1
|
Chaves-Olarte E, Meza-Torres J, Herrera-Rodríguez F, Lizano-González E, Suárez-Esquivel M, Baker KS, Rivas-Solano O, Ruiz-Villalobos N, Villalta-Romero F, Cheng HP, Walker GC, Cloeckaert A, Thomson NR, Frisan T, Moreno E, Guzmán-Verri C. A sensor histidine kinase from a plant-endosymbiont bacterium restores the virulence of a mammalian intracellular pathogen. Microb Pathog 2023; 185:106442. [PMID: 37944675 PMCID: PMC10740080 DOI: 10.1016/j.micpath.2023.106442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/22/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Alphaproteobacteria include organisms living in close association with plants or animals. This interaction relies partly on orthologous two-component regulatory systems (TCS), with sensor and regulator proteins modulating the expression of conserved genes related to symbiosis/virulence. We assessed the ability of the exoS+Sm gene, encoding a sensor protein from the plant endosymbiont Sinorhizobium meliloti to substitute its orthologous bvrS in the related animal/human pathogen Brucella abortus. ExoS phosphorylated the B. abortus regulator BvrR in vitro and in cultured bacteria, showing conserved biological function. Production of ExoS in a B. abortus bvrS mutant reestablished replication in host cells and the capacity to infect mice. Bacterial outer membrane properties, the production of the type IV secretion system VirB, and its transcriptional regulators VjbR and BvrR were restored as compared to parental B. abortus. These results indicate that conserved traits of orthologous TCS from bacteria living in and sensing different environments are sufficient to achieve phenotypic plasticity and support bacterial survival. The knowledge of bacterial genetic networks regulating host interactions allows for an understanding of the subtle differences between symbiosis and parasitism. Rewiring these networks could provide new alternatives to control and prevent bacterial infection.
Collapse
Affiliation(s)
- Esteban Chaves-Olarte
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica; Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Jazmín Meza-Torres
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Fabiola Herrera-Rodríguez
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Esteban Lizano-González
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica; Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Marcela Suárez-Esquivel
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Kate S Baker
- Parasites and Microbes from Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Olga Rivas-Solano
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
| | - Nazareth Ruiz-Villalobos
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Fabián Villalta-Romero
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
| | - Hai-Ping Cheng
- Biological Sciences Department, Lehman College, The City University of New York, New York, USA
| | - Graham C Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Nicholas R Thomson
- Parasites and Microbes from Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Teresa Frisan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Caterina Guzmán-Verri
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica; Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica.
| |
Collapse
|
2
|
Greenwich JL, Heckel BC, Alakavuklar MA, Fuqua C. The ChvG-ChvI Regulatory Network: A Conserved Global Regulatory Circuit Among the Alphaproteobacteria with Pervasive Impacts on Host Interactions and Diverse Cellular Processes. Annu Rev Microbiol 2023; 77:131-148. [PMID: 37040790 DOI: 10.1146/annurev-micro-120822-102714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The ChvG-ChvI two-component system is conserved among multiple Alphaproteobacteria. ChvG is a canonical two-component system sensor kinase with a single large periplasmic loop. Active ChvG directs phosphotransfer to its cognate response regulator ChvI, which controls transcription of target genes. In many alphaproteobacteria, ChvG is regulated by a third component, a periplasmic protein called ExoR, that maintains ChvG in an inactive state through direct interaction. Acidic pH stimulates proteolysis of ExoR, unfettering ChvG-ChvI to control its regulatory targets. Activated ChvI among different alphaproteobacteria controls a broad range of cellular processes, including symbiosis and virulence, exopolysaccharide production, biofilm formation, motility, type VI secretion, cellular metabolism, envelope composition, and growth. Low pH is a virulence signal in Agrobacterium tumefaciens, but in other systems, conditions that cause envelope stress may also generally activate ChvG-ChvI. There is mounting evidence that these regulators influence diverse aspects of bacterial physiology, including but not limited to host interactions.
