS, 39564, USA
| | - Robin Varney
- Shellfish Research Hatchery, University of North Carolina Wilmington, 5600 Marvin K. Moss Ln., Wilmington, NC, 28409, USA
| | - Gary Wikfors
- Milford CT Laboratory, NOAA Fisheries, 212 Rogers Avenue, Milford, CT, 06460, USA
| | - Ami Wilbur
- Shellfish Research Hatchery, University of North Carolina Wilmington, 5600 Marvin K. Moss Ln., Wilmington, NC, 28409, USA
| |
Collapse
|
12
|
Jones HE, Wilson PB. Progress and opportunities through use of genomics in animal production. Trends Genet 2022; 38:1228-1252. [PMID: 35945076 DOI: 10.1016/j.tig.2022.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 01/24/2023]
Abstract
The rearing of farmed animals is a vital component of global food production systems, but its impact on the environment, human health, animal welfare, and biodiversity is being increasingly challenged. Developments in genetic and genomic technologies have had a key role in improving the productivity of farmed animals for decades. Advances in genome sequencing, annotation, and editing offer a means not only to continue that trend, but also, when combined with advanced data collection, analytics, cloud computing, appropriate infrastructure, and regulation, to take precision livestock farming (PLF) and conservation to an advanced level. Such an approach could generate substantial additional benefits in terms of reducing use of resources, health treatments, and environmental impact, while also improving animal health and welfare.
Collapse
Affiliation(s)
- Huw E Jones
- UK Genetics for Livestock and Equines (UKGLE) Committee, Department for Environment, Food and Rural Affairs, Nobel House, 17 Smith Square, London, SW1P 3JR, UK; Nottingham Trent University, Brackenhurst Campus, Brackenhurst Lane, Southwell, NG25 0QF, UK.
| | - Philippe B Wilson
- UK Genetics for Livestock and Equines (UKGLE) Committee, Department for Environment, Food and Rural Affairs, Nobel House, 17 Smith Square, London, SW1P 3JR, UK; Nottingham Trent University, Brackenhurst Campus, Brackenhurst Lane, Southwell, NG25 0QF, UK
| |
Collapse
|
13
|
Taggart JB, Leaver MJ, Bekaert M. DNA polymorphism underlying allozyme variation at a malic enzyme locus (mMEP-2*) in Atlantic salmon (Salmo salar L.). JOURNAL OF FISH BIOLOGY 2022; 101:1371-1374. [PMID: 35912429 PMCID: PMC9804884 DOI: 10.1111/jfb.15182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
A non-synonymous single nucleotide polymorphism (SNP) underlies a diallelic allozyme polymorphism at the mitochondrial NADP-dependent mMEP-2* locus in Atlantic salmon (Salmo salar L.). The resultant amino acid substitution, which alters the charge of the allelic products, matches the differential mobility of the two allozyme alleles, whereas allozyme and SNP assays revealed genotyping concordance in 257 of 258 individuals. A single mismatch, homozygous allozyme vs. heterozygote SNP, suggests the presence of a second, less common null allele.
Collapse
Affiliation(s)
- John B. Taggart
- Institute of Aquaculture, Faculty of Natural SciencesUniversity of StirlingStirlingScotlandUK
| | - Michael J. Leaver
- Institute of Aquaculture, Faculty of Natural SciencesUniversity of StirlingStirlingScotlandUK
| | - Michaël Bekaert
- Institute of Aquaculture, Faculty of Natural SciencesUniversity of StirlingStirlingScotlandUK
| |
Collapse
|
14
|
Carrier A, Prunier J, Poisson W, Trottier-Lavoie M, Gilbert I, Cavedon M, Pokharel K, Kantanen J, Musiani M, Côté SD, Albert V, Taillon J, Bourret V, Droit A, Robert C. Design and validation of a 63K genome-wide SNP-genotyping platform for caribou/reindeer (Rangifer tarandus). BMC Genomics 2022; 23:687. [PMID: 36199020 PMCID: PMC9533608 DOI: 10.1186/s12864-022-08899-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Development of large single nucleotide polymorphism (SNP) arrays can make genomic data promptly available for conservation problematic. Medium and high-density panels can be designed with sufficient coverage to offer a genome-wide perspective and the generated genotypes can be used to assess different genetic metrics related to population structure, relatedness, or inbreeding. SNP genotyping could also permit sexing samples with unknown associated metadata as it is often the case when using non-invasive sampling methods favored for endangered species. Genome sequencing of wild species provides the necessary information to design such SNP arrays. We report here the development of a SNP-array for endangered Rangifer tarandus using a multi-platform sequencing approach from animals found in diverse populations representing the entire circumpolar distribution of the species. RESULTS From a very large comprehensive catalog of SNPs detected over the entire sample set (N = 894), a total of 63,336 SNPs were selected. SNP selection accounted for SNPs evenly distributed across the entire genome (~ every 50Kb) with known minor alleles across populations world-wide. In addition, a subset of SNPs was selected to represent rare and local alleles found in Eastern Canada which could be used for ecotype and population assignments - information urgently needed for conservation planning. In addition, heterozygosity from SNPs located in the X-chromosome and genotyping call-rate of SNPs located into the SRY gene of the Y-chromosome yielded an accurate and robust sexing assessment. All SNPs were validated using a high-throughput SNP-genotyping chip. CONCLUSION This design is now integrated into the first genome-wide commercially available genotyping platform for Rangifer tarandus. This platform would pave the way to future genomic investigation of populations for this endangered species, including estimation of genetic diversity parameters, population assignments, as well as animal sexing from genetic SNP data for non-invasive samples.
Collapse
Affiliation(s)
- Alexandra Carrier
- Département de sciences animales, Faculté de l'agriculture et d'alimentation, Université Laval, Quebec City, Québec, Canada.,Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Quebec City, Québec, Canada.,Réseau Québécois en reproduction (RQR), Saint-Hyacinthe, Québec, Canada
| | - Julien Prunier
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Quebec City, Québec, Canada
| | - William Poisson
- Département de sciences animales, Faculté de l'agriculture et d'alimentation, Université Laval, Quebec City, Québec, Canada.,Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Quebec City, Québec, Canada.,Réseau Québécois en reproduction (RQR), Saint-Hyacinthe, Québec, Canada
| | - Mallorie Trottier-Lavoie
- Département de sciences animales, Faculté de l'agriculture et d'alimentation, Université Laval, Quebec City, Québec, Canada.,Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Quebec City, Québec, Canada.,Réseau Québécois en reproduction (RQR), Saint-Hyacinthe, Québec, Canada
| | - Isabelle Gilbert
- Département de sciences animales, Faculté de l'agriculture et d'alimentation, Université Laval, Quebec City, Québec, Canada.,Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Quebec City, Québec, Canada.,Réseau Québécois en reproduction (RQR), Saint-Hyacinthe, Québec, Canada
| | - Maria Cavedon
- Department of biological sciences, Faculty of Science, University of Calgary, Calgary, Canada
| | | | - Juha Kantanen
- Natural Resources Institute Finland, Jokioinen, Finland
| | - Marco Musiani
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| | - Steeve D Côté
- Département de biologie - Faculté de sciences et génie, Caribou Ungava, Université Laval, Quebec City, Québec, Canada
| | - Vicky Albert
- Ministère des Forêts, de la Faune et des Parcs du Québec (MFFP), Quebec City, Québec, Canada
| | - Joëlle Taillon
- Ministère des Forêts, de la Faune et des Parcs du Québec (MFFP), Quebec City, Québec, Canada
| | - Vincent Bourret
- Ministère des Forêts, de la Faune et des Parcs du Québec (MFFP), Quebec City, Québec, Canada
| | - Arnaud Droit
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Quebec City, Québec, Canada
| | - Claude Robert
- Département de sciences animales, Faculté de l'agriculture et d'alimentation, Université Laval, Quebec City, Québec, Canada. .,Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Quebec City, Québec, Canada. .,Réseau Québécois en reproduction (RQR), Saint-Hyacinthe, Québec, Canada.
| |
Collapse
|
15
|
Animal board invited review: Widespread adoption of genetic technologies is key to sustainable expansion of global aquaculture. Animal 2022; 16:100642. [PMID: 36183431 PMCID: PMC9553672 DOI: 10.1016/j.animal.2022.100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022] Open
Abstract
The extent of application of genetic technologies to aquaculture production varies widely by species and geography. Achieving a more universal application of seed derived from scientifically based breeding programmes is an important goal in order to meet increasing global demands for seafood production. This article reviews the status of genetic technologies across the world’s top 10 highly produced species. Opportunities and barriers to achieving broad-scale uptake of genetic technologies in global aquaculture are discussed. A future outlook for potential disruptive genetic technologies and how they might affect global aquaculture production is given.
Aquaculture production comprises a diverse range of species, geographies, and farming systems. The application of genetics and breeding technologies towards improved production is highly variable, ranging from the use of wild-sourced seed through to advanced family breeding programmes augmented by genomic techniques. This technical variation exists across some of the most highly produced species globally, with several of the top ten global species by volume generally lacking well-managed breeding programmes. Given the well-documented incremental and cumulative benefits of genetic improvement on production, this is a major missed opportunity. This short review focusses on (i) the status of application of selective breeding in the world’s most produced aquaculture species, (ii) the range of genetic technologies available and the opportunities they present, and (iii) a future outlook towards realising the potential contribution of genetic technologies to aquaculture sustainability and global food security.
Collapse
|
16
|
Zeng Q, Zhao B, Wang H, Wang M, Teng M, Hu J, Bao Z, Wang Y. Aquaculture Molecular Breeding Platform (AMBP): a comprehensive web server for genotype imputation and genetic analysis in aquaculture. Nucleic Acids Res 2022; 50:W66-W74. [PMID: 35639514 PMCID: PMC9252723 DOI: 10.1093/nar/gkac424] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 12/26/2022] Open
Abstract
It is of vital importance to understand the population structure, dissect the genetic bases of performance traits, and make proper strategies for selection in breeding programs. However, there is no single webserver covering the specific needs in aquaculture. We present Aquaculture Molecular Breeding Platform (AMBP), the first web server for genetic data analysis in aquatic species of farming interest. AMBP integrates the haplotype reference panels of 18 aquaculture species, which greatly improves the accuracy of genotype imputation. It also supports multiple tools to infer genetic structures, dissect the genetic architecture of performance traits, estimate breeding values, and predict optimum contribution. All the tools are coherently linked in a web-interface for users to generate interpretable results and evaluate statistical appropriateness. The webserver supports standard VCF and PLINK (PED, MAP) files, and implements automated pipelines for format transformation and visualization to simplify the process of analysis. As a demonstration, we applied the webserver to Pacific white shrimp and Atlantic salmon datasets. In summary, AMBP constitutes comprehensive resources and analytical tools for exploring genetic data and guiding practical breeding programs. AMBP is available at http://mgb.qnlm.ac.
