1
|
Bellerose MM, Baek SH, Huang CC, Moss CE, Koh EI, Proulx MK, Smith CM, Baker RE, Lee JS, Eum S, Shin SJ, Cho SN, Murray M, Sassetti CM. Common Variants in the Glycerol Kinase Gene Reduce Tuberculosis Drug Efficacy. mBio 2019; 10:e00663-19. [PMID: 31363023 PMCID: PMC6667613 DOI: 10.1128/mbio.00663-19] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/12/2022] Open
Abstract
Despite the administration of multiple drugs that are highly effective in vitro, tuberculosis (TB) treatment requires prolonged drug administration and is confounded by the emergence of drug-resistant strains. To understand the mechanisms that limit antibiotic efficacy, we performed a comprehensive genetic study to identify Mycobacterium tuberculosis genes that alter the rate of bacterial clearance in drug-treated mice. Several functionally distinct bacterial genes were found to alter bacterial clearance, and prominent among these was the glpK gene that encodes the glycerol-3-kinase enzyme that is necessary for glycerol catabolism. Growth on glycerol generally increased the sensitivity of M. tuberculosis to antibiotics in vitro, and glpK-deficient bacteria persisted during antibiotic treatment in vivo, particularly during exposure to pyrazinamide-containing regimens. Frameshift mutations in a hypervariable homopolymeric region of the glpK gene were found to be a specific marker of multidrug resistance in clinical M. tuberculosis isolates, and these loss-of-function alleles were also enriched in extensively drug-resistant clones. These data indicate that frequently observed variation in the glpK coding sequence produces a drug-tolerant phenotype that can reduce antibiotic efficacy and may contribute to the evolution of resistance.IMPORTANCE TB control is limited in part by the length of antibiotic treatment needed to prevent recurrent disease. To probe mechanisms underlying survival under antibiotic pressure, we performed a genetic screen for M. tuberculosis mutants with altered susceptibility to treatment using the mouse model of TB. We identified multiple genes involved in a range of functions which alter sensitivity to antibiotics. In particular, we found glycerol catabolism mutants were less susceptible to treatment and that common variation in a homopolymeric region in the glpK gene was associated with drug resistance in clinical isolates. These studies indicate that reversible high-frequency variation in carbon metabolic pathways can produce phenotypically drug-tolerant clones and have a role in the development of resistance.
Collapse
Affiliation(s)
- Michelle M Bellerose
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Seung-Hun Baek
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Chuan-Chin Huang
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Caitlin E Moss
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Eun-Ik Koh
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Megan K Proulx
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Clare M Smith
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Richard E Baker
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jong Seok Lee
- International Tuberculosis Research Center, Changwon, South Korea
| | - Seokyong Eum
- International Tuberculosis Research Center, Changwon, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Nae Cho
- International Tuberculosis Research Center, Changwon, South Korea
| | - Megan Murray
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
2
|
Freidlin PJ, Nissan I, Luria A, Goldblatt D, Schaffer L, Kaidar-Shwartz H, Chemtob D, Dveyrin Z, Head SR, Rorman E. Structure and variation of CRISPR and CRISPR-flanking regions in deleted-direct repeat region Mycobacterium tuberculosis complex strains. BMC Genomics 2017; 18:168. [PMID: 28201993 PMCID: PMC5310062 DOI: 10.1186/s12864-017-3560-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/07/2017] [Indexed: 12/16/2022] Open
Abstract
Background CRISPR and CRISPR-flanking genomic regions are important for molecular epidemiology of Mycobacterium tuberculosis complex (MTBC) strains, and potentially for adaptive immunity to phage and plasmid DNA, and endogenous roles in the bacterium. Genotyping in the Israel National Mycobacterium Reference Center Tel-Aviv of over 1500 MTBC strains from 2008–2013 showed three strains with validated negative 43-spacer spoligotypes, that is, with putatively deleted direct repeat regions (deleted-DR/CRISPR regions). Two isolates of each of three negative spoligotype MTBC (a total of 6 isolates) were subjected to Next Generation Sequencing (NGS). As positive controls, NGS was performed for three intact-DR isolates belonging to T3_Eth, the largest