Collapse
Affiliation(s)
| | - Brynn C Heckel
- Department of Biology, Indiana University, Bloomington, Indiana, USA; ,
- Current affiliation: California State University, Dominguez Hills, California, USA;
| | - Melene A Alakavuklar
- Department of Biology, Indiana University, Bloomington, Indiana, USA; ,
- Current affiliation: Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana, USA; ,
| |
Collapse
|
3
|
Castillo-Zeledón A, Rivas-Solano O, Villalta-Romero F, Gómez-Espinoza O, Moreno E, Chaves-Olarte E, Guzmán-Verri C. The Brucella abortus two-component system response regulator BvrR binds to three DNA regulatory boxes in the upstream region of omp25. Front Microbiol 2023; 14:1241143. [PMID: 37779712 PMCID: PMC10538546 DOI: 10.3389/fmicb.2023.1241143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023] Open
Abstract
Brucella abortus is a facultative extracellular-intracellular bacterial zoonotic pathogen worldwide. It is also a major cause of abortion in bovines, generating economic losses. The two-component regulatory system BvrR/BvrS modulates the expression of genes required to transition from extracellular to intracellular lifestyles. However, few regulatory regions of BvrR direct target genes have been studied. In this study, we characterized the regulatory region of omp25, a gene encoding an outer membrane protein that is positively regulated by TCS BvrR/BvrS. By omp25-lacZ reporter fusions and β-galactosidase activity assays, we found that the region between-262 and + 127 is necessary for transcriptional activity, particularly a 111-bp long fragment located from-262 to -152. In addition, we demonstrated the binding of P-BvrR to three sites within the -140 to +1 region. Two of these sites were delimited between -18 to +1 and - 99 to -76 by DNase I footprinting and called DNA regulatory boxes 1 and 2, respectively. The third binding site (box 3) was delimited from -140 to -122 by combining EMSA and fluorescence anisotropy results. A molecular docking analysis with HDOCK predicted BvrR-DNA interactions between 11, 13, and 12 amino acid residue-nucleotide pairs in boxes 1, 2, and 3, respectively. A manual sequence alignment of the three regulatory boxes revealed the presence of inverted and non-inverted repeats of five to eight nucleotides, partially matching DNA binding motifs previously described for BvrR. We propose that P-BvrR binds directly to up to three regulatory boxes and probably interacts with other transcription factors to regulate omp25 expression. This gene regulation model could apply to other BvrR target genes and to orthologs of the TCS BvrR/BvrS and Omp25 in phylogenetically closed Rhizobiales.
Collapse
Affiliation(s)
- Amanda Castillo-Zeledón
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Olga Rivas-Solano
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional de Costa Rica, Heredia, Costa Rica
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Campus Tecnológico Central Cartago, Cartago, Costa Rica
| | - Fabián Villalta-Romero
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Campus Tecnológico Central Cartago, Cartago, Costa Rica
| | - Olman Gómez-Espinoza
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Campus Tecnológico Central Cartago, Cartago, Costa Rica
| | - Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Esteban Chaves-Olarte
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Caterina Guzmán-Verri
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| |
Collapse
|
4
|
Bensig EO, Valadez-Cano C, Kuang Z, Freire IR, Reyes-Prieto A, MacLellan SR. The two-component regulatory system CenK–CenR regulates expression of a previously uncharacterized protein required for salinity and oxidative stress tolerance in Sinorhizobium meliloti. Front Microbiol 2022; 13:1020932. [PMID: 36246272 PMCID: PMC9561847 DOI: 10.3389/fmicb.2022.1020932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Genes of unknown function constitute a considerable fraction of most bacterial genomes. In a Tn5-based search for stress response genes in the nitrogen-fixing facultative endosymbiont Sinorhizobium (Ensifer) meliloti, we identified a previously uncharacterized gene required for growth on solid media with increased NaCl concentrations. The encoded protein carries a predicted thioredoxin fold and deletion of the gene also results in increased sensitivity to hydrogen peroxide and cumene hydroperoxide. We have designated the gene srlA (stress resistance locus A) based on these phenotypes. A deletion mutant yields phenotypic revertants on high salt medium and genome sequencing revealed that all revertants carry a mutation in genes homologous to either cenK or cenR. srlA promoter activity is abolished in these revertant host backgrounds and in a strain carrying a deletion in cenK. We also observed that the srlA promoter is autoregulated, displaying low activity in a wildtype (wt) host background and high activity in the srl deletion mutant background. The srlA promoter includes a conserved inverted repeat directly upstream of the predicted −35 subsequence. A mutational analysis demonstrated that the site is required for the high promoter activity in the srlA deletion background. Electromobility shift assays using purified wildtype CenR response regulator and a D55E phosphomimetic derivative suggest this protein acts as a likely Class II activator by binding promoter DNA. These results document the first identified CenK–CenR regulon member in S. meliloti and demonstrate this two-component regulatory system and gene srlA influences cellular growth and persistence under certain stress-inducing conditions.
