1
|
Abstract
Since the first description of Bordetella holmesii in 1995, almost 100 publications have contributed to the increasing knowledge of this emerging bacterium. Although first reported to induce bacteremia mainly in immunocompromised patients, it has also been isolated in healthy persons and has shown the capacity to induce pertussis-like symptoms and other clinical entities, such as meningitis, arthritis, or endocarditis. Respiratory diseases are generally less severe than those induced by Bordetella pertussis. However, B. holmesii was found to have a higher capacity of invasiveness given the various infection sites in which it was isolated. The diagnosis is difficult, particularly as it is a slow-growing organism but also because respiratory infections are systematically misdiagnosed as B. pertussis. Treatment is delicate, as its susceptibility to macrolides (prescribed in respiratory infections) and ceftriaxone (used in invasive disease) is challenged. Regarding prevention, there is no consensus on prophylactic treatment following index cases and no vaccine is available. Epidemiological data are also sparse, with few prevalence studies available. In this chapter, we provide an overview of the current state of knowledge on B. holmesii.
Collapse
|
2
|
Bouchez V, AlBitar-Nehmé S, Novikov A, Guiso N, Caroff M. Bordetella holmesii: Lipid A Structures and Corresponding Genomic Sequences Comparison in Three Clinical Isolates and the Reference Strain ATCC 51541. Int J Mol Sci 2017; 18:ijms18051080. [PMID: 28524084 PMCID: PMC5454989 DOI: 10.3390/ijms18051080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/05/2017] [Accepted: 05/11/2017] [Indexed: 11/16/2022] Open
Abstract
Bordetella holmesii can cause invasive infections but can also be isolated from the respiratory tract of patients with whooping-cough like symptoms. For the first time, we describe the lipid A structure of B. holmesii reference strain ATCC 51541 (alias NCTC12912 or CIP104394) and those of three French B. holmesii clinical isolates originating from blood (Bho1) or from respiratory samples (FR4020 and FR4101). They were investigated using chemical analyses, gas chromatography–mass spectrometry (GC–MS), and matrix-assisted laser desorption ionization–mass spectrometry (MALDI–MS). The analyses revealed a common bisphosphorylated β-(1→6)-linked d-glucosamine disaccharide with hydroxytetradecanoic acid in amide linkages. Similar to B. avium, B. hinzii and B. trematum lipids A, the hydroxytetradecanoic acid at the C-2′ position are carrying in secondary linkage a 2-hydroxytetradecanoic acid residue resulting of post-traductional biosynthesis modifications. The three clinical isolates displayed characteristic structural traits compared to the ATCC 51541 reference strain: the lipid A phosphate groups are more or less modified with glucosamine in the isolates and reference strain, but the presence of 10:0(3-OH) is only observed in the isolates. This trait was only described in B. pertussis and B. parapertussis strains, as well as in B. petrii isolates by the past. The genetic bases for most of the key structural elements of lipid A were analyzed and supported the structural data.
Collapse
Affiliation(s)
- Valérie Bouchez
- Institut Pasteur, Unité de Prévention et Thérapies Moléculaires des Maladies Humaines, 25 rue du Dr Roux, 75724 Paris, France.
| | - Sami AlBitar-Nehmé
- Institute for integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France.
| | - Alexey Novikov
- LPS-BioSciences, I2BC, Bâtiment 409, Université de Paris-Sud, 91405 Orsay, France.
| | - Nicole Guiso
- Institut Pasteur, Unité de Prévention et Thérapies Moléculaires des Maladies Humaines, 25 rue du Dr Roux, 75724 Paris, France.
| | - Martine Caroff
- Institute for integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France.
