1
|
Park J, Lim S. Review of the Proteomics and Metabolic Properties of Corynebacterium glutamicum. Microorganisms 2024; 12:1681. [PMID: 39203523 PMCID: PMC11356982 DOI: 10.3390/microorganisms12081681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Corynebacterium glutamicum (C. glutamicum) has become industrially important in producing glutamic acid and lysine since its discovery and has been the subject of proteomics and central carbon metabolism studies. The proteome changes depending on environmental conditions, nutrient availability, and stressors. Post-translational modification (PTMs), such as phosphorylation, methylation, and glycosylation, alter the function and activity of proteins, allowing them to respond quickly to environmental changes. Proteomics techniques, such as mass spectrometry and two-dimensional gel electrophoresis, have enabled the study of proteomes, identification of proteins, and quantification of the expression levels. Understanding proteomes and central carbon metabolism in microorganisms provides insight into their physiology, ecology, and biotechnological applications, such as biofuels, pharmaceuticals, and industrial enzyme production. Several attempts have been made to create efficient production strains to increase productivity in several research fields, such as genomics and proteomics. In addition to amino acids, C. glutamicum is used to produce vitamins, nucleotides, organic acids, and alcohols, expanding its industrial applications. Considerable information has been accumulated, but recent research has focused on proteomes and central carbon metabolism. The development of genetic engineering technologies, such as CRISPR-Cas9, has improved production efficiency by allowing precise manipulation of the metabolic pathways of C. glutamicum. In addition, methods for designing new metabolic pathways and developing customized strains using synthetic biology technology are gradually expanding. This review is expected to enhance the understanding of C. glutamicum and its industrial potential and help researchers identify research topics and design studies.
Collapse
Affiliation(s)
| | - Sooa Lim
- Department of Pharmaceutical Engineering, Hoseo University, Asan-si 31499, Chungnam, Republic of Korea
| |
Collapse
|
2
|
Xu W, Gao W, Bu Q, Li Y. Degradation Mechanism of AAA+ Proteases and Regulation of Streptomyces Metabolism. Biomolecules 2022; 12:biom12121848. [PMID: 36551276 PMCID: PMC9775585 DOI: 10.3390/biom12121848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Hundreds of proteins work together in microorganisms to coordinate and control normal activity in cells. Their degradation is not only the last step in the cell's lifespan but also the starting point for its recycling. In recent years, protein degradation has been extensively studied in both eukaryotic and prokaryotic organisms. Understanding the degradation process is essential for revealing the complex regulatory network in microorganisms, as well as further artificial reconstructions and applications. This review will discuss several studies on protein quality-control family members Lon, FtsH, ClpP, the proteasome in Streptomyces, and a few classical model organisms, mainly focusing on their structure, recognition mechanisms, and metabolic influences.
Collapse
Affiliation(s)
- Weifeng Xu
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Wenli Gao
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Qingting Bu
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yongquan Li
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
- Correspondence:
| |
Collapse
|
3
|
Lee SM, Jeong KJ. Advances in Synthetic Biology Tools and Engineering of Corynebacterium glutamicum as a Platform Host for Recombinant Protein Production. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Liu X, Meng L, Wang X, Yang Y, Zhonghu BAI. Effect of Clp protease from Corynebacterium glutamicum on heterologous protein expression. Protein Expr Purif 2021; 189:105928. [PMID: 34217803 DOI: 10.1016/j.pep.2021.105928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/25/2022]
Abstract
The protease present in a host may reduce the yield and biological activity of heterologous proteins. In this study, we used protease overexpression and deletion strategies to examine the effect of the Clp protease system in Corynebacterium glutamicum on the recombinant protein and to produce a highly efficient heterologous protein expression host. In this study, we identified seven genes in the Clp protease family in Corynebacterium glutamicum ATCC 13032 through bioinformatics analysis, and studied their effects on the enhanced green fluorescent protein (EGFP) reporter protein. The fluorescence intensity of the knockout strain was significantly higher, and the effect of the clpS deletion strain was the most obvious. To verify the universal effect of the lack of clpS, the excellent industrial strain C. glutamicum 1.15647 was transformed to form recombinant 15647-ΔclpS. Based on the results, 15647-ΔclpS had a more significant effect on improving protein expression. Furthermore, recombinant human teriparatide (rhPTH) and variable domain of heavy chain of heavy-chain antibody (VHH) were selected to verify the universal applicability of the knockout strain for expressing heterologous proteins. Accordingly, we found that protease deficiency could increase the production of heterologous proteins. Finally, through a large-scale fermentation, the 15647-ΔclpS strain was used to produce VHH. Its yield was approximately 530 mg/L, which was 65% higher than that of WT-15647. In this study, a host that could effectively increase heterologous protein expression was successfully obtained.