Collapse
Affiliation(s)
- Eukene O. Bensig
- Department of Biology and Environmental Science, University of the Philippines Cebu, Cebu City, Philippines
| | | | - ZiYu Kuang
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| | - Isabela R. Freire
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| | | | - Shawn R. MacLellan
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
- *Correspondence: Shawn R. MacLellan,
| |
Collapse
|
5
|
The regulon of Brucella abortus two-component system BvrR/BvrS reveals the coordination of metabolic pathways required for intracellular life. PLoS One 2022; 17:e0274397. [PMID: 36129877 PMCID: PMC9491525 DOI: 10.1371/journal.pone.0274397] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
Brucella abortus is a facultative intracellular pathogen causing a severe zoonotic disease worldwide. The two-component regulatory system (TCS) BvrR/BvrS of B. abortus is conserved in members of the Alphaproteobacteria class. It is related to the expression of genes required for host interaction and intracellular survival. Here we report that bvrR and bvrS are part of an operon composed of 16 genes encoding functions related to nitrogen metabolism, DNA repair and recombination, cell cycle arrest, and stress response. Synteny of this genomic region within close Alphaproteobacteria members suggests a conserved role in coordinating the expression of carbon and nitrogen metabolic pathways. In addition, we performed a ChIP-Seq analysis after exposure of bacteria to conditions that mimic the intracellular environment. Genes encoding enzymes at metabolic crossroads of the pentose phosphate shunt, gluconeogenesis, cell envelope homeostasis, nucleotide synthesis, cell division, and virulence are BvrR/BvrS direct targets. A 14 bp DNA BvrR binding motif was found and investigated in selected gene targets such as virB1, bvrR, pckA, omp25, and tamA. Understanding gene expression regulation is essential to elucidate how Brucella orchestrates a physiological response leading to a furtive pathogenic strategy.
Collapse
|
6
|
Ratib NR, Sabio EY, Mendoza C, Barnett MJ, Clover SB, Ortega JA, Dela Cruz FM, Balderas D, White H, Long SR, Chen EJ. Genome-wide identification of genes directly regulated by ChvI and a consensus sequence for ChvI binding in Sinorhizobium meliloti. Mol Microbiol 2018; 110:596-615. [PMID: 30192418 DOI: 10.1111/mmi.14119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/16/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022]
Abstract
ExoS/ChvI two-component signaling in the nitrogen-fixing α-proteobacterium Sinorhizobium meliloti is required for symbiosis and regulates exopolysaccharide production, motility, cell envelope integrity and nutrient utilization in free-living bacteria. However, identification of many ExoS/ChvI direct transcriptional target genes has remained elusive. Here, we performed chromatin immunoprecipitation followed by microarray analysis (chIP-chip) to globally identify DNA regions bound by ChvI protein in S. meliloti. We then performed qRT-PCR with chvI mutant strains to test ChvI-dependent expression of genes downstream of the ChvI-bound DNA regions. We identified 64 direct target genes of ChvI, including exoY, rem and chvI itself. We also identified ChvI direct target candidates, like exoR, that are likely controlled by additional regulators. Analysis of upstream sequences from the 64 ChvI direct target genes identified a 15 bp-long consensus sequence. Using electrophoretic mobility shift assays and transcriptional fusions with exoY, SMb21440, SMc00084, SMc01580, chvI, and ropB1, we demonstrated this consensus sequence is important for ChvI binding to DNA and transcription of ChvI direct target genes. Thus, we have comprehensively identified ChvI regulon genes and a 'ChvI box' bound by ChvI. Many ChvI direct target genes may influence the cell envelope, consistent with the critical role of ExoS/ChvI in growth and microbe-host interactions.