multiple-drug-resistant (MDR)-containing African-origin cluster in Israel. Other controls consisted of NGS reads and complete whole genome sequences from GenBank for 20 intact-DR MTBC and for 1 deleted-DR MTBC strain recognized as CAS by its defining RD deletion. Results NGS reads from negative spoligotype MTBC mapped to reference H37Rv NC_000962.3 suggested that the DR/CRISPR regions were completely deleted except for retention of the middle IS6110 mobile element. Clonally specific deletion of CRISPR-flanking genes also was observed, including deletion of at least cas2 and cas1 genes. Genomic RD deletions defined lineages corresponding to the major spoligotype families Beijing, EAI, and Haarlem, consistent with 24 loci MIRU-VNTR profiles. Analysis of NGS reads, and analysis of contigs obtained by manual PCR confirmed that all 43 gold standard DR/CRISPR spacers were missing in the deleted-DR genomes. Conclusions Although many negative spoligotype strains are recorded as spoligotype-international-type (SIT) 2669 in the SITVIT international database, this is the first time to our knowledge that it has been shown that negative spoligotype strains are found in at least 4 different 24 loci MIRU-VNTR and RD deletion families. We report for the first time negative spoligotype-associated total loss of CRISPR region spacers and repeats, with accompanying clonally specific loss of flanking genes, including at least CRISPR-associated genes cas2 and cas1. Since cas1 deleted E.coli shows increased sensitivity to DNA damage and impaired chromosomal segregation, we discussed the possibility of a similar phenotype in the deleted-DR strains and Beijing family strains as both lack the cas1 gene. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3560-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paul Jeffrey Freidlin
- National Mycobacterium Reference Center, National Public Health Laboratory Tel Aviv, Ministry of Health, Tel Aviv, Israel.
| | - Israel Nissan
- National Mycobacterium Reference Center, National Public Health Laboratory Tel Aviv, Ministry of Health, Tel Aviv, Israel
| | - Anna Luria
- National Mycobacterium Reference Center, National Public Health Laboratory Tel Aviv, Ministry of Health, Tel Aviv, Israel.,current address: Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Drora Goldblatt
- National Mycobacterium Reference Center, National Public Health Laboratory Tel Aviv, Ministry of Health, Tel Aviv, Israel
| | | | - Hasia Kaidar-Shwartz
- National Mycobacterium Reference Center, National Public Health Laboratory Tel Aviv, Ministry of Health, Tel Aviv, Israel
| | - Daniel Chemtob
- Department of Tuberculosis and AIDS, Ministry of Health, Jerusalem, Israel
| | - Zeev Dveyrin
- National Public Health Laboratory Tel Aviv, Ministry of Health, Tel Aviv, Israel
| | | | - Efrat Rorman
- National Public Health Laboratory Tel Aviv, Ministry of Health, Tel Aviv, Israel
| |
Collapse
|
3
|
Abstract
The development and application of a highly versatile suite of tools for mycobacterial genetics, coupled with widespread use of "omics" approaches to elucidate the structure, function, and regulation of mycobacterial proteins, has led to spectacular advances in our understanding of the metabolism and physiology of mycobacteria. In this article, we provide an update on nucleotide metabolism and DNA replication in mycobacteria, highlighting key findings from the past 10 to 15 years. In the first section, we focus on nucleotide metabolism, ranging from the biosynthesis, salvage, and interconversion of purine and pyrimidine ribonucleotides to the formation of deoxyribonucleotides. The second part of the article is devoted to DNA replication, with a focus on replication initiation and elongation, as well as DNA unwinding. We provide an overview of replication fidelity and mutation rates in mycobacteria and summarize evidence suggesting that DNA replication occurs during states of low metabolic activity, and conclude by suggesting directions for future research to address key outstanding questions. Although this article focuses primarily on observations from Mycobacterium tuberculosis, it is interspersed, where appropriate, with insights from, and comparisons with, other mycobacterial species as well as better characterized bacterial models such as Escherichia coli. Finally, a common theme underlying almost all studies of mycobacterial metabolism is the potential to identify and validate functions or pathways that can be exploited for tuberculosis drug discovery. In this context, we have specifically highlighted those processes in mycobacterial DNA replication that might satisfy this critical requirement.