Collapse
Affiliation(s)
- Qifan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.,Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanog Inst, Ocean Univ China, Sanya 572000, Peoples R China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Baojun Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hao Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Mengqiu Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Mingxuan Teng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.,Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanog Inst, Ocean Univ China, Sanya 572000, Peoples R China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.,Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanog Inst, Ocean Univ China, Sanya 572000, Peoples R China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yangfan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
17
|
Neumann GB, Korkuć P, Arends D, Wolf MJ, May K, Reißmann M, Elzaki S, König S, Brockmann GA. Design and performance of a bovine 200 k SNP chip developed for endangered German Black Pied cattle (DSN). BMC Genomics 2021; 22:905. [PMID: 34922441 PMCID: PMC8684242 DOI: 10.1186/s12864-021-08237-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/03/2021] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND German Black Pied cattle (DSN) are an endangered dual-purpose breed which was largely replaced by Holstein cattle due to their lower milk yield. DSN cattle are kept as a genetic reserve with a current herd size of around 2500 animals. The ability to track sequence variants specific to DSN could help to support the conservation of DSN's genetic diversity and to provide avenues for genetic improvement. RESULTS Whole-genome sequencing data of 304 DSN cattle were used to design a customized DSN200k SNP chip harboring 182,154 variants (173,569 SNPs and 8585 indels) based on ten selection categories. We included variants of interest to DSN such as DSN unique variants and variants from previous association studies in DSN, but also variants of general interest such as variants with predicted consequences of high, moderate, or low impact on the transcripts and SNPs from the Illumina BovineSNP50 BeadChip. Further, the selection of variants based on haplotype blocks ensured that the whole-genome was uniformly covered with an average variant distance of 14.4 kb on autosomes. Using 300 DSN and 162 animals from other cattle breeds including Holstein, endangered local cattle populations, and also a Bos indicus breed, performance of the SNP chip was evaluated. Altogether, 171,978 (94.31%) of the variants were successfully called in at least one of the analyzed breeds. In DSN, the number of successfully called variants was 166,563 (91.44%) while 156,684 (86.02%) were segregating at a minor allele frequency > 1%. The concordance rate between technical replicates was 99.83 ± 0.19%. CONCLUSION The DSN200k SNP chip was proved useful for DSN and other Bos taurus as well as one Bos indicus breed. It is suitable for genetic diversity management and marker-assisted selection of DSN animals. Moreover, variants that were segregating in other breeds can be used for the design of breed-specific customized SNP chips. This will be of great value in the application of conservation programs for endangered local populations in the future.
Collapse
Affiliation(s)
- Guilherme B Neumann
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Berlin, Germany
| | - Paula Korkuć
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Berlin, Germany
| | - Danny Arends
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Berlin, Germany
| | - Manuel J Wolf
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität, Gießen, Germany
| | - Katharina May
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität, Gießen, Germany
| | - Monika Reißmann
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Berlin, Germany
| | - Salma Elzaki
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Berlin, Germany.,Department of Genetics and Animal Breeding, Faculty of Animal Production, University of Khartoum, Khartoum North, Sudan
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität, Gießen, Germany
| | - Gudrun A Brockmann
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
18
|
Chu PY, Li JX, Hsu TH, Gong HY, Lin CY, Wang JH, Huang CW. Identification of Genes Related to Cold Tolerance and Novel Genetic Markers for Molecular Breeding in Taiwan Tilapia ( Oreochromis spp.) via Transcriptome Analysis. Animals (Basel) 2021; 11:3538. [PMID: 34944312 PMCID: PMC8697892 DOI: 10.3390/ani11123538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Taiwan tilapia is one of the primary species used in aquaculture practices in Taiwan. However, as a tropical fish, it is sensitive to cold temperatures that can lead to high mortality rates during winter months. Genetic and broodstock management strategies using marker-assisted selection and breeding are the best tools currently available to improve seed varieties for tilapia species. The purpose of this study was to develop molecular markers for cold stress-related genes using digital gene expression analysis of next-generation transcriptome sequencing in Taiwan tilapia (Oreochromis spp.). We constructed and sequenced cDNA libraries from the brain, gill, liver, and muscle tissues of cold-tolerance (CT) and cold-sensitivity (CS) strains. Approximately 35,214,833,100 nucleotides of raw sequencing reads were generated, and these were assembled into 128,147 unigenes possessing a total length of 185,382,926 bp and an average length of 1446 bp. A total of 25,844 unigenes were annotated using five protein databases and Venny analysis, and 38,377 simple sequence repeats (SSRs) and 65,527 single nucleotide polymorphisms (SNPs) were identified. Furthermore, from the 38-cold tolerance-related genes that were identified using differential gene expression analysis in the four tissues, 13 microsatellites and 37 single nucleotide polymorphism markers were identified. The results of the genotype analysis revealed that the selected markers could be used for population genetics. In addition to the diversity assessment, one of the SNP markers was determined to be significantly related to cold-tolerance traits and could be used as a molecular marker to assist in the selection and verification of cold-tolerant populations. The specific genetic markers explored in this study can be used for the identification of genetic polymorphisms and cold tolerance traits in Taiwan tilapia, and they can also be used to further explore the physiological and biochemical molecular regulation pathways of fish that are involved in their tolerance to environmental temperature stress.
Collapse
Affiliation(s)
- Pei-Yun Chu
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan; (P.-Y.C.); (J.-X.L.); (T.-H.H.); (H.-Y.G.)
| | - Jia-Xian Li
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan; (P.-Y.C.); (J.-X.L.); (T.-H.H.); (H.-Y.G.)
| | - Te-Hua Hsu
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan; (P.-Y.C.); (J.-X.L.); (T.-H.H.); (H.-Y.G.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Hong-Yi Gong
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan; (P.-Y.C.); (J.-X.L.); (T.-H.H.); (H.-Y.G.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei 11529, Taiwan;
| | - Jung-Hua Wang
- Department of Electrical Engineering, National Taiwan Ocean University, Keelung City 20224, Taiwan;
- AI Research Center, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Chang-Wen Huang
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan; (P.-Y.C.); (J.-X.L.); (T.-H.H.); (H.-Y.G.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City 20224, Taiwan
| |
Collapse
|
19
|
Verbyla KL, Kube PD, Evans BS. Commercial implementation of genomic selection in Tasmanian Atlantic salmon: Scheme evolution and validation. Evol Appl 2021; 15:631-644. [PMID: 35505884 PMCID: PMC9046822 DOI: 10.1111/eva.13304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022] Open
Abstract
Genomic information was included for the first time in the prediction of breeding values for Atlantic salmon within the Australian Salmon Enterprises of Tasmania Pty Ltd selective breeding program in 2016. The process to realize genomic selection in the breeding program begun in 2014 with the scheme finalized and fully implemented for the first time in 2018. The high potential of within family selection to accelerate genetic gain, something not possible using the traditional pedigree‐based approach, provided the impetus for implementation. Efficient and effective genotyping platforms are essential for genomic selection. Genotype data from high density arrays revealed extensive persistence of linkage disequilibrium in the Tasmania Atlantic salmon population, resulting in high accuracies of both imputation and genomic breeding values when using imputed data. Consequently, a low‐density novel genotype‐by‐sequence assay was designed and incorporated into the scheme. Through the use of a static high‐ and dynamic low‐density genotyping platforms, an optimized genotyping scheme was devised and implemented such that all individuals in every year class are genotyped efficiently while maximizing the genetic gains and minimizing costs. The increase in the rates of genetic gain attributed to the implementation of genomic selection is significant across both the breeding programs primary and secondary traits. Substantial improvement in the ability to select parents prior to progeny testing is observed across multiple years. The resultant economic impacts for the industry are considerable based on the increases in genetic gain for traits achieved within the breeding program and the use of genomic selection for commercial production.
Collapse
|
20
|
Development of a multi-species SNP array for serrasalmid fish Colossoma macropomum and Piaractus mesopotamicus. Sci Rep 2021; 11:19289. [PMID: 34588599 PMCID: PMC8481427 DOI: 10.1038/s41598-021-98885-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Scarce genomic resources have limited the development of breeding programs for serrasalmid fish Colossoma macropomum (tambaqui) and Piaractus mesopotamicus (pacu), the key native freshwater fish species produced in South America. The main objectives of this study were to design a dense SNP array for this fish group and to validate its performance on farmed populations from several locations in South America. Using multiple approaches based on different populations of tambaqui and pacu, a final list of 29,575 and 29,612 putative SNPs was selected, respectively, to print an Axiom AFFYMETRIX (THERMOFISHER) SerraSNP array. After validation, 74.17% (n = 21,963) and 71.25% (n = 21,072) of SNPs were classified as polymorphic variants in pacu and tambaqui, respectively. Most of the SNPs segregated within each population ranging from 14,199 to 19,856 in pacu; and from 15,075 to 20,380 in tambaqui. Our results indicate high levels of genetic diversity and clustered samples according to their hatchery origin. The developed SerraSNP array represents a valuable genomic tool approaching in-depth genetic studies for these species.