Collapse
Affiliation(s)
- Nicole R Ratib
- Department of Biological Science, Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Erich Y Sabio
- Department of Biological Science, Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Carolina Mendoza
- Department of Biological Science, Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | | | - Sarah B Clover
- Department of Biological Science, Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Jesus A Ortega
- Department of Biological Science, Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Francesca M Dela Cruz
- Department of Biological Science, Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - David Balderas
- Department of Biological Science, Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Holly White
- Department of Biological Science, Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Sharon R Long
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Esther J Chen
- Department of Biological Science, Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| |
Collapse
|
7
|
Novel Genes and Regulators That Influence Production of Cell Surface Exopolysaccharides in Sinorhizobium meliloti. J Bacteriol 2018; 200:JB.00501-17. [PMID: 29158240 DOI: 10.1128/jb.00501-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/10/2017] [Indexed: 12/21/2022] Open
Abstract
Sinorhizobium meliloti is a soil-dwelling alphaproteobacterium that engages in a nitrogen-fixing root nodule symbiosis with leguminous plants. Cell surface polysaccharides are important both for adapting to stresses in the soil and for the development of an effective symbiotic interaction. Among the polysaccharides characterized to date, the acidic exopolysaccharides I (EPS-I; succinoglycan) and II (EPS-II; galactoglucan) are particularly important for protection from abiotic stresses, biofilm formation, root colonization, and infection of plant roots. Previous genetic screens discovered mutants with impaired EPS production, allowing the delineation of EPS biosynthetic pathways. Here we report on a genetic screen to isolate mutants with mucoid colonial morphologies that suggest EPS overproduction. Screening with Tn5-110, which allows the recovery of both null and upregulation mutants, yielded 47 mucoid mutants, most of which overproduce EPS-I; among the 30 unique genes and intergenic regions identified, 14 have not been associated with EPS production previously. We identified a new protein-coding gene, emmD, which may be involved in the regulation of EPS-I production as part of the EmmABC three-component regulatory circuit. We also identified a mutant defective in EPS-I production, motility, and symbiosis, where Tn5-110 was not responsible for the mutant phenotypes; these phenotypes result from a missense mutation in rpoA corresponding to the domain of the RNA polymerase alpha subunit known to interact with transcription regulators.IMPORTANCE The alphaproteobacterium Sinorhizobium meliloti converts dinitrogen to ammonium while inhabiting specialized plant organs termed root nodules. The transformation of S. meliloti from a free-living soil bacterium to a nitrogen-fixing plant symbiont is a complex developmental process requiring close interaction between the two partners. As the interface between the bacterium and its environment, the S. meliloti cell surface plays a critical role in adaptation to varied soil environments and in interaction with plant hosts. We isolated and characterized S. meliloti mutants with increased production of exopolysaccharides, key cell surface components. Our diverse set of mutants suggests roles for exopolysaccharide production in growth, metabolism, cell division, envelope homeostasis, biofilm formation, stress response, motility, and symbiosis.