Collapse
|
4
|
Verma D, Das L, Gambhir V, Dikshit KL, Varshney GC. Heterogeneity among Homologs of Cutinase-Like Protein Cut5 in Mycobacteria. PLoS One 2015; 10:e0133186. [PMID: 26177502 PMCID: PMC4503659 DOI: 10.1371/journal.pone.0133186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 06/23/2015] [Indexed: 11/29/2022] Open
Abstract
The study of genomic variability within various pathogenic and non-pathogenic strains of mycobacteria provides insight into their evolution and pathogenesis. The mycobacterial genome encodes seven cutinase-like proteins and each one of these exhibit distinct characteristics. We describe the presence of Cut5, a member of the cutinase family, in mycobacteria and the existence of a unique genomic arrangement in the cut5 gene of M. tuberculosis (Mtb) strains. A single nucleotide (T) insertion is observed in the cut5 gene, which is specific for Mtb strains. Using in silico analysis and RT-PCR, we demonstrate the transcription of Rv3724/cut5 as Rv3724a/cut5a and Rv3724b/cut5b in Mtb H37Rv and as full length cut5 in M. bovis. Cut5b protein of Mtb H37Rv (MtbCut5b) was found to be antigenically similar to its homologs in M. bovis and M. smegmatis, without any observed cross-reactivity with other Mtb cutinases. Also, the presence of Cut5b in Mtb and its homologs in M. bovis and M. smegmatis were confirmed by western blotting using antibodies raised against recombinant Cut5b. In Mtb H37Rv, Cut5b was found to be localized in the cell wall, cytosol and membrane fractions. We also report the vast prevalence of Cut5 homologs in pathogenic and non pathogenic species of mycobacteria. In silico analysis revealed that this protein has three possible organizations in mycobacteria. Also, a single nucleotide (T) insertion in Mtb strains and varied genomic arrangements within mycobacterial species make Rv3724/Cut5 a potential candidate that can be exploited as a biomarker in Mtb infection.
Collapse
Affiliation(s)
- Deepshikha Verma
- Cell biology and Immunology Division, CSIR-Institute of Microbial Technology, Chandigarh-, India
| | - Lahari Das
- Cell biology and Immunology Division, CSIR-Institute of Microbial Technology, Chandigarh-, India
| | - Vandana Gambhir
- Cell biology and Immunology Division, CSIR-Institute of Microbial Technology, Chandigarh-, India
| | - Kanak Lata Dikshit
- Cell biology and Immunology Division, CSIR-Institute of Microbial Technology, Chandigarh-, India
| | - Grish C. Varshney
- Cell biology and Immunology Division, CSIR-Institute of Microbial Technology, Chandigarh-, India
- * E-mail:
| |
Collapse
|
5
|
Moyano AJ, Feliziani S, Di Rienzo JA, Smania AM. Simple sequence repeats together with mismatch repair deficiency can bias mutagenic pathways in Pseudomonas aeruginosa during chronic lung infection. PLoS One 2013; 8:e80514. [PMID: 24278287 PMCID: PMC3837008 DOI: 10.1371/journal.pone.0080514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/04/2013] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that chronically infects the airways of cystic fibrosis (CF) patients and undergoes a process of genetic adaptation based on mutagenesis. We evaluated the role of mononucleotide G:C and A:T simple sequence repeats (SSRs) in this adaptive process. An in silico survey of the genome sequences of 7 P. aeruginosa strains showed that mononucleotide G:C SSRs but not A:T SSRs were greatly under-represented in coding regions, suggesting a strong counterselection process for G:C SSRs with lengths >5 bp but not for A:T SSRs. A meta-analysis of published whole genome sequence data for a P. aeruginosa strain from a CF patient with chronic airway infection showed that G:C SSRs but not A:T SSRs were frequently mutated during the infection process through the insertion or deletion of one or more SSR subunits. The mutation tendency of G:C SSRs was length-dependent and increased exponentially as a function of SSR length. When