Collapse
|
21
|
Fan H, Wang T, Li Y, Liu H, Dong Y, Zhang R, Wang H, Shang L, Xing X. Development and validation of a 1 K sika deer (Cervus nippon) SNP Chip. BMC Genom Data 2021; 22:35. [PMID: 34535071 PMCID: PMC8447661 DOI: 10.1186/s12863-021-00994-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/09/2021] [Indexed: 11/10/2022] Open
Abstract
Background China is the birthplace of the deer family and the country with the most abundant deer resources. However, at present, China’s deer industry faces the problem that pure sika deer and hybrid deer cannot be easily distinguished. Therefore, the development of a SNP identification chip is urgently required. Results In this study, 250 sika deer, 206 red deer, 23 first-generation hybrid deer (F1), 20 s-generation hybrid deer (F2), and 20 third-generation hybrid deer (F3) were resequenced. Using the chromosome-level sika deer genome as the reference sequence, mutation detection was performed on all individuals, and a total of 130,306,923 SNP loci were generated. After quality control filtering was performed, the remaining 31,140,900 loci were confirmed. From molecular-level and morphological analyses, the sika deer reference population and the red deer reference population were established. The Fst values of all SNPs in the two reference populations were calculated. According to customized algorithms and strict screening principles, 1000 red deer-specific SNP sites were finally selected for chip design, and 63 hybrid individuals were determined to contain red deer-specific SNP loci. The results showed that the gene content of red deer gradually decreased in subsequent hybrid generations, and this decrease roughly conformed to the law of statistical genetics. Reaction probes were designed according to the screening sites. All candidate sites met the requirements of the Illumina chip scoring system. The average score was 0.99, and the MAF was in the range of 0.3277 to 0.3621. Furthermore, 266 deer (125 sika deer, 39 red deer, 56 F1, 29 F2,17 F3) were randomly selected for 1 K SNP chip verification. The results showed that among the 1000 SNP sites, 995 probes were synthesized, 4 of which could not be typed, while 973 loci were polymorphic. PCA, random forest and ADMIXTURE results showed that the 1 K sika deer SNP chip was able to clearly distinguish sika deer, red deer, and hybrid deer and that this 1 K SNP chip technology may provide technical support for the protection and utilization of pure sika deer species resources. Conclusion We successfully developed a low-density identification chip that can quickly and accurately distinguish sika deer from their hybrid offspring, thereby providing technical support for the protection and utilization of pure sika deer germplasm resources. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-00994-z.
Collapse
Affiliation(s)
- Huanhuan Fan
- Key Laboratory of Molecular Biology of Special Economic Animals, Institute of Special Products, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Tianjiao Wang
- Key Laboratory of Molecular Biology of Special Economic Animals, Institute of Special Products, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Yang Li
- Key Laboratory of Molecular Biology of Special Economic Animals, Institute of Special Products, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Huitao Liu
- Key Laboratory of Molecular Biology of Special Economic Animals, Institute of Special Products, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Yimeng Dong
- Key Laboratory of Molecular Biology of Special Economic Animals, Institute of Special Products, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Ranran Zhang
- Key Laboratory of Molecular Biology of Special Economic Animals, Institute of Special Products, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Hongliang Wang
- Key Laboratory of Molecular Biology of Special Economic Animals, Institute of Special Products, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Liyuan Shang
- Jilin Animal Husbandry and Veterinary Research Institute Changchun, Changchun, 130112, China
| | - Xiumei Xing
- Key Laboratory of Molecular Biology of Special Economic Animals, Institute of Special Products, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| |
Collapse
|
22
|
A major quantitative trait locus affecting resistance to Tilapia lake virus in farmed Nile tilapia (Oreochromis niloticus). Heredity (Edinb) 2021; 127:334-343. [PMID: 34262170 PMCID: PMC8405827 DOI: 10.1038/s41437-021-00447-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023] Open
Abstract
Enhancing host resistance to infectious disease has received increasing attention in recent years as a major goal of farm animal breeding programs. Combining field data with genomic tools can provide opportunities to understand the genetic architecture of disease resistance, leading to new opportunities for disease control. In the current study, a genome-wide association study was performed to assess resistance to the Tilapia lake virus (TiLV), one of the biggest threats affecting Nile tilapia (Oreochromis niloticus); a key aquaculture species globally. A pond outbreak of TiLV in a pedigreed population of the GIFT strain was observed, with 950 fish classified as either survivor or mortality, and genotyped using a 65 K SNP array. A significant QTL of large effect was identified on chromosome Oni22. The average mortality rate of tilapia homozygous for the resistance allele at the most significant SNP (P value = 4.51E-10) was 11%, compared to 43% for tilapia homozygous for the susceptibility allele. Several candidate genes related to host response to viral infection were identified within this QTL, including lgals17, vps52, and trim29. These results provide a rare example of a major QTL affecting a trait of major importance to a farmed animal. Genetic markers from the QTL region have potential in marker-assisted selection to improve host resistance, providing a genetic solution to an infectious disease where few other control or mitigation options currently exist.
Collapse
|
23
|
Song H, Hu H. Strategies to improve the accuracy and reduce costs of genomic prediction in aquaculture species. Evol Appl 2021; 15:578-590. [PMID: 35505889 PMCID: PMC9046917 DOI: 10.1111/eva.13262] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/30/2021] [Accepted: 06/07/2021] [Indexed: 11/27/2022] Open
Affiliation(s)
- Hailiang Song
- Beijing Fisheries Research Institute & Beijing Key Laboratory of Fishery Biotechnology Beijing China
| | - Hongxia Hu
- Beijing Fisheries Research Institute & Beijing Key Laboratory of Fishery Biotechnology Beijing China
| |
Collapse
|
24
|
Genotyping of Two Mediterranean Trout Populations in Central-Southern Italy for Conservation Purposes Using a Rainbow-Trout-Derived SNP Array. Animals (Basel) 2021; 11:ani11061803. [PMID: 34204230 PMCID: PMC8233821 DOI: 10.3390/ani11061803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
Mediterranean trout is a freshwater fish of particular interest with economic significance for fishery management, aquaculture and conservation biology. Unfortunately, native trout populations' abundance is significantly threatened by anthropogenic disturbance. The introduction of commercial hatchery strains for recreation activities has compromised the genetic integrity status of native populations. This work assessed the fine-scale genetic structure of Mediterranean trout in the two main rivers of Molise region (Italy) to support conservation actions. In total, 288 specimens were caught in 28 different sites (14 per basins) and genotyped using the Affymetrix 57 K rainbow-trout-derived SNP array. Population differentiation was analyzed using pairwise weighted FST and overall F-statistic estimated by locus-by-locus analysis of molecular variance. Furthermore, an SNP data set was processed through principal coordinates analysis, discriminant analysis of principal components and admixture Bayesian clustering analysis. Firstly, our results demonstrated that rainbow trout SNP array can be successfully used for Mediterranean trout genotyping. In fact, despite an overwhelming number of loci that resulted as monomorphic in our populations, it must be emphasized that the resulted number of polymorphic loci (i.e., ~900 SNPs) has been sufficient to reveal a fine-scale genetic structure in the investigated populations, which is useful in supporting conservation and management actions. In particular, our findings allowed us to select candidate sites for the collection of adults, needed for the production of genetically pure juvenile trout, and sites to carry out the eradication of alien trout and successive re-introduction of native trout.
Collapse
|
25
|
Mugimba KK, Byarugaba DK, Mutoloki S, Evensen Ø, Munang’andu HM. Challenges and Solutions to Viral Diseases of Finfish in Marine Aquaculture. Pathogens 2021; 10:pathogens10060673. [PMID: 34070735 PMCID: PMC8227678 DOI: 10.3390/pathogens10060673] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
Aquaculture is the fastest food-producing sector in the world, accounting for one-third of global food production. As is the case with all intensive farming systems, increase in infectious diseases has adversely impacted the growth of marine fish farming worldwide. Viral diseases cause high economic losses in marine aquaculture. We provide an overview of the major challenges limiting the control and prevention of viral diseases in marine fish farming, as well as highlight potential solutions. The major challenges include increase in the number of emerging viral diseases, wild reservoirs, migratory species, anthropogenic activities, limitations in diagnostic tools and expertise, transportation of virus contaminated ballast water, and international trade. The proposed solutions to these problems include developing biosecurity policies at global and national levels, implementation of biosecurity measures, vaccine development, use of antiviral drugs and probiotics to combat viral infections, selective breeding of disease-resistant fish, use of improved diagnostic tools, disease surveillance, as well as promoting the use of good husbandry and management practices. A multifaceted approach combining several control strategies would provide more effective long-lasting solutions to reduction in viral infections in marine aquaculture than using a single disease control approach like vaccination alone.
Collapse
Affiliation(s)
- Kizito K. Mugimba
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala P.O. Box 7062, Uganda;
- Correspondence: (K.K.M.); (H.M.M.); Tel.: +256-772-56-7940 (K.K.M.); +47-98-86-86-83 (H.M.M.)
| | - Denis K. Byarugaba
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala P.O. Box 7062, Uganda;
| | - Stephen Mutoloki
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 369, 0102 Oslo, Norway; (S.M.); (Ø.E.)
| | - Øystein Evensen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 369, 0102 Oslo, Norway; (S.M.); (Ø.E.)
| | - Hetron M. Munang’andu
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 369, 0102 Oslo, Norway
- Correspondence: (K.K.M.); (H.M.M.); Tel.: +256-772-56-7940 (K.K.M.); +47-98-86-86-83 (H.M.M.)
| |
Collapse
|
26
|
Peñaloza C, Manousaki T, Franch R, Tsakogiannis A, Sonesson AK, Aslam ML, Allal F, Bargelloni L, Houston RD, Tsigenopoulos CS. Development and testing of a combined species SNP array for the European seabass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata). Genomics 2021; 113:2096-2107. [PMID: 33933591 PMCID: PMC8276775 DOI: 10.1016/j.ygeno.2021.04.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/30/2021] [Accepted: 04/27/2021] [Indexed: 12/23/2022]
Abstract
SNP arrays are powerful tools for high-resolution studies of the genetic basis of complex traits, facilitating both selective breeding and population genomic research. The European seabass (Dicentrarchus labrax) and the gilthead seabream (Sparus aurata) are the two most important fish species for Mediterranean aquaculture. While selective breeding programmes increasingly underpin stock supply for this industry, genomic selection is not yet widespread. Genomic selection has major potential to expedite genetic gain, particularly for traits practically impossible to measure on selection candidates, such as disease resistance and fillet characteristics. The aim of our study was to design a combined-species 60 K SNP array for European seabass and gilthead seabream, and to test its performance on farmed and wild populations from numerous locations throughout the species range. To achieve this, high coverage Illumina whole-genome sequencing of pooled samples was performed for 24 populations of European seabass and 27 populations of gilthead seabream. This resulted in a database of ~20 million SNPs per species, which were then filtered to identify high-quality variants and create the final set for the development of the ‘MedFish’ SNP array. The array was then tested by genotyping a subset of the discovery populations, highlighting a high conversion rate to functioning polymorphic assays on the array (92% in seabass; 89% in seabream) and repeatability (99.4–99.7%). The platform interrogates ~30 K markers in each species, includes features such as SNPs previously shown to be associated with performance traits, and is enriched for SNPs predicted to have high functional effects on proteins. The array was demonstrated to be effective at detecting population structure across a wide range of fish populations from diverse geographical origins, and to examine the extent of haplotype sharing among Mediterranean farmed fish populations. In conclusion, the new MedFish array enables efficient and accurate high-throughput genotyping for genome-wide distributed SNPs for each fish species, and will facilitate stock management, population genomics approaches, and acceleration of selective breeding through genomic selection. Α 60 K SNP array (MedFish) was designed for European seabass and gilthead seabream from wild and domesticated populations. The array exhibited a high conversion rate (92% in seabass; 89% in seabream) and repeatability (99.4 and 99.7%). The MedFish array is expected to facilitate stock management and acceleration of selective breeding via genomic selection.