Collapse
Affiliation(s)
- Xiuxia Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| | - Lihong Meng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Xinyue Wang
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Yankun Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - B A I Zhonghu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
5
|
Möller J, Schorlemmer S, Hofmann J, Burkovski A. Cellular and Extracellular Proteome of the Animal Pathogen Corynebacterium silvaticum, a Close Relative of Zoonotic Corynebacterium ulcerans and Corynebacterium pseudotuberculosis. Proteomes 2020; 8:proteomes8030019. [PMID: 32806579 PMCID: PMC7564913 DOI: 10.3390/proteomes8030019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 01/22/2023] Open
Abstract
Corynebacterium silvaticum is a newly described animal pathogen, closely related to the emerging human pathogen Corynebacterium ulcerans and Corynebacterium pseudotuberculosis, a major pathogen of small ruminants. In this study, proteins of a whole cell and a shaving fraction and the exoproteome of C. silvaticum strain W25 were analyzed as a first proteome study of this species. In total, 1305 proteins were identified out of 2013 proteins encoded by the W25 genome sequence and number of putative virulence factors were detected already under standard growth conditions including phospholipase D and sialidase. An up to now uncharacterized trypsin-like protease is by far the most secreted protein in this species, indicating a putative role in pathogenicity. Furthermore, the proteome analyses carried out in this study support the recently published taxonomical delineation of C. silvaticum from the closely related zoonotic Corynebacterium species.
Collapse
Affiliation(s)
- Jens Möller
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany; (J.M.); (S.S.)
| | - Svenja Schorlemmer
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany; (J.M.); (S.S.)
| | - Jörg Hofmann
- Biochemistry Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany;
| | - Andreas Burkovski
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany; (J.M.); (S.S.)
- Correspondence: ; Tel.: +49-9131-85-28086
| |
Collapse
|
6
|
Busche T, Tsolis KC, Koepff J, Rebets Y, Rückert C, Hamed MB, Bleidt A, Wiechert W, Lopatniuk M, Yousra A, Anné J, Karamanou S, Oldiges M, Kalinowski J, Luzhetskyy A, Economou A. Multi-Omics and Targeted Approaches to Determine the Role of Cellular Proteases in Streptomyces Protein Secretion. Front Microbiol 2018; 9:1174. [PMID: 29915569 PMCID: PMC5994538 DOI: 10.3389/fmicb.2018.01174] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/15/2018] [Indexed: 01/29/2023] Open
Abstract
Gram-positive Streptomyces bacteria are profuse secretors of polypeptides using complex, yet unknown mechanisms. Many of their secretory proteins are proteases that play important roles in the acquisition of amino acids from the environment. Other proteases regulate cellular proteostasis. To begin dissecting the possible role of proteases in Streptomyces secretion, we applied a multi-omics approach. We probed the role of the 190 proteases of Streptomyces lividans strain TK24 in protein secretion in defined media at different stages of growth. Transcriptomics analysis revealed transcripts for 93% of these proteases and identified that 41 of them showed high abundance. Proteomics analysis identified 57 membrane-embedded or secreted proteases with variations in their abundance. We focused on 17 of these proteases and putative inhibitors and generated strains deleted of their genes. These were characterized in terms of their fitness, transcriptome and secretome changes. In addition, we performed a targeted analysis in deletion strains that also carried a secretion competent mRFP. One strain, carrying a deletion of the gene for the regulatory protease FtsH, showed significant global changes in overall transcription and enhanced secretome and secreted mRFP levels. These data provide a first multi-omics effort to characterize the complex regulatory mechanisms of protein secretion in Streptomyces lividans and lay the foundations for future rational manipulation of this process.