this strain naturally became a stable Mismatch Repair System (MRS)-deficient mutator, the degree of increase of G:C SSRs mutations (5-fold) was much higher than that of other types of mutation (2.2-fold or less). Sequence analysis of several mutated genes reported for two different collections, both containing mutator and non-mutator strains of P. aeruginosa from CF chronic infections, showed that the proportion of G:C SSR mutations was significantly higher in mutators than in non-mutators, whereas no such difference was observed for A:T SSR mutations. Our findings, taken together, provide genome-scale evidences that under a MRS-deficient background, long G:C SSRs are able to stochastically bias mutagenic pathways by making the genes in which they are harbored more prone to mutation. The combination of MRS deficiency and virulence-related genes that contain long G:C SSRs is therefore a matter of concern in P. aeruginosa CF chronic infection.
Collapse
Affiliation(s)
- Alejandro J. Moyano
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Sofía Feliziani
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Julio A. Di Rienzo
- Estadística y Biometría, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea M. Smania
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
6
|
McGrath M, Gey van Pittius NC, van Helden PD, Warren RM, Warner DF. Mutation rate and the emergence of drug resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 2013; 69:292-302. [DOI: 10.1093/jac/dkt364] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
7
|
Kasnitz N, Köhler H, Weigoldt M, Gerlach GF, Möbius P. Stability of genotyping target sequences of Mycobacterium avium subsp. paratuberculosis upon cultivation on different media, in vitro- and in vivo passage, and natural infection. Vet Microbiol 2013; 167:573-83. [PMID: 24095568 DOI: 10.1016/j.vetmic.2013.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 11/26/2022]
Abstract
Mycobacterium (M.) avium subsp. paratuberculosis - the causative agent of paratuberculosis (Johne's disease) - affects domestic and wild ruminants worldwide. Recently, different typing techniques have been combined to provide sufficient discriminatory power for the differentiation of isolates and for epidemiological studies. In order to challenge the reliability of this approach the stability of different M. avium subsp. paratuberculosis genotypes determined after primary isolation was investigated after sub-cultivation on six different media (A), twelve in vitro passages (B), or a singular in vivo passage (C). In addition, different isolates from a single animal or herd were investigated (D). Sub-cultures of type- and reference strains, re-isolated inoculation strain after in vivo passage, and 23 field isolates were genotyped by mycobacterial interspersed repetitive unit-variable-number of tandem-repeat (MIRU-VNTR)-, short-sequence-repeat (SSR)-, and IS900-based restriction-fragment length-polymorphism (IS900-RFLP)-analyses and compared with initial genotypes. MIRU-VNTR-alleles (at loci 292, X3, 25, 47, 7, and 32) were stable after in vitro cultivations and after animal passage. Results of SSR analysis at Locus 1 with 7G nucleotides and at Loci 8 and 9 (tri-nucleotides) were also stable. At Locus 2 9G repeats changed into 10G after goat passage. After in vitro subculture (A+B) but not after animal passage (C) IS900-RFLP-typing revealed changes of BstEII-patterns for 3 of 23 strains (including ATCC 19698). Multiple isolates from individual animals or from a single cattle herd with natural infection (D) which exhibited identical IS900-RFLP- and MIRU-VNTR- genotypes, showed different G repeat numbers at SSR locus 2. This implies strand slippage events during chromosomal duplication of bacteria in the course of bacterial spreading within hosts and herds. Consequently, SSR-Locus 2 is not suitable as genome marker for epidemiological studies.