Collapse
Affiliation(s)
- C Peñaloza
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - T Manousaki
- Hellenic Centre for Marine Research, Thalassocosmos Gournes Pediados, 71500 Irakleio, Crete, Greece
| | - R Franch
- Padova University, Via Ugo Bassi, 58yB, I-35131 Padova, Italy
| | - A Tsakogiannis
- Hellenic Centre for Marine Research, Thalassocosmos Gournes Pediados, 71500 Irakleio, Crete, Greece
| | - A K Sonesson
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, PO Box 210, N-1432 Ås, Norway
| | - M L Aslam
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, PO Box 210, N-1432 Ås, Norway
| | - F Allal
- MARBEC, University of Montpellier, Ifremer, CNRS, IRD, 34250 Palavas-les-Flots, France
| | - L Bargelloni
- Padova University, Via Ugo Bassi, 58yB, I-35131 Padova, Italy
| | - R D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK.
| | - C S Tsigenopoulos
- Hellenic Centre for Marine Research, Thalassocosmos Gournes Pediados, 71500 Irakleio, Crete, Greece.
| |
Collapse
|
27
|
Orbán L, Shen X, Phua N, Varga L. Toward Genome-Based Selection in Asian Seabass: What Can We Learn From Other Food Fishes and Farm Animals? Front Genet 2021; 12:506754. [PMID: 33968125 PMCID: PMC8097054 DOI: 10.3389/fgene.2021.506754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/15/2021] [Indexed: 01/08/2023] Open
Abstract
Due to the steadily increasing need for seafood and the plateauing output of fisheries, more fish need to be produced by aquaculture production. In parallel with the improvement of farming methods, elite food fish lines with superior traits for production must be generated by selection programs that utilize cutting-edge tools of genomics. The purpose of this review is to provide a historical overview and status report of a selection program performed on a catadromous predator, the Asian seabass (Lates calcarifer, Bloch 1790) that can change its sex during its lifetime. We describe the practices of wet lab, farm and lab in detail by focusing onto the foundations and achievements of the program. In addition to the approaches used for selection, our review also provides an inventory of genetic/genomic platforms and technologies developed to (i) provide current and future support for the selection process; and (ii) improve our understanding of the biology of the species. Approaches used for the improvement of terrestrial farm animals are used as examples and references, as those processes are far ahead of the ones used in aquaculture and thus they might help those working on fish to select the best possible options and avoid potential pitfalls.
Collapse
Affiliation(s)
- László Orbán
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore.,Frontline Fish Genomics Research Group, Department of Applied Fish Biology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Keszthely, Hungary
| | - Xueyan Shen
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore.,Tropical Futures Institute, James Cook University, Singapore, Singapore
| | - Norman Phua
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - László Varga
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllõ, Hungary.,Institute for Farm Animal Gene Conservation, National Centre for Biodiversity and Gene Conservation, Gödöllõ, Hungary
| |
Collapse
|
28
|
Lu S, Zhou Q, Chen Y, Liu Y, Li Y, Wang L, Yang Y, Chen S. Development of a 38 K single nucleotide polymorphism array and application in genomic selection for resistance against Vibrio harveyi in Chinese tongue sole, Cynoglossus semilaevis. Genomics 2021; 113:1838-1844. [PMID: 33819565 DOI: 10.1016/j.ygeno.2021.03.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/20/2021] [Accepted: 03/31/2021] [Indexed: 11/17/2022]
Abstract
Based on 1572 re-sequenced Chinese tongue sole (Cynoglossus semilaevis), we investigated the accuracy of four genomic methods at predicting genomic estimated breeding values (GEBVs) of Vibrio harveyi resistance in C. semilaevis when SNPs varying from 500 to 500 k. All methods outperformed the pedigree-based best linear unbiased prediction when SNPs reached 50 k or more. Then, we developed an SNP array "Solechip No.1" for C. semilaevis breeding using the Affymetrix Axiom technology. This array contains 38,295 SNPs with an average of 10.5 kb inter-spacing between two adjacent SNPs. We selected 44 candidates as the parents of 23 families and genotyped them by the array. The challenge survival rates of offspring families had a correlation of 0.706 with the mid-parental GEBVs. This SNP array is a convenient and reliable tool in genotyping, which could be used for improving V. harveyi resistance in C. semilaevis coupled with the genomic selection methods.
Collapse
Affiliation(s)
- Sheng Lu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, 266071 Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266373, China; Wuxi Fisheries College, Nanjing Agricultural University, 214081 Wuxi, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071 Qingdao, China
| | - Qian Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, 266071 Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266373, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071 Qingdao, China
| | - Yadong Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, 266071 Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266373, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071 Qingdao, China
| | - Yang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, 266071 Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266373, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071 Qingdao, China
| | - Yangzhen Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, 266071 Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266373, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071 Qingdao, China
| | - Lei Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, 266071 Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266373, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071 Qingdao, China
| | - Yingming Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, 266071 Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266373, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071 Qingdao, China
| | - Songlin Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, 266071 Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266373, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071 Qingdao, China.
| |
Collapse
|
29
|
Yoshikawa S, Hamasaki M, Kadomura K, Yamada T, Chuda H, Kikuchi K, Hosoya S. Genetic Dissection of a Precocious Phenotype in Male Tiger Pufferfish (Takifugu rubripes) using Genotyping by Random Amplicon Sequencing, Direct (GRAS-Di). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:177-188. [PMID: 33599909 PMCID: PMC8032607 DOI: 10.1007/s10126-020-10013-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
The novel non-targeted PCR-based genotyping system, namely Genotyping by Random Amplicon Sequencing, Direct (GRAS-Di), is characterized by the simplicity in library construction and robustness against DNA degradation and is expected to facilitate advancements in genetics, in both basic and applied sciences. In this study, we tested the utility of GRAS-Di for genetic analysis in a cultured population of the tiger pufferfish Takifugu rubripes. The genetic analyses included family structure analysis, genetic map construction, and quantitative trait locus (QTL) analysis for the male precocious phenotype using a population consisting of four full-sib families derived from a genetically precocious line. An average of 4.7 million raw reads were obtained from 198 fish. Trimmed reads were mapped onto a Fugu reference genome for genotyping, and 21,938 putative single-nucleotide polymorphisms (SNPs) were obtained. These 22 K SNPs accurately resolved the sibship and parent-offspring pairs. A fine-scale linkage map (total size: 1,949 cM; average interval: 1.75 cM) was constructed from 1,423 effective SNPs, for which the allele inheritance patterns were known. QTL analysis detected a significant locus for testes weight on Chr_14 and three suggestive loci on Chr_1, Chr_8, and Chr_19. The significant QTL was shared by body length and body weight. The effect of each QTL was small (phenotypic variation explained, PVE: 3.1-5.9%), suggesting that the precociousness seen in the cultured pufferfish is polygenic. Taken together, these results indicate that GRAS-Di is a practical genotyping tool for aquaculture species and applicable for molecular breeding programs, such as marker-assisted selection and genomic selection.
Collapse
Affiliation(s)
- Sota Yoshikawa
- Nagasaki Prefectural Institute of Fisheries, Nagasaki, Japan
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, Shizuoka, Japan
| | | | | | | | - Hisashi Chuda
- Aquaculture Research Institute, Kindai University, Wakayama, Japan
| | - Kiyoshi Kikuchi
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, Shizuoka, Japan
| | - Sho Hosoya
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, Shizuoka, Japan.
| |
Collapse
|
30
|
Nazari S, Pourkazmi M. Isolation and characterization of SNP markers of rainbow trout (Onchorhynchus mykiss Walbaum, 1792) from transcriptomic sequences. Mol Biol Rep 2021; 48:989-995. [PMID: 33393004 DOI: 10.1007/s11033-020-06088-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/12/2020] [Indexed: 11/30/2022]
Abstract
Rainbow trout (Onchorhynchus mykiss) is one of the most important freshwater aquaculture fish in Iran. It is necessary to develop available molecular marker such as SNPs, which represent a useful tool in detecting adaptive signals in populations and also parentage assignment for O. mykiss. Genetic architecture of broodstock populations is important for breeding programs, as it enables decisions on broodstock screening and genomic selection. In this study, 52 novel single nucleotide polymorphism (SNP) markers for O. mykiss were discovered and validated based on transcriptome sequencing, by means of paired-end sequencing in an Illumina HiSeq 2500 platform. The SNPs were identified through liver transcriptome sequencing from fifteen samples. The observed and expected heterozygosities ranged from 0.177 to 1.000 and 0.239 to 0.638, respectively. The minimum allele frequency (MAF) ranged from 0.166 to 0.489. Among these SNP loci, twenty-two loci showed significant departures from the Hardy-Weinberg equilibrium after Bonferroni correction (p < 0.05) and significant linkage disequilibrium was found. The SNP markers identified in this research could be useful for novel studies, such as those related to associations between high-resolution molecular markers and quantitative traits studies. Moreover, these SNP markers would be used in genetic studies helping economic performance improvement and management of this species.
Collapse
Affiliation(s)
- Sajad Nazari
- Shahid Motahary Cold-Water Fishes Genetic and Breeding Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Yasouj, Iran.
| | - Mohammad Pourkazmi
- Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Teharn, Iran
| |
Collapse
|
31
|
Abstract
Diadromy, the predictable movements of individuals between marine and freshwater environments, is biogeographically and phylogenetically widespread across fishes. Thus, despite the high energetic and potential fitness costs involved in moving between distinct environments, diadromy appears to be an effective life history strategy. Yet, the origin and molecular mechanisms that underpin this migratory behavior are not fully understood. In this review, we aim first to summarize what is known about diadromy in fishes; this includes the phylogenetic relationship among diadromous species, a description of the main hypotheses regarding its origin, and a discussion of the presence of non-migratory populations within diadromous species. Second, we discuss how recent research based on -omics approaches (chiefly genomics, transcriptomics, and epigenomics) is beginning to provide answers to questions on the genetic bases and origin(s) of diadromy. Finally, we suggest future directions for -omics research that can help tackle questions on the evolution of diadromy.