Collapse
Affiliation(s)
- Tobias Busche
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany.,Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Konstantinos C Tsolis
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Joachim Koepff
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Jülich, Germany
| | - Yuriy Rebets
- Helmholtz-Zentrum für Infektionsforschung GmbH, Braunschweig, Germany.,Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany
| | | | - Mohamed B Hamed
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium.,Department of Molecular Biology, National Research Centre, Giza, Egypt
| | - Arne Bleidt
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Jülich, Germany
| | - Wolfgang Wiechert
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Jülich, Germany
| | - Mariia Lopatniuk
- Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany
| | - Ahmed Yousra
- Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany
| | - Jozef Anné
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Spyridoula Karamanou
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Marco Oldiges
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Jülich, Germany.,Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Andriy Luzhetskyy
- Helmholtz-Zentrum für Infektionsforschung GmbH, Braunschweig, Germany
| | - Anastassios Economou
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Escotte-Binet S, Huguenin A, Aubert D, Martin AP, Kaltenbach M, Florent I, Villena I. Metallopeptidases of Toxoplasma gondii: in silico identification and gene expression. ACTA ACUST UNITED AC 2018; 25:26. [PMID: 29737275 PMCID: PMC5939537 DOI: 10.1051/parasite/2018025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 04/16/2018] [Indexed: 12/17/2022]
Abstract
Metallopeptidases are a family of proteins with domains that remain highly conserved throughout evolution. These hydrolases require divalent metal cation(s) to activate the water molecule in order to carry out their catalytic action on peptide bonds by nucleophilic attack. Metallopeptidases from parasitic protozoa, including Toxoplasma, are investigated because of their crucial role in parasite biology. In the present study, we screened the T. gondii database using PFAM motifs specific for metallopeptidases in association with the MEROPS peptidase Database (release 10.0). In all, 49 genes encoding proteins with metallopeptidase signatures were identified in the Toxoplasma genome. An Interpro Search enabled us to uncover their domain/motif organization, and orthologs with the highest similarity by BLAST were used for annotation. These 49 Toxoplasma metallopeptidases clustered into 15 families described in the MEROPS database. Experimental expression analysis of their genes in the tachyzoite stage revealed transcription for all genes studied. Further research on the role of these peptidases should increase our knowledge of basic Toxoplasma biology and provide opportunities to identify novel therapeutic targets. This type of study would also open a path towards the comparative biology of apicomplexans.