Collapse
|
8
|
Hawkins JP, Oresnik IJ. Characterisation of a gene encoding a membrane protein that affects exopolysaccharide production and intracellular Mg2+ concentrations in Ensifer meliloti. FEMS Microbiol Lett 2017; 364:3072829. [DOI: 10.1093/femsle/fnx061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/15/2017] [Indexed: 12/30/2022] Open
|
9
|
Draghi WO, Del Papa MF, Hellweg C, Watt SA, Watt TF, Barsch A, Lozano MJ, Lagares A, Salas ME, López JL, Albicoro FJ, Nilsson JF, Torres Tejerizo GA, Luna MF, Pistorio M, Boiardi JL, Pühler A, Weidner S, Niehaus K, Lagares A. A consolidated analysis of the physiologic and molecular responses induced under acid stress in the legume-symbiont model-soil bacterium Sinorhizobium meliloti. Sci Rep 2016; 6:29278. [PMID: 27404346 PMCID: PMC4941405 DOI: 10.1038/srep29278] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/14/2016] [Indexed: 01/30/2023] Open
Abstract
Abiotic stresses in general and extracellular acidity in particular disturb and limit nitrogen-fixing symbioses between rhizobia and their host legumes. Except for valuable molecular-biological studies on different rhizobia, no consolidated models have been formulated to describe the central physiologic changes that occur in acid-stressed bacteria. We present here an integrated analysis entailing the main cultural, metabolic, and molecular responses of the model bacterium Sinorhizobium meliloti growing under controlled acid stress in a chemostat. A stepwise extracellular acidification of the culture medium had indicated that S. meliloti stopped growing at ca. pH 6.0–6.1. Under such stress the rhizobia increased the O2 consumption per cell by more than 5-fold. This phenotype, together with an increase in the transcripts for several membrane cytochromes, entails a higher aerobic-respiration rate in the acid-stressed rhizobia. Multivariate analysis of global metabolome data served to unequivocally correlate specific-metabolite profiles with the extracellular pH, showing that at low pH the pentose-phosphate pathway exhibited increases in several transcripts, enzymes, and metabolites. Further analyses should be focused on the time course of the observed changes, its associated intracellular signaling, and on the comparison with the changes that operate during the sub lethal acid-adaptive response (ATR) in rhizobia.
Collapse
Affiliation(s)
- W O Draghi
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - M F Del Papa
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - C Hellweg
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - S A Watt
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - T F Watt
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - A Barsch
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - M J Lozano
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - A Lagares
- Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina
| | - M E Salas
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - J L López
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - F J Albicoro
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - J F Nilsson
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - G A Torres Tejerizo
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - M F Luna
- CINDEFI - Centro de Investigación y Desarrollo en Fermentaciones Industriales, CONICET - Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - M Pistorio
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - J L Boiardi
- CINDEFI - Centro de Investigación y Desarrollo en Fermentaciones Industriales, CONICET - Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - A Pühler
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - S Weidner
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - K Niehaus
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - A Lagares
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| |
Collapse
|
10
|
Heavner ME, Qiu WG, Cheng HP. Phylogenetic Co-Occurrence of ExoR, ExoS, and ChvI, Components of the RSI Bacterial Invasion Switch, Suggests a Key Adaptive Mechanism Regulating the Transition between Free-Living and Host-Invading Phases in Rhizobiales. PLoS One 2015; 10:e0135655. [PMID: 26309130 PMCID: PMC4550343 DOI: 10.1371/journal.pone.0135655] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/23/2015] [Indexed: 11/18/2022] Open
Abstract
Both bacterial symbionts and pathogens rely on their host-sensing mechanisms to activate the biosynthetic pathways necessary for their invasion into host cells. The Gram-negative bacterium Sinorhizobium meliloti relies on its RSI (ExoR-ExoS-ChvI) Invasion Switch to turn on the production of succinoglycan, an exopolysaccharide required for its host invasion. Recent whole-genome sequencing efforts have uncovered putative components of RSI-like invasion switches in many other symbiotic and pathogenic bacteria. To explore the possibility of the existence of a common invasion switch, we have conducted a phylogenomic survey of orthologous ExoR, ExoS, and ChvI tripartite sets in more than ninety proteobacterial genomes. Our analyses suggest that functional orthologs of the RSI invasion switch co-exist in Rhizobiales, an order characterized by numerous invasive species, but not in the order’s close relatives. Phylogenomic analyses and reconstruction of orthologous sets of the three proteins in Alphaproteobacteria confirm Rhizobiales-specific gene synteny and congruent RSI evolutionary histories. Evolutionary analyses further revealed site-specific substitutions correlated specifically to either animal-bacteria or plant-bacteria associations. Lineage restricted conservation of any one specialized gene is in itself an indication of species adaptation. However, the orthologous phylogenetic co-occurrence of all interacting partners within this single signaling pathway strongly suggests that the development of the RSI switch was a key adaptive mechanism. The RSI invasion switch, originally found in S. meliloti, is a characteristic of the Rhizobiales, and potentially a conserved crucial activation step that may be targeted to control host invasion by pathogenic bacterial species.