Collapse
Affiliation(s)
- M. Lisette Delgado
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Daniel E. Ruzzante
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
32
|
Zhou T, Chen B, Ke Q, Zhao J, Pu F, Wu Y, Chen L, Zhou Z, Bai Y, Pan Y, Gong J, Zheng W, Xu P. Development and Evaluation of a High-Throughput Single-Nucleotide Polymorphism Array for Large Yellow Croaker ( Larimichthys crocea). Front Genet 2020; 11:571751. [PMID: 33193675 PMCID: PMC7645154 DOI: 10.3389/fgene.2020.571751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/29/2020] [Indexed: 11/16/2022] Open
Abstract
High-density single-nucleotide polymorphism (SNP) genotyping array is an essential tool for genetic analyses of animals and plants. Large yellow croaker (Larimichthys crocea) is one of the most commercially important marine fish species in China. Although plenty of SNPs have been identified in large yellow croaker, no high-throughput genotyping array is available. In this study, a high-throughput SNP array named NingXin-I with 600K SNPs was developed and evaluated. A set of 82 large yellow croakers were collected from different locations of China and re-sequenced. A total of 9.34M SNPs were identified by mapping sequence reads to the large yellow croaker reference genome. About 1.98M candidate SNPs were selected for further analyses by using criteria such as SNP quality score and conversion performance in the final array. Finally, 579.5K SNPs evenly distributed across the large yellow croaker genome with an average spacing of 1.19 kb were proceeded to array production. The performance of NingXin-I array was evaluated in 96 large yellow croaker individuals from five populations, and 83.38% SNPs on the array were polymorphic sites. A further test of the NingXin-I array in five closely related species in Sciaenidae identified 26.68–56.23% polymorphic SNP rate across species. A phylogenetic tree inferred by using the genotype data generated by NingXin-I confirmed the phylogenetic distance of the species in Sciaenidae. The performance of NingXin-I in large yellow croaker and the other species in Sciaenidae suggested high accuracy and broad application. The NingXin-I array should be valuable for quantitative genetic studies, such as genome-wide association studies (GWASs), high-density linkage map construction, haplotype analysis, and genome-based selection.
Collapse
Affiliation(s)
- Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Baohua Chen
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Qiaozhen Ke
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Ji Zhao
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Fei Pu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yidi Wu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Lin Chen
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zhixiong Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yulin Bai
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ying Pan
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Jie Gong
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Weiqiang Zheng
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Peng Xu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| |
Collapse
|
33
|
Mastrochirico-Filho VA, Borges CHS, Freitas MV, Ariede RB, Pilarski F, Utsunomia R, Carvalheiro R, Gutierrez AP, Peñaloza C, Yáñez JM, Houston RD, Hashimoto DT. Development of a SNP linkage map and genome-wide association study for resistance to Aeromonas hydrophila in pacu (Piaractus mesopotamicus). BMC Genomics 2020; 21:672. [PMID: 32993504 PMCID: PMC7526211 DOI: 10.1186/s12864-020-07090-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Pacu (Piaractus mesopotamicus) is one of the most important Neotropical aquaculture species from South America. Disease outbreaks caused by Aeromonas hydrophila infection have been considered significant contributors to the declining levels of pacu production. The current implementation of genomic selection for disease resistance has been adopted as a powerful strategy for improvement in fish species. This study aimed to investigate the genetic architecture of resistance to A. hydrophila in pacu via Genome-Wide Association Study (GWAS), the identification of suggestive Quantitative Trait Loci (QTLs) and putative genes associated with this trait. The genetic data were obtained from 381 juvenile individuals belonging to 14 full-sibling families. An experimental challenge was performed to gain access to the levels of genetic variation for resistance against the bacteria using the following trait definitions: binary test survival (TS) and time of death (TD). RESULTS The analyses of genetic parameters estimated moderate heritability (h2) for both resistance traits: 0.20 (± 0.09) for TS and 0.35 (± 0.15) for TD. A linkage map for pacu was developed to enable the GWAS, resulting in 27 linkage groups (LGs) with 17,453 mapped Single Nucleotide Polymorphisms (SNPs). The length of the LGs varied from 79.95 (LG14) to 137.01 (LG1) cM, with a total map length of 2755.60 cM. GWAS identified 22 putative QTLs associated to A. hydrophila resistance. They were distributed into 17 LGs, and were considered suggestive genomic regions explaining > 1% of the additive genetic variance (AGV) for the trait. Several candidate genes related to immune response were located close to the suggestive QTLs, such as tbk1, trim16, Il12rb2 and lyz2. CONCLUSION This study describes the development of the first medium density linkage map for pacu, which will be used as a framework to study relevant traits to the production of this species. In addition, the resistance to A. hydrophila was found to be moderately heritable but with a polygenic architecture suggesting that genomic selection, instead of marker assisted selection, might be useful for efficiently improving resistance to one of the most problematic diseases that affects the South American aquaculture.
Collapse
Affiliation(s)
- Vito A Mastrochirico-Filho
- São Paulo State University (Unesp), Aquaculture Center of Unesp, Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Carolina H S Borges
- São Paulo State University (Unesp), Aquaculture Center of Unesp, Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Milena V Freitas
- São Paulo State University (Unesp), Aquaculture Center of Unesp, Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Raquel B Ariede
- São Paulo State University (Unesp), Aquaculture Center of Unesp, Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Fabiana Pilarski
- São Paulo State University (Unesp), Aquaculture Center of Unesp, Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Ricardo Utsunomia
- Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 23897-000, Brazil
| | - Roberto Carvalheiro
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
- National Council for Scientific and Technological Development (CNPq), Brasília, DF, 71605-001, Brazil
| | - Alejandro P Gutierrez
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Carolina Peñaloza
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, UK
| | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Diogo T Hashimoto
- São Paulo State University (Unesp), Aquaculture Center of Unesp, Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP, 14884-900, Brazil.
| |
Collapse
|
34
|
Development and validation of a RAD-Seq target-capture based genotyping assay for routine application in advanced black tiger shrimp (Penaeus monodon) breeding programs. BMC Genomics 2020; 21:541. [PMID: 32758142 PMCID: PMC7430818 DOI: 10.1186/s12864-020-06960-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 07/29/2020] [Indexed: 11/26/2022] Open
Abstract
Background The development of genome-wide genotyping resources has provided terrestrial livestock and crop industries with the unique ability to accurately assess genomic relationships between individuals, uncover the genetic architecture of commercial traits, as well as identify superior individuals for selection based on their specific genetic profile. Utilising recent advancements in de-novo genome-wide genotyping technologies, it is now possible to provide aquaculture industries with these same important genotyping resources, even in the absence of existing genome assemblies. Here, we present the development of a genome-wide SNP assay for the Black Tiger shrimp (Penaeus monodon) through utilisation of a reduced-representation whole-genome genotyping approach (DArTseq). Results Based on a single reduced-representation library, 31,262 polymorphic SNPs were identified across 650 individuals obtained from Australian wild stocks and commercial aquaculture populations. After filtering to remove SNPs with low read depth, low MAF, low call rate, deviation from HWE, and non-Mendelian inheritance, 7542 high-quality SNPs were retained. From these, 4236 high-quality genome-wide loci were selected for baits-probe development and 4194 SNPs were included within a finalized target-capture genotype-by-sequence assay (DArTcap). This assay was designed for routine and cost effective commercial application in large scale breeding programs, and demonstrates higher confidence in genotype calls through increased call rate (from 80.2 ± 14.7 to 93.0% ± 3.5%), increased read depth (from 20.4 ± 15.6 to 80.0 ± 88.7), as well as a 3-fold reduction in cost over traditional genotype-by-sequencing approaches. Conclusion Importantly, this assay equips the P. monodon industry with the ability to simultaneously assign parentage of communally reared animals, undertake genomic relationship analysis, manage mate pairings between cryptic family lines, as well as undertake advance studies of genome and trait architecture. Critically this assay can be cost effectively applied as P. monodon breeding programs transition to undertaking genomic selection.
Collapse
|
35
|
Development and Validation of an Open Access SNP Array for Nile Tilapia ( Oreochromis niloticus). G3-GENES GENOMES GENETICS 2020; 10:2777-2785. [PMID: 32532799 PMCID: PMC7407453 DOI: 10.1534/g3.120.401343] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tilapia are among the most important farmed fish species worldwide, and are fundamental for the food security of many developing countries. Several genetically improved Nile tilapia (Oreochromis niloticus) strains exist, such as the iconic Genetically Improved Farmed Tilapia (GIFT), and breeding programs typically follow classical pedigree-based selection. The use of genome-wide single-nucleotide polymorphism (SNP) data can enable an understanding of the genetic architecture of economically important traits and the acceleration of genetic gain via genomic selection. Due to the global importance and diversity of Nile tilapia, an open access SNP array would be beneficial for aquaculture research and production. In the current study, a ∼65K SNP array was designed based on SNPs discovered from whole-genome sequence data from a GIFT breeding nucleus population and the overlap with SNP datasets from wild fish populations and several other farmed Nile tilapia strains. The SNP array was applied to clearly distinguish between different tilapia populations across Asia and Africa, with at least ∼30,000 SNPs segregating in each of the diverse population samples tested. It is anticipated that this SNP array will be an enabling tool for population genetics and tilapia breeding research, facilitating consistency and comparison of results across studies.
Collapse
|
36
|
Jones JC, Du ZG, Bernstein R, Meyer M, Hoppe A, Schilling E, Ableitner M, Juling K, Dick R, Strauss AS, Bienefeld K. Tool for genomic selection and breeding to evolutionary adaptation: Development of a 100K single nucleotide polymorphism array for the honey bee. Ecol Evol 2020; 10:6246-6256. [PMID: 32724511 PMCID: PMC7381592 DOI: 10.1002/ece3.6357] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 01/03/2023] Open
Abstract
High-throughput high-density genotyping arrays continue to be a fast, accurate, and cost-effective method for genotyping thousands of polymorphisms in high numbers of individuals. Here, we have developed a new high-density SNP genotyping array (103,270 SNPs) for honey bees, one of the most ecologically and economically important pollinators worldwide. SNPs were detected by conducting whole-genome resequencing of 61 honey bee drones (haploid males) from throughout Europe. Selection of SNPs for the chip was done in multiple steps using several criteria. The majority of SNPs were selected based on their location within known candidate regions or genes underlying a range of honey bee traits, including hygienic behavior against pathogens, foraging, and subspecies. Additionally, markers from a GWAS of hygienic behavior against the major honey bee parasite Varroa destructor were brought over. The chip also includes SNPs associated with each of three major breeding objectives-honey yield, gentleness, and Varroa resistance. We validated the chip and make recommendations for its use by determining error rates in repeat genotypings, examining the genotyping performance of different tissues, and by testing how well different sample types represent the queen's genotype. The latter is a key test because it is highly beneficial to be able to determine the queen's genotype by nonlethal means. The array is now publicly available and we suggest it will be a useful tool in genomic selection and honey bee breeding, as well as for GWAS of different traits, and for population genomic, adaptation, and conservation questions.