- LPS-BioSciences, I2BC, Bâtiment 409, Université de Paris-Sud, 91405 Orsay, France.
| |
Collapse
|
3
|
Saito M, Odanaka K, Otsuka N, Kamachi K, Watanabe M. Development of vaccines against pertussis caused by Bordetella holmesii using a mouse intranasal challenge model. Microbiol Immunol 2017; 60:599-608. [PMID: 27515393 DOI: 10.1111/1348-0421.12409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/02/2016] [Accepted: 08/10/2016] [Indexed: 11/28/2022]
Abstract
Bordetella holmesii is recognized as the third causative agent of pertussis (whooping cough) in addition to Bordetella pertussis and Bordetella parapertussis. Pertussis caused by B. holmesii is not rare around the world. However, to date, there is no effective vaccine against B. holmesii. We examined the protective potency of pertussis vaccines available in Japan and vaccines prepared from B. holmesii. A murine model of respiratory infection was exploited to evaluate protective potency. No Japanese commercial pertussis vaccines were effective against B. holmesii. In contrast, a wBH vaccine and an aBH vaccine prepared from B. holmesii were both protective. Passive immunization with sera from mice immunized with aBH vaccine established protection against B. holmesii, indicating that B. holmesii-specific serum antibodies might play an important role in protection. Immuno-proteomic analysis with sera from mice immunized with aBH vaccine revealed that the sera recognized a BipA-like protein of B. holmesii. An aBH vaccine prepared from a BipA-like protein-deficient mutant strain did not have a protective effect against B. holmesii. Taken together, our results suggest that the BipA-like protein plays an important role in the protective efficacy of aBH vaccine.
Collapse
Affiliation(s)
- Momoko Saito
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Keita Odanaka
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Nao Otsuka
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Kazunari Kamachi
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Mineo Watanabe
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan. .,Laboratory of Medical Microbiology, Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
4
|
Hiramatsu Y, Saito M, Otsuka N, Suzuki E, Watanabe M, Shibayama K, Kamachi K. BipA Is Associated with Preventing Autoagglutination and Promoting Biofilm Formation in Bordetella holmesii. PLoS One 2016; 11:e0159999. [PMID: 27448237 PMCID: PMC4957798 DOI: 10.1371/journal.pone.0159999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/12/2016] [Indexed: 11/18/2022] Open
Abstract
Bordetella holmesii causes both invasive and respiratory diseases in humans. Although the number of cases of pertussis-like respiratory illnesses due to B. holmesii infection has increased in the last decade worldwide, little is known about the virulence factors of the organism. Here, we analyzed a B. holmesii isolate that forms large aggregates and precipitates in suspension, and subsequently demonstrated that the autoagglutinating isolate is deficient in Bordetella intermediate protein A (BipA) and that this deletion is caused by a frame-shift mutation in the bipA gene. A BipA-deficient mutant generated by homologous recombination also exhibited the autoagglutination phenotype. Moreover, the BipA mutant adhered poorly to an abiotic surface and failed to form biofilms, as did two other B. holmesii autoagglutinating strains, ATCC 51541 and ATCC 700053, which exhibit transcriptional down-regulation of bipA gene expression, indicating that autoagglutination indirectly inhibits biofilm formation. In a mouse intranasal infection model, the BipA mutant showed significantly lower levels of initial lung colonization than did the parental strain (P < 0.01), suggesting that BipA might be a critical virulence factor in B. holmesii respiratory infection. Together, our findings suggest that BipA production plays an essential role in preventing autoagglutination and indirectly promoting biofilm formation by B. holmesii.
Collapse
Affiliation(s)
- Yukihiro Hiramatsu
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail: (YH); (KK)
| | - Momoko Saito
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Nao Otsuka
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Eri Suzuki
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Mineo Watanabe
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazunari Kamachi
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail: (YH); (KK)
| |
Collapse
|
5
|
Abstract
The Bordetella genus comprises nine species of which Bordetella pertussis and B. parapertussis are isolated from humans and are the most studied Bordetella species since they cause whooping cough. They both originate from B. bronchiseptica, which infects several mammals and immune compromised humans, but the intensive use of pertussis vaccines induced changes in B. pertussis and B. parapertussis populations. B. petrii and B. holmesii are other species of unknown reservoir and transmission pattern that have been described in humans. It is still unknown whether these species are pathogens for humans or only opportunistic bacteria but biological diagnosis has confirmed the presence of B. holmesii in human respiratory samples while B. petrii and the four other species have little implications for public health.