Collapse
Affiliation(s)
- Sandie Escotte-Binet
- EA 7510, ESCAPE, Laboratory of Parasitology-Mycology, University of Reims Champagne-Ardenne, 51100 Reims, France - Laboratory of Parasitology-Mycology, Toxoplasmosis National Reference Center, Toxoplasma Biological Resource Center, Maison Blanche Hospital, 51100 Reims, France
| | - Antoine Huguenin
- EA 7510, ESCAPE, Laboratory of Parasitology-Mycology, University of Reims Champagne-Ardenne, 51100 Reims, France - Laboratory of Parasitology-Mycology, Toxoplasmosis National Reference Center, Toxoplasma Biological Resource Center, Maison Blanche Hospital, 51100 Reims, France
| | - Dominique Aubert
- EA 7510, ESCAPE, Laboratory of Parasitology-Mycology, University of Reims Champagne-Ardenne, 51100 Reims, France - Laboratory of Parasitology-Mycology, Toxoplasmosis National Reference Center, Toxoplasma Biological Resource Center, Maison Blanche Hospital, 51100 Reims, France
| | - Anne-Pascaline Martin
- EA 7510, ESCAPE, Laboratory of Parasitology-Mycology, University of Reims Champagne-Ardenne, 51100 Reims, France
| | - Matthieu Kaltenbach
- EA 7510, ESCAPE, Laboratory of Parasitology-Mycology, University of Reims Champagne-Ardenne, 51100 Reims, France
| | - Isabelle Florent
- UMR7245 CNRS-MNHN, National Museum of Natural History, Department Adaptations of the Living, 75005 Paris, France
| | - Isabelle Villena
- EA 7510, ESCAPE, Laboratory of Parasitology-Mycology, University of Reims Champagne-Ardenne, 51100 Reims, France - Laboratory of Parasitology-Mycology, Toxoplasmosis National Reference Center, Toxoplasma Biological Resource Center, Maison Blanche Hospital, 51100 Reims, France
| |
Collapse
|
8
|
Rewiring of the FtsH regulatory network by a single nucleotide change in saeS of Staphylococcus aureus. Sci Rep 2017; 7:8456. [PMID: 28814746 PMCID: PMC5559551 DOI: 10.1038/s41598-017-08774-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/18/2017] [Indexed: 11/08/2022] Open
Abstract
In the Gram-positive pathogen Staphylococcus aureus, the membrane-bound ATP-dependent metalloprotease FtsH plays a critical role in resistance to various stressors. However, the molecular mechanism of the FtsH functions is not known. Here, we identified core FtsH target proteins in S. aureus. In the strains Newman and USA300, the abundance of 33 proteins were altered in both strains, of which 11 were identified as core FtsH substrate protein candidates. In the strain Newman and some other S. aureus strains, the sensor histidine kinase SaeS has an L18P (T53C in saeS) substitution, which transformed the protein into an FtsH substrate. Due to the increase of SaeS L18P in the ftsH mutant, Eap, a sae-regulon protein, was also increased in abundance, causing the Newman-specific cell-aggregation phenotype. Regardless of the strain background, however, the ftsH mutants showed lower virulence and survival in a murine infection model. Our study illustrates the elasticity of the bacterial regulatory network, which can be rewired by a single substitution mutation.
Collapse
|
9
|
Mahanty A, Purohit GK, Banerjee S, Karunakaran D, Mohanty S, Mohanty BP. Proteomic changes in the liver ofChanna striatusin response to high temperature stress. Electrophoresis 2016; 37:1704-17. [DOI: 10.1002/elps.201500393] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 02/20/2016] [Accepted: 03/27/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Arabinda Mahanty
- ICAR-Central Inland Fisheries Research Institute, FREM Division; Barrackpore Kolkata India
| | | | - Sudeshna Banerjee
- ICAR-Central Inland Fisheries Research Institute, FREM Division; Barrackpore Kolkata India
| | - Dhanasekar Karunakaran
- ICAR-Central Inland Fisheries Research Institute, FREM Division; Barrackpore Kolkata India
| | - Sasmita Mohanty
- KIIT School of Biotechnology; KIIT University; Bhubaneswar Odisha India
| | - Bimal Prasanna Mohanty
- ICAR-Central Inland Fisheries Research Institute, FREM Division; Barrackpore Kolkata India
| |
Collapse
|
10
|
The pupylation machinery is involved in iron homeostasis by targeting the iron storage protein ferritin. Proc Natl Acad Sci U S A 2016; 113:4806-11. [PMID: 27078093 DOI: 10.1073/pnas.1514529113] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The balance of sufficient iron supply and avoidance of iron toxicity by iron homeostasis is a prerequisite for cellular metabolism and growth. Here we provide evidence that, in Actinobacteria, pupylation plays a crucial role in this process. Pupylation is a posttranslational modification in which the prokaryotic ubiquitin-like protein Pup is covalently attached to a lysine residue in target proteins, thus resembling ubiquitination in eukaryotes. Pupylated proteins are recognized and unfolded by a dedicated AAA+ ATPase (Mycobacterium proteasomal AAA+ ATPase; ATPase forming ring-shaped complexes). In Mycobacteria, degradation of pupylated proteins by the proteasome serves as a protection mechanism against several stress conditions. Other bacterial genera capable of pupylation such as Corynebacterium lack a proteasome, and the fate of pupylated proteins is unknown. We discovered that Corynebacterium glutamicum mutants lacking components of the pupylation machinery show a strong growth defect under iron limitation, which was caused by the absence of pupylation and unfolding of the iron storage protein ferritin. Genetic and biochemical data support a model in which the pupylation machinery is responsible for iron release from ferritin independent of degradation.