Collapse
Affiliation(s)
- Julia C. Jones
- Institute for Bee ResearchHohen NeuendorfGermany
- School of Biology and Environmental ScienceUniversity College DublinDublinIreland
| | - Zhipei G. Du
- Institute for Bee ResearchHohen NeuendorfGermany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hillestad B, Makvandi-Nejad S, Krasnov A, Moghadam HK. Identification of genetic loci associated with higher resistance to pancreas disease (PD) in Atlantic salmon (Salmo salar L.). BMC Genomics 2020; 21:388. [PMID: 32493246 PMCID: PMC7268189 DOI: 10.1186/s12864-020-06788-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Pancreas disease (PD) is a contagious disease caused by salmonid alphavirus (SAV) with significant economic and welfare impacts on salmon farming. Previous work has shown that higher resistance against PD has underlying additive genetic components and can potentially be improved through selective breeding. To better understand the genetic basis of PD resistance in Atlantic salmon, we challenged 4506 smolts from 296 families of the SalmoBreed strain. Fish were challenged through intraperitoneal injection with the most virulent form of the virus found in Norway (i.e., SAV3). Mortalities were recorded, and more than 900 fish were further genotyped on a 55 K SNP array. RESULTS The estimated heritability for PD resistance was 0.41 ± 0.017. The genetic markers on two chromosomes, ssa03 and ssa07, showed significant associations with higher disease resistance. Collectively, markers on these two QTL regions explained about 60% of the additive genetic variance. We also sequenced and compared the cardiac transcriptomics of moribund fish and animals that survived the challenge with a focus on candidate genes within the chromosomal segments harbouring QTL. Approximately 200 genes, within the QTL regions, were found to be differentially expressed. Of particular interest, we identified various components of immunoglobulin-heavy-chain locus B (IGH-B) on ssa03 and immunoglobulin-light-chain on ssa07 with markedly higher levels of transcription in the resistant animals. These genes are closely linked to the most strongly QTL associated SNPs, making them likely candidates for further investigation. CONCLUSIONS The findings presented here provide supporting evidence that breeding is an efficient tool for increasing PD resistance in Atlantic salmon populations. The estimated heritability is one of the largest reported for any disease resistance in this species, where the majority of the genetic variation is explained by two major QTL. The transcriptomic analysis has revealed the activation of essential components of the innate and the adaptive immune responses following infection with SAV3. Furthermore, the complementation of the genomic with the transcriptomic data has highlighted the possible critical role of the immunoglobulin loci in combating PD virus.
Collapse
Affiliation(s)
| | | | - Aleksei Krasnov
- Division of Aquaculture, Norwegian Institute of Fisheries and Aquaculture (Nofima), P.O. Box 6122, Muninbakken 9-13, Breivika, Langnes, N-9291, Tromsø, Norway
| | - Hooman K Moghadam
- Benchmark Genetics Norway AS, Sandviksboder 3A, N-5035, Bergen, Norway.
| |
Collapse
|
38
|
Genome-Wide Association Study Confirms Previous Findings of Major Loci Affecting Resistance to Piscine myocarditis virus in Atlantic Salmon ( Salmo salar L.). Genes (Basel) 2020; 11:genes11060608. [PMID: 32486315 PMCID: PMC7349847 DOI: 10.3390/genes11060608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 11/16/2022] Open
Abstract
Cardiomyopathy syndrome is a viral disease of Atlantic salmon, mostly affecting fish during the late stages of production, resulting in significant losses to the industry. It has been shown that resistance to this disease has a strong genetic component, with quantitative trait loci (QTL) on chromosomes 27 (Ssa27) and Ssa12 to explain most of the additive genetic variance. Here, by analysing animals from a different year-class and a different population, we further aimed to confirm and narrow down the locations of these QTL. The data support the existence of the two QTL and suggest that the causative mutation on Ssa27 is most likely within the 10–10.5 Mbp segment of this chromosome. This region contains a cluster of major histocompatibility complex class I (MHC I) genes with the most strongly associated marker mapped to one of these loci. On Ssa12, the data confirmed the previous finding that the location of the causative mutation is within the 61.3 to 61.7 Mbp region. This segment contains several immune-related genes, but of particular interest are genes related to MHC II. Together, these findings highlight the likely key role of MHC genes in Atlantic salmon following infection with Piscine myocarditis virus (PMCV) and their potential impact on influencing the trajectory of this disease.
Collapse
|
39
|
Houston RD, Bean TP, Macqueen DJ, Gundappa MK, Jin YH, Jenkins TL, Selly SLC, Martin SAM, Stevens JR, Santos EM, Davie A, Robledo D. Harnessing genomics to fast-track genetic improvement in aquaculture. Nat Rev Genet 2020; 21:389-409. [PMID: 32300217 DOI: 10.1038/s41576-020-0227-y] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Abstract
Aquaculture is the fastest-growing farmed food sector and will soon become the primary source of fish and shellfish for human diets. In contrast to crop and livestock production, aquaculture production is derived from numerous, exceptionally diverse species that are typically in the early stages of domestication. Genetic improvement of production traits via well-designed, managed breeding programmes has great potential to help meet the rising seafood demand driven by human population growth. Supported by continuous advances in sequencing and bioinformatics, genomics is increasingly being applied across the broad range of aquaculture species and at all stages of the domestication process to optimize selective breeding. In the future, combining genomic selection with biotechnological innovations, such as genome editing and surrogate broodstock technologies, may further expedite genetic improvement in aquaculture.
Collapse
Affiliation(s)
- Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, UK.
| | - Tim P Bean
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, UK
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, UK
| | - Manu Kumar Gundappa
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, UK
| | - Ye Hwa Jin
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, UK
| | - Tom L Jenkins
- Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | | | - Jamie R Stevens
- Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Eduarda M Santos
- Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Andrew Davie
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, UK
| |
Collapse
|
40
|
Lange A, Paris JR, Gharbi K, Cézard T, Miyagawa S, Iguchi T, Studholme DJ, Tyler CR. A newly developed genetic sex marker and its application to understanding chemically induced feminisation in roach (Rutilus rutilus). Mol Ecol Resour 2020; 20:1007-1022. [PMID: 32293100 DOI: 10.1111/1755-0998.13166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/19/2020] [Accepted: 04/08/2020] [Indexed: 01/14/2023]
Abstract
Oestrogenic wastewater treatment works (WwTW) effluents discharged into UK rivers have been shown to affect sexual development, including inducing intersex, in wild roach (Rutilus rutilus). This can result in a reduced breeding capability with potential population level impacts. In the absence of a sex probe for roach it has not been possible to confirm whether intersex fish in the wild arise from genetic males or females, or whether sex reversal occurs in the wild, as this condition can be induced experimentally in controlled exposures to WwTW effluents and a steroidal oestrogen. Using restriction site-associated DNA sequencing (RAD-seq), we identified a candidate for a genetic sex marker and validated this marker as a sex probe through PCR analyses of samples from wild roach populations from nonpolluted rivers. We also applied the sex marker to samples from roach exposed experimentally to oestrogen and oestrogenic effluents to confirm suspected phenotypic sex reversal from males to females in some treatments, and also that sex-reversed males are able to breed as females. We then show, unequivocally, that intersex in wild roach populations results from feminisation of males, but find no strong evidence for complete sex reversal in wild roach at river sites contaminated with oestrogens. The discovered marker has utility for studies in roach on chemical effects, wild stock assessments, and reducing the number of fish used where only one sex is required for experimentation. Furthermore, we show that the marker can be applied nondestructively using a fin clip or skin swab, with animal welfare benefits.
Collapse
Affiliation(s)
- Anke Lange
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter, UK
| | - Josephine R Paris
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter, UK
| | - Karim Gharbi
- Edinburgh Genomics, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Timothée Cézard
- Edinburgh Genomics, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - David J Studholme
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter, UK
| | - Charles R Tyler
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
41
|
Gao G, Pietrak MR, Burr GS, Rexroad CE, Peterson BC, Palti Y. A New Single Nucleotide Polymorphism Database for North American Atlantic Salmon Generated Through Whole Genome Resequencing. Front Genet 2020; 11:85. [PMID: 32153644 PMCID: PMC7046687 DOI: 10.3389/fgene.2020.00085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/27/2020] [Indexed: 12/30/2022] Open
Affiliation(s)
- Guangtu Gao
- National Center for Cool and Cold Water Aquaculture, ARS-USDA, Kearneysville, WV, United States
| | - Michael R Pietrak
- National Cold Water Marine Aquaculture Center, ARS-USDA, Orono, ME, United States
| | - Gary S Burr
- National Cold Water Marine Aquaculture Center, ARS-USDA, Orono, ME, United States
| | - Caird E Rexroad
- USDA ARS Office of National Programs, George Washington Carver Center, Washington, D.C., United States
| | - Brian C Peterson
- National Cold Water Marine Aquaculture Center, ARS-USDA, Orono, ME, United States
| | - Yniv Palti
- National Center for Cool and Cold Water Aquaculture, ARS-USDA, Kearneysville, WV, United States
| |
Collapse
|
42
|
Gutierrez AP, Symonds J, King N, Steiner K, Bean TP, Houston RD. Potential of genomic selection for improvement of resistance to ostreid herpesvirus in Pacific oyster (Crassostrea gigas). Anim Genet 2020; 51:249-257. [PMID: 31999002 DOI: 10.1111/age.12909] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2019] [Indexed: 01/15/2023]
Abstract
In genomic selection (GS), genome-wide SNP markers are used to generate genomic estimated breeding values for selection candidates. The application of GS in shellfish looks promising and has the potential to help in dealing with one of the main issues currently affecting Pacific oyster production worldwide, which is the 'summer mortality syndrome'. This causes periodic mass mortality in farms worldwide and has mainly been attributed to a specific variant of the ostreid herpesvirus (OsHV-1). In the current study, we evaluated the potential of genomic selection for host resistance to OsHV-1 in Pacific oysters, and compared it with pedigree-based approaches. An OsHV-1 disease challenge was performed using an immersion-based virus exposure treatment for oysters for 7 days. A total of 768 samples were genotyped using the medium-density SNP array for oysters. A GWAS was performed for the survival trait using a GBLUP approach in blupf90 software. Heritability ranged from 0.25 ± 0.05 to 0.37 ± 0.05 (mean ± SE) based on pedigree and genomic information respectively. Genomic prediction was more accurate than pedigree prediction, and SNP density reduction had little impact on prediction accuracy until marker densities dropped below approximately 500 SNPs. This demonstrates the potential for GS in Pacific oyster breeding programmes, and importantly, demonstrates that a low number of SNPs might suffice to obtain accurate genomic estimated breeding values, thus potentially making the implementation of GS more cost effective.