Collapse
Affiliation(s)
- Nicole Guiso
- Institut Pasteur, Unité de Prévention et Thérapies Moléculaires des Maladies Humaines, 25-28 rue du Dr Roux, F-75015 Paris, France
| | | |
Collapse
|
6
|
Pittet LF, Emonet S, Schrenzel J, Siegrist CA, Posfay-Barbe KM. Bordetella holmesii: an under-recognised Bordetella species. THE LANCET. INFECTIOUS DISEASES 2014; 14:510-9. [PMID: 24721229 DOI: 10.1016/s1473-3099(14)70021-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Bordetella holmesii, first described in 1995, is believed to cause both invasive infections (bacteraemia, meningitis, endocarditis, pericarditis, pneumonia, and arthritis) and pertussis-like symptoms. Infection with B holmesii is frequently misidentified as being with B pertussis, the cause of whooping cough, because routine diagnostic tests for pertussis are not species-specific. In this Review, we summarise knowledge about B holmesii diagnosis and treatment, and assess research needs. Although no fatal cases of B holmesii have been reported, associated invasive infections can cause substantial morbidities, even in previously healthy individuals. Antimicrobial treatment can be problematic because B holmesii's susceptibility to macrolides (used empirically to treat B pertussis) and third-generation cephalosporins (often used to treat invasive infections) is lower than would be expected. B holmesii's adaptation to human beings is continuing, and virulence might increase, causing the need for better diagnostic assays and epidemiological surveillance.
Collapse
Affiliation(s)
- Laure F Pittet
- Department of Paediatrics, Division of General Paediatrics, Children's Hospital, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland
| | - Stéphane Emonet
- Department of Genetics and Laboratory Medicine, Department of Medical Specialties, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland
| | - Jacques Schrenzel
- Department of Genetics and Laboratory Medicine, Department of Medical Specialties, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- Department of Paediatrics, Division of General Paediatrics, Children's Hospital, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland; Neonatal Immunology, Departments of Pathology-Immunology and Paediatrics, University of Geneva, Geneva, Switzerland
| | - Klara M Posfay-Barbe
- Department of Paediatrics, Division of General Paediatrics, Children's Hospital, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
7
|
Choi HW, Kim DS, Kim NH, Jung HW, Ham JH, Hwang BK. Xanthomonas filamentous hemagglutinin-like protein Fha1 interacts with pepper hypersensitive-induced reaction protein CaHIR1 and functions as a virulence factor in host plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1441-54. [PMID: 23931712 DOI: 10.1094/mpmi-07-13-0204-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Pathogens have evolved a variety of virulence factors to infect host plants successfully. We previously identified the pepper plasma-membrane-resident hypersensitive-induced reaction protein (CaHIR1) as a regulator of plant disease- and immunity-associated cell death. Here, we identified the small filamentous hemagglutinin-like protein (Fha1) of Xanthomonas campestris pv. vesicatoria as an interacting partner of CaHIR1 using yeast two-hybrid screening. Coimmunoprecipitation and bimolecular fluorescence complementation experiments revealed that Fha1 specifically interacts with CaHIR1 in planta. The endocytic tracker FM4-64 staining showed that the CaHIR1-Fha1 complex localizes in the endocytic vesicle-like structure. The X. campestris pv. vesicatoria Δfha1 mutant strain exhibited significantly increased surface adherence but reduced swarming motility. Mutation of fha1 inhibited the growth of X. campestris pv. vesicatoria and X. campestris pv. vesicatoria ΔavrBsT in tomato and pepper leaves, respectively, suggesting that Fha1 acts as a virulence factor in host plants. Transient expression of fha1 and also infiltration with purified Fha1 proteins induced disease-associated cell death response through the interaction with CaHIR1 and suppressed the expression of pathogenesis-related (PR) genes. Silencing of CaHIR1 in pepper significantly reduced ΔavrBsT growth and Fha1-triggered susceptibility cell death. Overexpression of fha1 in Arabidopsis retarded plant growth and triggered disease-associated cell death, resulting in altered disease susceptibility. Taken together, these results suggest that the X. campestris pv. vesicatoria virulence factor Fha1 interacts with CaHIR1, induces susceptibility cell death, and suppresses PR gene expression in host plants.