Collapse
|
11
|
Cerletti M, Paggi RA, Guevara CR, Poetsch A, De Castro RE. Global role of the membrane protease LonB in Archaea: Potential protease targets revealed by quantitative proteome analysis of a lonB mutant in Haloferax volcanii. J Proteomics 2015; 121:1-14. [PMID: 25829260 DOI: 10.1016/j.jprot.2015.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/04/2015] [Accepted: 03/12/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED The membrane-associated LonB protease is essential for viability in Haloferax volcanii, however, the cellular processes affected by this protease in archaea are unknown. In this study, the impact of a lon conditional mutation (down-regulation) on H. volcanii physiology was examined by comparing proteomes of parental and mutant cells using shotgun proteomics. A total of 1778 proteins were identified (44% of H. volcanii predicted proteome) and 142 changed significantly in amount (≥2 fold). Of these, 66 were augmented in response to Lon deficiency suggesting they could be Lon substrates. The "Lon subproteome" included soluble and predicted membrane proteins expected to participate in diverse cellular processes. The dramatic stabilization of phytoene synthase (57 fold) in concert with overpigmentation of lon mutant cells suggests that Lon controls carotenogenesis in H. volcanii. Several hypothetical proteins, which may reveal novel functions and/or be involved in adaptation to extreme environments, were notably increased (300 fold). This study, which represents the first proteome examination of a Lon deficient archaeal cell, shows that Lon has a strong impact on H. volcanii physiology evidencing the cellular processes controlled by this protease in Archaea. Additionally, this work provides a platform for the discovery of novel targets of Lon proteases. BIOLOGICAL SIGNIFICANCE The proteome of a Lon-deficient archaeal cell was examined for the first time showing that Lon has a strong impact on H. volcanii physiology and evidencing the proteins and cellular processes controlled by this protease in Archaea. This work will facilitate future investigations aiming to address Lon function in archaea and provides a platform for the discovery of endogenous targets of the archaeal-type Lon as well as novel targets/processes regulated by Lon proteases. This knowledge will advance the understanding on archaeal physiology and the biological function of membrane proteases in microorganisms.
Collapse
Affiliation(s)
- Micaela Cerletti
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3250 4to nivel, Mar del Plata (7600), Argentina
| | - Roberto A Paggi
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3250 4to nivel, Mar del Plata (7600), Argentina
| | | | - Ansgar Poetsch
- Plant Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany.
| | - Rosana E De Castro
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3250 4to nivel, Mar del Plata (7600), Argentina.