Collapse
Affiliation(s)
- Mary Ellen Heavner
- Biochemistry Program, The Graduate Center, City University of New York, New York, New York, United States of America
| | - Wei-Gang Qiu
- Biological Sciences Department, Hunter College, City University of New York, New York, New York, United States of America
| | - Hai-Ping Cheng
- Biochemistry Program, The Graduate Center, City University of New York, New York, New York, United States of America
- Biological Sciences Department, Lehman College, City University of New York, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
11
|
The Sinorhizobium meliloti SyrM regulon: effects on global gene expression are mediated by syrA and nodD3. J Bacteriol 2015; 197:1792-806. [PMID: 25777671 DOI: 10.1128/jb.02626-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/06/2015] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED In Sinorhizobium meliloti, three NodD transcriptional regulators activate bacterial nodulation (nod) gene expression. NodD1 and NodD2 require plant compounds to activate nod genes. The NodD3 protein does not require exogenous compounds to activate nod gene expression; instead, another transcriptional regulator, SyrM, activates nodD3 expression. In addition, NodD3 can activate syrM expression. SyrM also activates expression of another gene, syrA, which when overexpressed causes a dramatic increase in exopolysaccharide production. In a previous study, we identified more than 200 genes with altered expression in a strain overexpressing nodD3. In this work, we define the transcriptomes of strains overexpressing syrM or syrA. The syrM, nodD3, and syrA overexpression transcriptomes share similar gene expression changes; analyses imply that nodD3 and syrA are the only targets directly activated by SyrM. We propose that most of the gene expression changes observed when nodD3 is overexpressed are due to NodD3 activation of syrM expression, which in turn stimulates SyrM activation of syrA expression. The subsequent increase in SyrA abundance results in broad changes in gene expression, most likely mediated by the ChvI-ExoS-ExoR regulatory circuit. IMPORTANCE Symbioses with bacteria are prevalent across the animal and plant kingdoms. Our system of study, the rhizobium-legume symbiosis (Sinorhizobium meliloti and Medicago spp.), involves specific host-microbe signaling, differentiation in both partners, and metabolic exchange of bacterial fixed nitrogen for host photosynthate. During this complex developmental process, both bacteria and plants undergo profound changes in gene expression. The S. meliloti SyrM-NodD3-SyrA and ChvI-ExoS-ExoR regulatory circuits affect gene expression and are important for optimal symbiosis. In this study, we defined the transcriptomes of S. meliloti overexpressing SyrM or SyrA. In addition to identifying new targets of the SyrM-NodD3-SyrA regulatory circuit, our work further suggests how it is linked to the ChvI-ExoS-ExoR regulatory circuit.