Collapse
|
8
|
Planet PJ, Narechania A, Hymes SR, Gagliardo C, Huard RC, Whittier S, Della-Latta P, Ratner AJ. Bordetella holmesii: initial genomic analysis of an emerging opportunist. Pathog Dis 2013; 67:132-5. [PMID: 23620158 DOI: 10.1111/2049-632x.12028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/15/2013] [Accepted: 01/15/2013] [Indexed: 11/29/2022] Open
Abstract
Bordetella holmesii is an emerging opportunistic pathogen that causes respiratory disease in healthy individuals and invasive infections among patients lacking splenic function. We used 16S rRNA gene analysis to confirm B. holmesii as the cause of bacteremia in a child with sickle cell disease. Semiconductor-based draft genome sequencing provided insight into B. holmesii phylogeny and potential virulence mechanisms and also identified a toluene-4-monoxygenase locus unique among bordetellae.
Collapse
Affiliation(s)
- Paul J Planet
- Department of Pediatrics, Columbia University, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Mooi FR, Bruisten S, Linde I, Reubsaet F, Heuvelman K, van der Lee S, J. King A. Characterization of Bordetella holmesii isolates from patients with pertussis-like illness in the Netherlands. ACTA ACUST UNITED AC 2011; 64:289-91. [DOI: 10.1111/j.1574-695x.2011.00911.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 11/02/2011] [Accepted: 11/09/2011] [Indexed: 11/30/2022]
Affiliation(s)
- Frits R. Mooi
- National Institute of Public Health and the Environment (RIVM); Centre for Infectious Diseases Control (CIb); Laboratory for Infectious Diseases and Perinatal Screening (LIS); Bilthoven; The Netherlands
| | - Sylvia Bruisten
- Public health laboratory; Cluster Infectious diseases, GGD; Amsterdam; The Netherlands
| | - Ineke Linde
- Public health laboratory; Cluster Infectious diseases, GGD; Amsterdam; The Netherlands
| | - Frans Reubsaet
- National Institute of Public Health and the Environment (RIVM); Centre for Infectious Diseases Control (CIb); Laboratory for Infectious Diseases and Perinatal Screening (LIS); Bilthoven; The Netherlands
| | - Kees Heuvelman
- National Institute of Public Health and the Environment (RIVM); Centre for Infectious Diseases Control (CIb); Laboratory for Infectious Diseases and Perinatal Screening (LIS); Bilthoven; The Netherlands
| | - Saskia van der Lee
- National Institute of Public Health and the Environment (RIVM); Centre for Infectious Diseases Control (CIb); Laboratory for Infectious Diseases and Perinatal Screening (LIS); Bilthoven; The Netherlands
| | - Audrey J. King
- National Institute of Public Health and the Environment (RIVM); Centre for Infectious Diseases Control (CIb); Laboratory for Infectious Diseases and Perinatal Screening (LIS); Bilthoven; The Netherlands
| |
Collapse
|
10
|
Moissenet D, Leverger G, Mérens A, Bonacorsi S, Guiso N, Vu-Thien H. Septic arthritis caused by Bordetella holmesii in an adolescent with chronic haemolytic anaemia. J Med Microbiol 2011; 60:1705-1707. [DOI: 10.1099/jmm.0.033829-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Didier Moissenet
- Service de Microbiologie, Hôpital Armand-Trousseau, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Guy Leverger
- Service d’Hématologie et Oncologie, Hôpital Armand-Trousseau, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Audrey Mérens
- Laboratoire de Biologie, Hôpital d’Instruction des Armées Bégin, St Mandé, France
| | - Stéphane Bonacorsi
- Service de Microbiologie, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Université Paris Diderot, Sorbonne Paris Cité, EA 3105, Paris, France
| | - Nicole Guiso
- Centre National de Référence de la Coqueluche et Autres Bordetelloses, Institut Pasteur, Paris, France
| | - Hoang Vu-Thien
- Service de Microbiologie, Hôpital Armand-Trousseau, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine, Université Pierre et Marie Curie-Paris 6, Paris, France
| |
Collapse
|
11
|
Bactériémie à Bordetella holmesii chez un patient drépanocytaire de 26 ans. Med Mal Infect 2010; 40:299-301. [DOI: 10.1016/j.medmal.2009.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 01/28/2009] [Accepted: 06/04/2009] [Indexed: 11/21/2022]
|
12
|
Resemblance and divergence: the “new” members of the genus Bordetella. Med Microbiol Immunol 2010; 199:155-63. [DOI: 10.1007/s00430-010-0148-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Indexed: 10/19/2022]
|