| |
Collapse
|
12
|
Küberl A, Fränzel B, Eggeling L, Polen T, Wolters DA, Bott M. Pupylated proteins in Corynebacterium glutamicum revealed by MudPIT analysis. Proteomics 2014; 14:1531-42. [PMID: 24737727 DOI: 10.1002/pmic.201300531] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/23/2014] [Accepted: 04/07/2014] [Indexed: 12/31/2022]
Abstract
In a manner similar to ubiquitin, the prokaryotic ubiquitin-like protein (Pup) has been shown to target proteins for degradation via the proteasome in mycobacteria. However, not all actinobacteria possessing the Pup protein also contain a proteasome. In this study, we set out to study pupylation in the proteasome-lacking non-pathogenic model organism Corynebacterium glutamicum. A defined pup deletion mutant of C. glutamicum ATCC 13032 grew aerobically as the parent strain in standard glucose minimal medium, indicating that pupylation is dispensable under these conditions. After expression of a Pup derivative carrying an aminoterminal polyhistidine tag in the Δpup mutant and Ni(2+)-chelate affinity chromatography, pupylated proteins were isolated. Multidimensional protein identification technology (MudPIT) and MALDI-TOF-MS/MS of the elution fraction unraveled 55 proteins being pupylated in C. glutamicum and 66 pupylation sites. Similar to mycobacteria, the majority of pupylated proteins are involved in metabolism or translation. Our results define the first pupylome of an actinobacterial species lacking a proteasome, confirming that other fates besides proteasomal degradation are possible for pupylated proteins.
Collapse
Affiliation(s)
- Andreas Küberl
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Hong EJ, Park JS, Kim Y, Lee HS. Role of Corynebacterium glutamicum sprA encoding a serine protease in glxR-mediated global gene regulation. PLoS One 2014; 9:e93587. [PMID: 24691519 PMCID: PMC3972247 DOI: 10.1371/journal.pone.0093587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/05/2014] [Indexed: 11/19/2022] Open
Abstract
The global regulator glxR of Corynebacterium glutamicum is involved in many cellular activities. Considering its role, the GlxR protein likely interacts with other proteins to obtain, maintain, and control its activity. To isolate proteins interacting with GlxR, we used a two-hybrid system with GlxR as the bait. Subsequently, the partner, a subtilisin-like serine protease, was isolated from a C. glutamicum genomic library. Unlike glxR, which showed constitutive expression, the expression of sprA, encoding a serine protease, was maximal in the log phase. Purified His6-SprA protein underwent self-proteolysis and proteolyzed purified GlxR. The proteolytic action of SprA on GlxR was not observed in the presence of cyclic adenosine monophosphate, which modulates GlxR activity. The C. glutamicum sprA deletion mutant (ΔsprA) and sprA-overexpressing (P180-sprA) strains showed reduced growth. The activity of isocitrate dehydrogenase (a tricarboxylic acid cycle enzyme) in these strains decreased to 30–50% of that in the wild-type strain. In the P180-sprA strain, proteins involved in diverse cellular functions such as energy and carbon metabolism (NCgl2809), nitrogen metabolism (NCgl0049), methylation reactions (NCgl0719), and peptidoglycan biosynthesis (NCgl1267), as well as stress, starvation, and survival (NCgl0938) were affected and showed decreased transcription. Taken together, these data suggest that SprA, as a serine protease, performs a novel regulatory role not only in glxR-mediated gene expression but also in other areas of cell physiology. In addition, the tight control of SprA and GlxR availability may indicate their importance in global gene regulation.