Collapse
|
12
|
Geddes BA, González JE, Oresnik IJ. Exopolysaccharide production in response to medium acidification is correlated with an increase in competition for nodule occupancy. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1307-17. [PMID: 25387133 DOI: 10.1094/mpmi-06-14-0168-r] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Sinorhizobium meliloti strains unable to utilize galactose as a sole carbon source, due to mutations in the De-Ley Doudoroff pathway (dgoK), were previously shown to be more competitive for nodule occupancy. In this work, we show that strains carrying this mutation have galactose-dependent exopolysaccharide (EPS) phenotypes that were manifested as aberrant Calcofluor staining as well as decreased mucoidy when in an expR(+) genetic background. The aberrant Calcofluor staining was correlated with changes in the pH of the growth medium. Strains carrying dgoK mutations were subsequently demonstrated to show earlier acidification of their growth medium that was correlated with an increase expression of genes associated with succinoglycan biosynthesis as well as increased accumulation of high and low molecular weight EPS in the medium. In addition, it was shown that the acidification of the medium was dependent on the inability of S. meliloti strains to initiate the catabolism of galactose. To more fully understand why strains carrying the dgoK allele were more competitive for nodule occupancy, early nodulation phenotypes were investigated. It was found that strains carrying the dgoK allele had a faster rate of nodulation. In addition, nodule competition experiments using genetic backgrounds unable to synthesize either succinoglycan or EPSII were consistent with the hypothesis that the increased competition phenotype was dependent upon the synthesis of succinoglycan. Fluorescent microscopy experiments on infected root-hair cells, using the acidotropic dye Lysotracker Red DND-99, provide evidence that the colonized curled root hair is an acidic compartment.
Collapse
|
13
|
Geddes BA, Oresnik IJ. Physiology, genetics, and biochemistry of carbon metabolism in the alphaproteobacterium Sinorhizobium meliloti. Can J Microbiol 2014; 60:491-507. [PMID: 25093748 DOI: 10.1139/cjm-2014-0306] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A large proportion of genes within a genome encode proteins that play a role in metabolism. The Alphaproteobacteria are a ubiquitous group of bacteria that play a major role in a number of environments. For well over 50 years, carbon metabolism in Rhizobium has been studied at biochemical and genetic levels. Here, we review the pre- and post-genomics literature of the metabolism of the alphaproteobacterium Sinorhizobium meliloti. This review provides an overview of carbon metabolism that is useful to readers interested in this organism and to those working on other organisms that do not follow other model system paradigms.
Collapse
Affiliation(s)
- Barney A Geddes
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | |
Collapse
|
14
|
Agrobacterium tumefaciens exoR controls acid response genes and impacts exopolysaccharide synthesis, horizontal gene transfer, and virulence gene expression. J Bacteriol 2014; 196:3221-33. [PMID: 24982308 DOI: 10.1128/jb.01751-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Agrobacterium tumefaciens is a facultative plant pathogen and the causative agent of crown gall disease. The initial stage of infection involves attachment to plant tissues, and subsequently, biofilms may form at these sites. This study focuses on the periplasmic ExoR regulator, which was identified based on the severe biofilm deficiency of A. tumefaciens exoR mutants. Genome-wide expression analysis was performed to elucidate the complete ExoR regulon. Overproduction of the exopolysaccharide succinoglycan is a dramatic phenotype of exoR mutants. Comparative expression analyses revealed that the core ExoR regulon is unaffected by succinoglycan synthesis. Several findings are consistent with previous observations: genes involved in succinoglycan biosynthesis, motility, and type VI secretion are differentially expressed in the ΔexoR mutant. In addition, these studies revealed new functional categories regulated by ExoR, including genes related to virulence, conjugation of the pAtC58 megaplasmid, ABC transporters, and cell envelope architecture. To address how ExoR exerts a broad impact on gene expression from its periplasmic location, a genetic screen was performed to isolate suppressor mutants that mitigate the exoR motility phenotype and identify downstream components of the ExoR regulatory pathway. This suppression analysis identified the acid-sensing two-component system ChvG-ChvI, and the suppressor mutant phenotypes suggest that all or most of the characteristic exoR properties are mediated through ChvG-ChvI. Subsequent analysis indicates that exoR mutants are simulating a response to acidic conditions, even in neutral media. This work expands the model for ExoR regulation in A. tumefaciens and underscores the global role that this regulator plays on gene expression.