Collapse
Affiliation(s)
- A P Gutierrez
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - J Symonds
- Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand
| | - N King
- Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand
| | - K Steiner
- Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand
| | - T P Bean
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - R D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
43
|
Tsairidou S, Hamilton A, Robledo D, Bron JE, Houston RD. Optimizing Low-Cost Genotyping and Imputation Strategies for Genomic Selection in Atlantic Salmon. G3 (BETHESDA, MD.) 2020; 10:581-590. [PMID: 31826882 PMCID: PMC7003102 DOI: 10.1534/g3.119.400800] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/03/2019] [Indexed: 11/20/2022]
Abstract
Genomic selection enables cumulative genetic gains in key production traits such as disease resistance, playing an important role in the economic and environmental sustainability of aquaculture production. However, it requires genome-wide genetic marker data on large populations, which can be prohibitively expensive. Genotype imputation is a cost-effective method for obtaining high-density genotypes, but its value in aquaculture breeding programs which are characterized by large full-sibling families has yet to be fully assessed. The aim of this study was to optimize the use of low-density genotypes and evaluate genotype imputation strategies for cost-effective genomic prediction. Phenotypes and genotypes (78,362 SNPs) were obtained for 610 individuals from a Scottish Atlantic salmon breeding program population (Landcatch, UK) challenged with sea lice, Lepeophtheirus salmonis The genomic prediction accuracy of genomic selection was calculated using GBLUP approaches and compared across SNP panels of varying densities and composition, with and without imputation. Imputation was tested when parents were genotyped for the optimal SNP panel, and offspring were genotyped for a range of lower density imputation panels. Reducing SNP density had little impact on prediction accuracy until 5,000 SNPs, below which the accuracy dropped. Imputation accuracy increased with increasing imputation panel density. Genomic prediction accuracy when offspring were genotyped for just 200 SNPs, and parents for 5,000 SNPs, was 0.53. This accuracy was similar to the full high density and optimal density dataset, and markedly higher than using 200 SNPs without imputation. These results suggest that imputation from very low to medium density can be a cost-effective tool for genomic selection in Atlantic salmon breeding programs.
Collapse
Affiliation(s)
- Smaragda Tsairidou
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, United Kingdom,
| | - Alastair Hamilton
- Hendrix Genetics Aquaculture BV/ Netherlands Villa 'de Körver', Spoorstraat 695831 CK Boxmeer, The Netherlands, and
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, United Kingdom
| | - James E Bron
- Institute of Aquaculture, University of Stirling, FK9 4LA, United Kingdom
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, United Kingdom
| |
Collapse
|
44
|
Yáñez JM, Yoshida G, Barria A, Palma-Véjares R, Travisany D, Díaz D, Cáceres G, Cádiz MI, López ME, Lhorente JP, Jedlicki A, Soto J, Salas D, Maass A. High-Throughput Single Nucleotide Polymorphism (SNP) Discovery and Validation Through Whole-Genome Resequencing in Nile Tilapia (Oreochromis niloticus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:109-117. [PMID: 31938972 DOI: 10.1007/s10126-019-09935-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Nile tilapia (Oreochromis niloticus) is the second most important farmed fish in the world and a sustainable source of protein for human consumption. Several genetic improvement programs have been established for this species in the world. Currently, the estimation of genetic merit of breeders is typically based on genealogical and phenotypic information. Genome-wide information can be exploited to efficiently incorporate traits that are difficult to measure into the breeding goal. Thus, single nucleotide polymorphisms (SNPs) are required to investigate phenotype-genotype associations and determine the genomic basis of economically important traits. We performed de novo SNP discovery in three different populations of farmed Nile tilapia. A total of 29.9 million non-redundant SNPs were identified through Illumina (HiSeq 2500) whole-genome resequencing of 326 individual samples. After applying several filtering steps, including removing SNP based on genotype and site quality, presence of Mendelian errors, and non-unique position in the genome, a total of 50,000 high-quality SNPs were selected for the development of a custom Illumina BeadChip SNP panel. These SNPs were highly informative in the three populations analyzed showing between 43,869 (94%) and 46,139 (99%) SNPs in Hardy-Weinberg Equilibrium; 37,843 (76%) and 45,171(90%) SNPs with a minor allele frequency (MAF) higher than 0.05; and 43,450 (87%) and 46,570 (93%) SNPs with a MAF higher than 0.01. The 50K SNP panel developed in the current work will be useful for the dissection of economically relevant traits, enhancing breeding programs through genomic selection, as well as supporting genetic studies in farmed populations of Nile tilapia using dense genome-wide information.
Collapse
Affiliation(s)
- José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile.
- Núcleo Milenio INVASAL, Concepción, Chile.
| | - Grazyella Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Benchmark Genetics Chile, Puerto Montt, Chile
| | - Agustín Barria
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Ricardo Palma-Véjares
- Centro para la Regulación del Genoma, Universidad de Chile, Santiago, Chile
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Dante Travisany
- Centro para la Regulación del Genoma, Universidad de Chile, Santiago, Chile
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Diego Díaz
- Centro para la Regulación del Genoma, Universidad de Chile, Santiago, Chile
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Giovanna Cáceres
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - María I Cádiz
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - María E López
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Ana Jedlicki
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - José Soto
- Grupo Acuacorporacion, Internacional (GACI), Cañas, Costa Rica
| | - Diego Salas
- Grupo Acuacorporacion, Internacional (GACI), Cañas, Costa Rica
| | - Alejandro Maass
- Centro para la Regulación del Genoma, Universidad de Chile, Santiago, Chile
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| |
Collapse
|
45
|
Single-Step Genome-Wide Association Study for Resistance to Piscirickettsia salmonis in Rainbow Trout ( Oncorhynchus mykiss). G3-GENES GENOMES GENETICS 2019; 9:3833-3841. [PMID: 31690599 PMCID: PMC6829148 DOI: 10.1534/g3.119.400204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
One of the main pathogens affecting rainbow trout (Oncorhynchus mykiss) farming is the facultative intracellular bacteria Piscirickettsia salmonis Current treatments, such as antibiotics and vaccines, have not had the expected effectiveness in field conditions. Genetic improvement by means of selection for resistance is proposed as a viable alternative for control. Genomic information can be used to identify the genomic regions associated with resistance and enhance the genetic evaluation methods to speed up the genetic improvement for the trait. The objectives of this study were to i) identify the genomic regions associated with resistance to P. salmonis; and ii) identify candidate genes associated with the trait in rainbow trout. We experimentally challenged 2,130 rainbow trout with P. salmonis and genotyped them with a 57 K single nucleotide polymorphism (SNP) array. Resistance to P. salmonis was defined as time to death (TD) and as binary survival (BS). Significant heritabilities were estimated for TD and BS (0.48 ± 0.04 and 0.34 ± 0.04, respectively). A total of 2,047 fish and 26,068 SNPs passed quality control for samples and genotypes. Using a single-step genome wide association analysis (ssGWAS) we identified four genomic regions explaining over 1% of the genetic variance for TD and three for BS. Interestingly, the same genomic region located on Omy27 was found to explain the highest proportion of genetic variance for both traits (2.4 and 1.5% for TD and BS, respectively). The identified SNP in this region is located within an exon of a gene related with actin cytoskeletal organization, a protein exploited by P. salmonis during infection. Other important candidate genes identified are related with innate immune response and oxidative stress. The moderate heritability values estimated in the present study show it is possible to improve resistance to P. salmonis through artificial selection in the rainbow trout population studied here. Furthermore, our results suggest a polygenic genetic architecture for the trait and provide novel insights into the candidate genes underpinning resistance to P. salmonis in O. mykiss.
Collapse
|
46
|
Wei J, Chen Y, Wang W. A High-Density Genetic Linkage Map and QTL Mapping for Sex and Growth-Related Traits of Large-Scale Loach ( Paramisgurnus dabryanus). Front Genet 2019; 10:1023. [PMID: 31708968 PMCID: PMC6823184 DOI: 10.3389/fgene.2019.01023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/24/2019] [Indexed: 12/30/2022] Open
Abstract
Large-scale loach (Paramisgurnus dabryanus) is a commercially important species in East Asia; however, the cultured population that exhibited degradation of germplasm resource cannot meet the market needs, and the genome resources for P. dabryanus are still lacking. In this study, the first high-density genetic map of P. dabryanus was constructed using 15,830 SNP markers based on high-throughput sequencing with an improved SLAF-seq strategy. The quantitative trait locus (QTL) mapping for sex, growth, and morphology traits was performed for the first time. The genetic map spanned 4,657.64 cM in length with an average inter-marker distance of 0.30 cM. QTL mapping and association analysis identified eight QTLs of growth traits, nine QTLs of morphology traits, and five QTLs of sex-related traits, respectively. Interestingly, the most significant QTLs for almost all the traits were concentrated on the same linkage group LG11. Seven candidate markers and 12 potentially key genes, which were associated with sex determination and growth, were identified within the overlapped QTL regions on LG11. Further, the first genome survey analysis of P. dabryanus was performed which represents the first step toward fully decoding the P. dabryanus genome. The genome scaffolds were anchored to the high-density linkage map, spanning 960.27 Mb of P. dabryanus reference genome. The collinearity analysis revealed a high level of collinearity between the genetic map and the reference genome of P. dabryanus. Moreover, a certain degree of homology was observed between large-scale loach and zebrafish using comparative genomic analysis. The constructed high-density genetic map was an important basis for QTL fine mapping, genome assembly, and genome comparison. The present study will provide a valuable resource for future marker-assisted breeding, and further genetic and genomic researches in P. dabryanus.