Collapse
Affiliation(s)
- Eun-Ji Hong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro, Sejong-si, Korea
| | - Joon-Song Park
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro, Sejong-si, Korea
| | - Younhee Kim
- Department of Oriental Medicine, Semyung University, Checheon, Chungbuk, Korea
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro, Sejong-si, Korea
- * E-mail:
| |
Collapse
|
14
|
Precipitation of iron on the surface of Leptospira interrogans is associated with mutation of the stress response metalloprotease HtpX. Appl Environ Microbiol 2013; 79:4653-60. [PMID: 23709510 DOI: 10.1128/aem.01097-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High concentrations of free metal ions in the environment can be detrimental to bacterial survival. However, bacteria utilize strategies, including the activation of stress response pathways and immobilizing chemical elements on their surface, to limit this toxicity. In this study, we characterized LA4131, the HtpX-like M48 metalloprotease from Leptospira interrogans, with a putative role in bacterial stress response and membrane homeostasis. Growth of the la4131 transposon mutant strain (L522) in 360 μM FeSO4 (10-fold the normal in vitro concentration) resulted in the production of an amorphous iron precipitate. Atomic force microscopy and transmission electron microscopy analysis of the strain demonstrated that precipitate production was associated with the generation and release of outer membrane vesicles (OMVs) from the leptospiral surface. Transcriptional studies indicated that inactivation of la4131 resulted in altered expression of a subset of metal toxicity and stress response genes. Combining these findings, this report describes OMV production in response to environmental stressors and associates OMV production with the in vitro activity of an HtpX-like metalloprotease.
Collapse
|
15
|
Abstract
ClpL, a member of the HSP100 family, is widely distributed in Gram-positive bacteria but is absent in Gram-negative bacteria. Although ClpL is involved in various cellular processes, such as the stress tolerance response, long-term survival, virulence, and antibiotic resistance, the detailed molecular mechanisms are largely unclear. Here we report that ClpL acts as a chaperone to properly fold CtsR, a stress response repressor, and prevents it from forming protein aggregates in Streptococcus mutans. In vitro, ClpL was able to successfully refold urea-denatured CtsR but not aggregated proteins. We suggest that ClpL recognizes primarily soluble but denatured substrates and prevents the formation of large protein aggregates. We also found that in vivo, the C-terminal D2-small domain of ClpL is essential for the observed chaperone activity. Since ClpL widely contributes to various cellular functions, we speculate that ClpL chaperone activity is necessary to maintain cellular homeostasis.
Collapse
|
16
|
Inactivation of the ftsH gene of Lactobacillus plantarum WCFS1: Effects on growth, stress tolerance, cell surface properties and biofilm formation. Microbiol Res 2012; 167:187-93. [DOI: 10.1016/j.micres.2011.07.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/15/2011] [Accepted: 07/02/2011] [Indexed: 10/17/2022]
|
17
|
Poetsch A, Haussmann U, Burkovski A. Proteomics of corynebacteria: From biotechnology workhorses to pathogens. Proteomics 2011; 11:3244-55. [PMID: 21674800 DOI: 10.1002/pmic.201000786] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 11/09/2022]
Abstract
Corynebacteria belong to the high G+C Gram-positive bacteria (Actinobacteria) and are closely related to Mycobacterium and Nocardia species. The best investigated member of this group of almost seventy species is Corynebacterium glutamicum, a soil bacterium isolated in 1957, which is used for the industrial production of more than two million tons of amino acids per year. This review focuses on the technical advances made in proteomics approaches during the last years and summarizes applications of these techniques with respect to C. glutamicum metabolic pathways and stress response. Additionally, selected proteome applications for other biotechnologically important or pathogenic corynebacteria are described.