Collapse
Affiliation(s)
- Nadine Kasnitz
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | | | | | | | | |
Collapse
|
8
|
Abstract
Fundamental aspects of the lifestyle of Mycobacterium tuberculosis implicate DNA metabolism in bacillary survival and adaptive evolution. The environments encountered by M. tuberculosis during successive cycles of infection and transmission are genotoxic. Moreover, as an obligate pathogen, M. tuberculosis has the ability to persist for extended periods in a subclinical state, suggesting that active DNA repair is critical to maintain genome integrity and bacterial viability during prolonged infection. In this chapter, we provide an overview of the major DNA metabolic pathways identified in M. tuberculosis, and situate key recent findings within the context of mycobacterial pathogenesis. Unlike many other bacterial pathogens, M. tuberculosis is genetically secluded, and appears to rely solely on chromosomal mutagenesis to drive its microevolution within the human host. In turn, this implies that a balance between high versus relaxed fidelity mechanisms of DNA metabolism ensures the maintenance of genome integrity, while accommodating the evolutionary imperative to adapt to hostile and fluctuating environments. The inferred relationship between mycobacterial DNA repair and genome dynamics is considered in the light of emerging data from whole-genome sequencing studies of clinical M. tuberculosis isolates which have revealed the potential for considerable heterogeneity within and between different bacterial and host populations.
Collapse
|
9
|
Qin L, Wang J, Zheng R, Lu J, Yang H, Liu Z, Cui Z, Jin R, Feng Y, Hu Z. Perspective on sequence evolution of microsatellite locus (CCG)n in Rv0050 gene from Mycobacterium tuberculosis. BMC Evol Biol 2011; 11:247. [PMID: 21878130 PMCID: PMC3176237 DOI: 10.1186/1471-2148-11-247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 08/31/2011] [Indexed: 12/25/2022] Open
Abstract
Background The mycobacterial genome is inclined to polymerase slippage and a high mutation rate in microsatellite regions due to high GC content and absence of a mismatch repair system. However, the exact molecular mechanisms underlying microsatellite variation have not been fully elucidated. Here, we investigated mutation events in the hyper-variable trinucleotide microsatellite locus MML0050 located in the Rv0050 gene of W-Beijing and non-W-Beijing Mycobacterium tuberculosis strains in order to gain insight into the genomic structure and activity of repeated regions. Results Size analysis indicated the presence of five alleles that differed in length by three base pairs. Moreover, nucleotide gains occurred more frequently than loses in this trinucleotide microsatellite. Mutation frequency was not completely related with the total length, though the relative frequency in the longest allele was remarkably higher than that in the shortest. Sequence analysis was able to detect seven alleles and revealed that point mutations enhanced the level of locus variation. Introduction of an interruptive motif correlated with the total allele length and genetic lineage, rather than the length of the longest stretch of perfect repeats. Finally, the level of locus variation was drastically different between the two genetic lineages. Conclusion The Rv0050 locus encodes the bifunctional penicillin-binding protein ponA1 and is essential to mycobacterial survival. Our investigations of this particularly dynamic genomic region provide insights into the overall mode of microsatellite evolution. Specifically, replication slippage was implicated in the mutational process of this microsatellite and a sequence-based genetic analysis was necessary to determine that point mutation events acted to maintain microsatellite size integrity while providing genomic diversity.