Collapse
|
15
|
Santos MR, Marques AT, Becker JD, Moreira LM. The Sinorhizobium meliloti EmrR regulator is required for efficient colonization of Medicago sativa root nodules. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:388-399. [PMID: 24593245 DOI: 10.1094/mpmi-09-13-0284-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The nitrogen-fixing bacterium Sinorhizobium meliloti must adapt to diverse conditions encountered during its symbiosis with leguminous plants. We characterized a new symbiotically relevant gene, emrR (SMc03169), whose product belongs to the TetR family of repressors and is divergently transcribed from emrAB genes encoding a putative major facilitator superfamily-type efflux pump. An emrR deletion mutant produced more succinoglycan, displayed increased cell-wall permeability, and exhibited higher tolerance to heat shock. It also showed lower tolerance to acidic conditions, a reduced production of siderophores, and lower motility and biofilm formation. The simultaneous deletion of emrA and emrR genes restored the mentioned traits to the wild-type phenotype, except for survival under heat shock, which was lower than that displayed by the wild-type strain. Furthermore, the ΔemrR mutant as well as the double ΔemrAR mutant was impaired in symbiosis with Medicago sativa; it formed fewer nodules and competed poorly with the wild-type strain for nodule colonization. Expression profiling of the ΔemrR mutant showed decreased expression of genes involved in Nod-factor and rhizobactin biosynthesis and in stress responses. Expression of genes directing the biosynthesis of succinoglycan and other polysaccharides were increased. EmrR may therefore be involved in a regulatory network targeting membrane and cell wall modifications in preparation for colonization of root hairs during symbiosis.
Collapse
|
16
|
Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA, Holland TA, Keseler IM, Kothari A, Kubo A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Subhraveti P, Weaver DS, Weerasinghe D, Zhang P, Karp PD. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res 2014; 42:D459-71. [PMID: 24225315 PMCID: PMC3964957 DOI: 10.1093/nar/gkt1103] [Citation(s) in RCA: 829] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 10/19/2013] [Indexed: 12/20/2022] Open
Abstract
The MetaCyc database (MetaCyc.org) is a comprehensive and freely accessible database describing metabolic pathways and enzymes from all domains of life. MetaCyc pathways are experimentally determined, mostly small-molecule metabolic pathways and are curated from the primary scientific literature. MetaCyc contains >2100 pathways derived from >37,000 publications, and is the largest curated collection of metabolic pathways currently available. BioCyc (BioCyc.org) is a collection of >3000 organism-specific Pathway/Genome Databases (PGDBs), each containing the full genome and predicted metabolic network of one organism, including metabolites, enzymes, reactions, metabolic pathways, predicted operons, transport systems and pathway-hole fillers. Additions to BioCyc over the past 2 years include YeastCyc, a PGDB for Saccharomyces cerevisiae, and 891 new genomes from the Human Microbiome Project. The BioCyc Web site offers a variety of tools for querying and analysis of PGDBs, including Omics Viewers and tools for comparative analysis. New developments include atom mappings in reactions, a new representation of glycan degradation pathways, improved compound structure display, better coverage of enzyme kinetic data, enhancements of the Web Groups functionality, improvements to the Omics viewers, a new representation of the Enzyme Commission system and, for the desktop version of the software, the ability to save display states.
Collapse
Affiliation(s)
- Ron Caspi
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Tomer Altman
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Richard Billington
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Kate Dreher
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Hartmut Foerster
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Carol A. Fulcher
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Timothy A. Holland
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Ingrid M. Keseler
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Anamika Kothari
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Aya Kubo
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Markus Krummenacker
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Mario Latendresse
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Lukas A. Mueller
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Quang Ong
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Suzanne Paley
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Pallavi Subhraveti
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Daniel S. Weaver
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Deepika Weerasinghe
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Peifen Zhang
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| | - Peter D. Karp
- SRI International, 333 Ravenswood, Menlo Park, CA 94025, USA, Carnegie Institution, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA and Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853 USA
| |
Collapse
|