Collapse
Affiliation(s)
- Ansgar Poetsch
- Lehrstuhl Biochemie der Pflanzen, Ruhr-Universität Bochum, Germany
| | | | | |
Collapse
|
18
|
Barriuso-Iglesias M, Schluesener D, Barreiro C, Poetsch A, Martín JF. Response of the cytoplasmic and membrane proteome of Corynebacterium glutamicum ATCC 13032 to pH changes. BMC Microbiol 2008; 8:225. [PMID: 19091079 PMCID: PMC2627906 DOI: 10.1186/1471-2180-8-225] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 12/17/2008] [Indexed: 11/10/2022] Open
Abstract
Background C. glutamicum has traditionally been grown in neutral-pH media for amino acid production, but in a previous article we reported that this microorganism is a moderate alkaliphile since it grows optimally at pH 7.0–9.0, as shown in fermentor studies under tightly controlled pH conditions. We determined the best pH values to study differential expression of several genes after acidic or basic pH conditions (pH 6.0 for acidic expression and pH 9.0 for alkaline expression). Thus, it was interesting to perform a detailed analysis of the pH-adaptation response of the proteome of C. glutamicum ATCC 13032 to clarify the circuits involved in stress responses in this bacterium. In this paper we used the above indicated pH conditions, based on transcriptional studies, to confirm that pH adaptation results in significant changes in cytoplasmatic and membrane proteins. Results The cytoplasmatic and membrane proteome of Corynebacterium glutamicum ATCC 13032 at different pH conditions (6.0, 7.0 and 9.0) was analyzed by classical 2D-electrophoresis, and by anion exchange chromatography followed by SDS-PAGE (AIEC/SDS-PAGE). A few cytoplasmatic proteins showed differential expression at the three pH values with the classical 2D-technique including a hypothetical protein cg2797, L-2.3-butanediol dehydrogenase (ButA), and catalase (KatA). The AIEC/SDS-PAGE technique revealed several membrane proteins that respond to pH changes, including the succinate dehydrogenase complex (SdhABCD), F0F1-ATP synthase complex subunits b, α and δ (AtpF, AtpH and AtpA), the nitrate reductase II α subunit (NarG), and a hypothetical secreted/membrane protein cg0752. Induction of the F0F1-ATP synthase complex β subunit (AtpD) at pH 9.0 was evidenced by Western analysis. By contrast, L-2.3-butanediol dehydrogenase (ButA), an ATPase with chaperone activity, the ATP-binding subunit (ClpC) of an ATP-dependent protease complex, a 7 TMHs hypothetical protein cg0896, a conserved hypothetical protein cg1556, and the dihydrolipoamide acyltransferase SucB, were clearly up-regulated at pH 6.0. Conclusion The observed protein changes explain the effect of the extracellular pH on the growth and physiology of C. glutamicum. Some of the proteins up-regulated at alkaline pH respond also to other stress factors suggesting that they serve to integrate the cell response to different stressing conditions.
Collapse
Affiliation(s)
- Mónica Barriuso-Iglesias
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Av. Real, 1, 24006. León, Spain.
| | | | | | | | | |
Collapse
|
19
|
The Lactobacillus plantarum ftsH gene is a novel member of the CtsR stress response regulon. J Bacteriol 2008; 191:1688-94. [PMID: 19074391 DOI: 10.1128/jb.01551-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FtsH proteins have dual chaperone-protease activities and are involved in protein quality control under stress conditions. Although the functional role of FtsH proteins has been clearly established, the regulatory mechanisms controlling ftsH expression in gram-positive bacteria remain largely unknown. Here we show that ftsH of Lactobacillus plantarum WCFS1 is transiently induced at the transcriptional level upon a temperature upshift. In addition, disruption of ftsH negatively affected the growth of L. plantarum at high temperatures. Sequence analysis and mapping of the ftsH transcriptional start site revealed a potential operator sequence for the CtsR repressor, partially overlapping the -35 sequence of the ftsH promoter. In order to verify whether CtsR is able to recognize and bind the ftsH promoter, CtsR proteins of Bacillus subtilis and L. plantarum were overproduced, purified, and used in DNA binding assays. CtsR from both species bound specifically to the ftsH promoter, generating a single protein-DNA complex, suggesting that CtsR may control the expression of L. plantarum ftsH. In order to confirm this hypothesis, a DeltactsR mutant strain of L. plantarum was generated. Expression of ftsH in the DeltactsR mutant strain was strongly upregulated, indicating that ftsH of L. plantarum is negatively controlled by CtsR. This is the first example of an ftsH gene controlled by the CtsR repressor, and the first of the low-G+C gram-positive bacteria where the regulatory mechanism has been identified.
Collapse
|