Collapse
Affiliation(s)
- Lianhua Qin
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai, 200433, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
UvrD2 is essential in Mycobacterium tuberculosis, but its helicase activity is not required. J Bacteriol 2011; 193:4487-94. [PMID: 21725019 DOI: 10.1128/jb.00302-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UvrD is an SF1 family helicase involved in DNA repair that is widely conserved in bacteria. Mycobacterium tuberculosis has two annotated UvrD homologues; here we investigate the role of UvrD2. The uvrD2 gene at its native locus could be knocked out only in the presence of a second copy of the gene, demonstrating that uvrD2 is essential. Analysis of the putative protein domain structure of UvrD2 shows a distinctive domain architecture, with an extended C terminus containing an HRDC domain normally found in SF2 family helicases and a linking domain carrying a tetracysteine motif. Truncated constructs lacking the C-terminal domains of UvrD2 were able to compensate for the loss of the chromosomal copy, showing that these C-terminal domains are not essential. Although UvrD2 is a functional helicase, a mutant form of the protein lacking helicase activity was able to permit deletion of uvrD2 at its native locus. However, a mutant protein unable to hydrolyze ATP or translocate along DNA was not able to compensate for lack of the wild-type protein. Therefore, we concluded that the essential role played by UvrD2 is unlikely to involve its DNA unwinding activity and is more likely to involve DNA translocation and, possibly, protein displacement.
Collapse
|
11
|
Falster DS, Nakken S, Bergem-Ohr M, Rødland EA, Breivik J. Unstable DNA repair genes shaped by their own sequence modifying phenotypes. J Mol Evol 2010; 70:266-74. [PMID: 20213140 PMCID: PMC2846273 DOI: 10.1007/s00239-010-9328-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 02/10/2010] [Indexed: 11/27/2022]
Abstract
The question of whether natural selection favors genetic stability or genetic variability is a fundamental problem in evolutionary biology. Bioinformatic analyses demonstrate that selection favors genetic stability by avoiding unstable nucleotide sequences in protein encoding DNA. Yet, such unstable sequences are maintained in several DNA repair genes, thereby promoting breakdown of repair and destabilizing the genome. Several studies have therefore argued that selection favors genetic variability at the expense of stability. Here we propose a new evolutionary mechanism, with supporting bioinformatic evidence, that resolves this paradox. Combining the concepts of gene-dependent mutation biases and meiotic recombination, we argue that unstable sequences in the DNA mismatch repair (MMR) genes are maintained by their own phenotype. In particular, we predict that human MMR maintains an overrepresentation of mononucleotide repeats (monorepeats) within and around the MMR genes. In support of this hypothesis, we report a 31% excess in monorepeats in 250 kb regions surrounding the seven MMR genes compared to all other RefSeq genes (1.75 vs. 1.34%, P = 0.0047), with a particularly high content in PMS2 (2.41%, P = 0.0047) and MSH6 (2.07%, P = 0.043). Based on a mathematical model of monorepeat frequency, we argue that the proposed mechanism may suffice to explain the observed excess of repeats around MMR genes. Our findings thus indicate that unstable sequences in MMR genes are maintained through evolution by the MMR mechanism. The evolutionary paradox of genetically unstable DNA repair genes may thus be explained by an equilibrium in which the phenotype acts back on its own genotype.
Collapse
Affiliation(s)
- Daniel S. Falster
- Institute of Basic Medical Science, University of Oslo, P.O. Box 1018 Blindern, 0315 Oslo, Norway
- Present Address: Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Sigve Nakken
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Rikshospitalet University Hospital, 0027 Oslo, Norway
- Present Address: Bioinformatics Core Facility, Institute of Medical Informatics, Rikshospitalet, 0310 Oslo, Norway
| | - Marie Bergem-Ohr
- Institute of Basic Medical Science, University of Oslo, P.O. Box 1018 Blindern, 0315 Oslo, Norway
| | - Einar Andreas Rødland
- Department of Informatics and Center for Cancer Biomedicine, University of Oslo, 0316 Oslo, Norway
- Norwegian Computing Center, 0314 Oslo, Norway
| | - Jarle Breivik
- Institute of Basic Medical Science, University of Oslo, P.O. Box 1018 Blindern, 0315 Oslo, Norway
| |
Collapse
|
12
|
|