Collapse
Affiliation(s)
- Jin Wei
- Key Lab of Agricultural Animal Genetics, College of Fisheries, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Yuanyuan Chen
- Key Lab of Agricultural Animal Genetics, College of Fisheries, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Weimin Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
47
|
Gabián M, Morán P, Fernández AI, Villanueva B, Chtioui A, Kent MP, Covelo-Soto L, Fernández A, Saura M. Identification of genomic regions regulating sex determination in Atlantic salmon using high density SNP data. BMC Genomics 2019; 20:764. [PMID: 31640542 PMCID: PMC6805462 DOI: 10.1186/s12864-019-6104-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/13/2019] [Indexed: 02/07/2023] Open
Abstract
Background A complete understanding of the genetic basis for sexual determination and differentiation is necessary in order to implement efficient breeding schemes at early stages of development. Atlantic salmon belongs to the family Salmonidae of fishes and represents a species of great commercial value. Although the species is assumed to be male heterogametic with XY sex determination, the precise genetic basis of sexual development remains unclear. The complexity is likely associated to the relatively recent salmonid specific whole genome duplication that may be responsible for certain genome instability. This instability together with the capacity of the sex-determining gene to move across the genome as reported by previous studies, may explain that sexual development genes are not circumscribed to the same chromosomes in all members of the species. In this study, we have used a 220 K SNP panel developed for Atlantic salmon to identify the chromosomes explaining the highest proportion of the genetic variance for sex as well as candidate regions and genes associated to sexual development in this species. Results Results from regional heritability analysis showed that the chromosomes explaining the highest proportion of variance in these populations were Ssa02 (heritability = 0.42, SE = 0.12) and Ssa21 (heritability = 0.26, SE = 0.11). After pruning by linkage disequilibrium, genome-wide association analyses revealed 114 SNPs that were significantly associated with sex, being Ssa02 the chromosome containing a greatest number of regions. Close examination of the candidate regions evidenced important genes related to sex in other species of Class Actinopterygii, including SDY, genes from family SOX, RSPO1, ESR1, U2AF2A, LMO7, GNRH-R, DND and FIGLA. Conclusions The combined results from regional heritability analysis and genome-wide association have provided new advances in the knowledge of the genetic regulation of sex determination in Atlantic salmon, supporting that Ssa02 is the candidate chromosome for sex in this species and suggesting an alternative population lineage in Spanish wild populations according to the results from Ssa21.
Collapse
Affiliation(s)
- María Gabián
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, 36310, Spain
| | - Paloma Morán
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, 36310, Spain
| | - Ana I Fernández
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7,5, 28040, Madrid, Spain
| | - Beatriz Villanueva
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7,5, 28040, Madrid, Spain
| | - Amel Chtioui
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7,5, 28040, Madrid, Spain
| | - Matthew P Kent
- Center for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Bioscience, Norwegian University of Life Sciences (NMBU), 1430, Ås, Norway
| | - Lara Covelo-Soto
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, 36310, Spain
| | - Almudena Fernández
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7,5, 28040, Madrid, Spain
| | - María Saura
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7,5, 28040, Madrid, Spain.
| |
Collapse
|
48
|
Yáñez JM, Yoshida GM, Parra Á, Correa K, Barría A, Bassini LN, Christensen KA, López ME, Carvalheiro R, Lhorente JP, Pulgar R. Comparative Genomic Analysis of Three Salmonid Species Identifies Functional Candidate Genes Involved in Resistance to the Intracellular Bacterium Piscirickettsia salmonis. Front Genet 2019; 10:665. [PMID: 31428125 PMCID: PMC6690157 DOI: 10.3389/fgene.2019.00665] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 06/25/2019] [Indexed: 12/23/2022] Open
Abstract
Piscirickettsia salmonis is the etiologic agent of salmon rickettsial syndrome (SRS) and is responsible for considerable economic losses in salmon aquaculture. The bacterium affects coho salmon (CS; Oncorhynchus kisutch), Atlantic salmon (AS; Salmo salar), and rainbow trout (RT; Oncorhynchus mykiss) in several countries, including Norway, Canada, Scotland, Ireland, and Chile. We used Bayesian genome-wide association study analyses to investigate the genetic architecture of resistance to P. salmonis in farmed populations of these species. Resistance to SRS was defined as the number of days to death and as binary survival (BS). A total of 828 CS, 2130 RT, and 2601 AS individuals were phenotyped and then genotyped using double-digest restriction site-associated DNA sequencing and 57K and 50K Affymetrix® Axiom® single nucleotide polymorphism (SNP) panels, respectively. Both traits of SRS resistance in CS and RT appeared to be under oligogenic control. In AS, there was evidence of polygenic control of SRS resistance. To identify candidate genes associated with resistance, we applied a comparative genomics approach in which we systematically explored the complete set of genes adjacent to SNPs, which explained more than 1% of the genetic variance of resistance in each salmonid species (533 genes in total). Thus, genes were classified based on the following criteria: i) shared function of their protein domains among species, ii) shared orthology among species, iii) proximity to the SNP explaining the highest proportion of the genetic variance, and iv) presence in more than one genomic region explaining more than 1% of the genetic variance within species. Our results allowed us to identify 120 candidate genes belonging to at least one of the four criteria described above. Of these, 21 of them were part of at least two of the criteria defined above and are suggested to be strong functional candidates influencing P. salmonis resistance. These genes are related to diverse biological processes, such as kinase activity, GTP hydrolysis, helicase activity, lipid metabolism, cytoskeletal dynamics, inflammation, and innate immune response, which seem essential in the host response against P. salmonis infection. These results provide fundamental knowledge on the potential functional genes underpinning resistance against P. salmonis in three salmonid species.
Collapse
Affiliation(s)
- José M. Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Núcleo Milenio INVASAL, Concepción, Chile
| | - Grazyella M. Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Ángel Parra
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
- Doctorado en Acuicultura. Programa Cooperativo Universidad de Chile, Universidad Católica del Norte, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | | | - Agustín Barría
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Easter Bush, Midlothian, United Kingdom
| | - Liane N. Bassini
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | | | - Maria E. López
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Roberto Carvalheiro
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
- National Council for Scientific and Technological Development (CNPq), Brasília, Brazil
| | | | - Rodrigo Pulgar
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| |
Collapse
|
49
|
Xiao M, Bao F, Zhao Y, Hu Q. Transcriptome sequencing and de novo analysis of the northern snakehead, Ophiocephalus argus. J Genet 2019; 98:49. [PMID: 31204717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Northern snakehead, Ophiocephalus argus Cantor, is an endemic freshwater fish in China. However, wild stocks of O. argus are dwindling sharply. Further, water conservancy projects, environmental pollution and human activities have caused the decrease of wild stocks, which has attracted much attention. Here, we have investigated the genomic information of O. argus using IlluminaHiseq 4000 sequencing. The transcriptomes of O. argus were sequenced by Illumina technology. A total of 67,564 sequences from 79,500,964 paired-end reads were generated, 33,710 unigenes were annotated based on protein databases (NCBI nonredundant (NR) databases). In total, 7182 unigenes had the clusters of orthologous group (COG) classifications, 33,710 unigenes were assigned to 59 gene ontology (GO) terms. Further, a total of 21,464 simple sequence repeats (SSRs) from 67,564 unigenes and 113,518 single nucleotide polymorphism (SNP) sites among 335 Mclean reads were yielded for O. argus based on a transcriptome-wide search. The new transcriptome data which is presented in this study for O. argus will provide valuable information for gene discovery and downstream applications, such as phylogenetic analysis, gene-expression profiling and identification of genetic markers (SSRs andSNP).
Collapse
Affiliation(s)
- Mingsong Xiao
- College of Life and Health Science, Anhui Science and Technology University, Fengyang 233100, Anhui, People's Republic of China.
| | | | | | | |
Collapse
|
50
|
Liu R, Xing S, Wang J, Zheng M, Cui H, Crooijmans RPMA, Li Q, Zhao G, Wen J. A new chicken 55K SNP genotyping array. BMC Genomics 2019; 20:410. [PMID: 31117951 PMCID: PMC6532155 DOI: 10.1186/s12864-019-5736-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 04/25/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND China has the richest local chicken breeding resources in the world and is the world's second largest producer of meat-type chickens. Development of a moderate-density SNP array for genetic analysis of chickens and breeding of meat-type chickens taking utility of those resources is urgently needed for conventional farms, breeding industry, and research areas. RESULTS Eight representative local breeds or commercial broiler lines with 3 pools of 48 individuals within each breed/line were sequenced and supplied the major SNPs resource. There were 7.09 million - 9.41 million SNPs detected in each breed/line. After filtering using multiple criteria such as preferred incorporation of trait-related SNPs and uniformity of distribution across the genome, 52.18 K SNPs were selected in the final array. It consists of: (i) 19.22 K SNPs from the genomes of yellow-feathered, cyan-shank partridge and white-feathered chickens; (ii) 5.98 K SNPs related to economic traits from the Illumina 60 K SNP Bead Chip, which were found as significant associated SNPs with 15 traits in a Beijing-You crossed Cobb F2 resource population by genome-wide association study analysis; (iii) 7.63 K SNPs from 861 candidate genes of economic traits; (iv) the 0.94 K SNPs related to residual feed intake; and (v) 18.41 K from chicken SNPdb. The polymorphisms of 9 extra local breeds and 3 commercial lines were examined with this array, and 40 K - 47 K SNPs were polymorphic (with minor allele frequency > 0.05) in those breeds. The MDS result showed that those breeds can be clearly distinguished by this newly developed genotyping array. CONCLUSIONS We successfully developed a 55K genotyping array by using SNPs segregated from typical local breeds and commercial lines. Compared to the existing Affy 600 K and Illumina 60 K arrays, there were 21,41 K new SNPs included on our Affy 55K array. The results of the 55K genotyping data can therefore be imputed to high-density SNPs genotyping data. The array offers a wide range of potential applications such as genomic selection breeding, GWAS of interested traits, and investigation of diversity of different chicken breeds.
Collapse
Affiliation(s)
- Ranran Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193 People’s Republic of China
| | - Siyuan Xing
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193 People’s Republic of China
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Jie Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193 People’s Republic of China
| | - Maiqing Zheng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193 People’s Republic of China
| | - Huanxian Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193 People’s Republic of China
| | | | - Qinghe Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193 People’s Republic of China
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193 People’s Republic of China
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs, Beijing, 100193 People’s Republic of China
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, 100193 People’s Republic of China
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193 People’s Republic of China
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs, Beijing, 100193 People’s Republic of China
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, 100193 People’s Republic of China
| |
Collapse
|