1
|
Zartdinova R, Nikitin A. Calcium in the Life Cycle of Legume Root Nodules. Indian J Microbiol 2023; 63:410-420. [PMID: 38031601 PMCID: PMC10682328 DOI: 10.1007/s12088-023-01107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 10/07/2023] [Indexed: 12/01/2023] Open
Abstract
The present review highlights both the fundamental questions of calcium localization, compartmentation, and its participation in symbiosome signaling cascades during nodule formation and functioning. Apparently, the main link of such signaling is the calmodulin…calcium- and calmodulin-dependent protein kinases…CYCLOPS…NIN…target genes cascade. The minimum threshold level of calcium as a signaling agent in the presence of intracellular reserves determines the possibility of oligotrophy and ultraoligotrophy in relation to this element. During the functioning of root nodules, the Ca2+-ATPases activity maintains homeostasis of low calcium concentrations in the cytosol of nodule parenchyma cells. Disturbation of this homeostasis can trigger the root nodule senescence. The same reasons determine the increase in the effectiveness of symbiosis with the help of seed priming with sources of calcium. Examples of calcium response polymorphism in components of nitrogen fixing simbiosis important in practical terms are shown.
Collapse
Affiliation(s)
- Rozaliya Zartdinova
- Nitrogen Exchange Laboratory, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Nikitin
- Nitrogen Exchange Laboratory, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Meena M, Nagda A, Mehta T, Yadav G, Sonigra P. Mechanistic basis of the symbiotic signaling pathway between the host and the pathogen. PLANT-MICROBE INTERACTION - RECENT ADVANCES IN MOLECULAR AND BIOCHEMICAL APPROACHES 2023:375-387. [DOI: 10.1016/b978-0-323-91875-6.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
3
|
traG Gene Is Conserved across Mesorhizobium spp. Able to Nodulate the Same Host Plant and Expressed in Response to Root Exudates. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3715271. [PMID: 30834262 PMCID: PMC6374801 DOI: 10.1155/2019/3715271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/09/2019] [Indexed: 11/22/2022]
Abstract
Evidences for an involvement of the bacterial type IV secretion system (T4SS) in the symbiotic relationship between rhizobia and legumes have been pointed out by several recent studies. However, information regarding this secretion system in Mesorhizobium is still very scarce. The aim of the present study was to investigate the phylogeny and expression of the traG gene, which encodes a substrate receptor of the T4SS. In addition, the occurrence and genomic context of this and other T4SS genes, namely, genes from tra/trb and virB/virD4 complexes, were also analyzed in order to unveil the structural and functional organization of T4SS in mesorhizobia. The location of the T4SS genes in the symbiotic region of the analyzed rhizobial genomes, along with the traG phylogeny, suggests that T4SS genes could be horizontally transferred together with the symbiosis genes. Regarding the T4SS structural organization in Mesorhizobium, the virB/virD4 genes were absent in all chickpea (Cicer arietinum L.) microsymbionts and in the Lotus symbiont Mesorhizobium japonicum MAFF303099T. Interestingly, the presence of genes belonging to another secretion system (T3SS) was restricted to these strains lacking the virB/virD4 genes. The traG gene expression was detected in M. mediterraneum Ca36T and M. ciceri LMS-1 strains when exposed to chickpea root exudates and also in the early nodules formed by M. mediterraneum Ca36T, but not in older nodules. This study contributes to a better understanding of the importance of T4SS in mutualistic symbiotic bacteria.
Collapse
|
4
|
Kelly S, Sullivan JT, Kawaharada Y, Radutoiu S, Ronson CW, Stougaard J. Regulation of Nod factor biosynthesis by alternative NodD proteins at distinct stages of symbiosis provides additional compatibility scrutiny. Environ Microbiol 2018; 20:97-110. [PMID: 29194913 DOI: 10.1111/1462-2920.14006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 01/18/2023]
Abstract
The Lotus japonicus symbiont Mesorhizobium loti R7A encodes two copies of nodD and here we identify striking differences in Nod factor biosynthesis gene induction by NodD1 and NodD2 both in vitro and in planta. We demonstrate that induction of Nod factor biosynthesis genes is preferentially controlled by NodD1 and NodD2 at specific stages of symbiotic infection. NodD2 is primarily responsible for induction in the rhizosphere and within nodules, while NodD1 is primarily responsible for induction within root hair infection threads. nodD1 and nodD2 mutants showed significant symbiotic phenotypes and competition studies establish that nodD1 and nodD2 mutants were severely outcompeted by wild-type R7A, indicating that both proteins are required for proficient symbiotic infection. These results suggest preferential activation of NodD1 and NodD2 by different inducing compounds produced at defined stages of symbiotic infection. We identified Lotus chalcone isomerase CHI4 as a root hair induced candidate involved in the biosynthesis of an inducer compound that may be preferentially recognized by NodD1 within root hair infection threads. We propose an alternative explanation for the function of multiple copies of nodD that provides the host plant with another level of compatibility scrutiny at the stage of infection thread development.
Collapse
Affiliation(s)
- Simon Kelly
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Aarhus 8000 C, Denmark
| | - John T Sullivan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Yasuyuki Kawaharada
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Aarhus 8000 C, Denmark
| | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Aarhus 8000 C, Denmark
| | - Clive W Ronson
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Aarhus 8000 C, Denmark
| |
Collapse
|
5
|
Ishaq SL. Plant-microbial interactions in agriculture and the use of farming systems to improve diversity and productivity. AIMS Microbiol 2017; 3:335-353. [PMID: 31294165 PMCID: PMC6605018 DOI: 10.3934/microbiol.2017.2.335] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/04/2017] [Indexed: 11/18/2022] Open
Abstract
A thorough understanding of the services provided by microorganisms to the agricultural ecosystem is integral to understanding how management systems can improve or deteriorate soil health and production over the long term. Yet it is hampered by the difficulty in measuring the intersection of plant, microbe, and environment, in no small part because of the situational specificity to some plant-microbial interactions, related to soil moisture, nutrient content, climate, and local diversity. Despite this, perspective on soil microbiota in agricultural settings can inform management practices to improve the sustainability of agricultural production.
Collapse
Affiliation(s)
- Suzanne L Ishaq
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717, Montana, USA
| |
Collapse
|
6
|
Paço A, Brígido C, Alexandre A, Mateos PF, Oliveira S. The Symbiotic Performance of Chickpea Rhizobia Can Be Improved by Additional Copies of the clpB Chaperone Gene. PLoS One 2016; 11:e0148221. [PMID: 26845770 PMCID: PMC4741418 DOI: 10.1371/journal.pone.0148221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/14/2016] [Indexed: 12/03/2022] Open
Abstract
The ClpB chaperone is known to be involved in bacterial stress response. Moreover, recent studies suggest that this protein has also a role in the chickpea-rhizobia symbiosis. In order to improve both stress tolerance and symbiotic performance of a chickpea microsymbiont, the Mesorhizobium mediterraneum UPM-Ca36T strain was genetically transformed with pPHU231 containing an extra-copy of the clpB gene. To investigate if the clpB-transformed strain displays an improved stress tolerance, bacterial growth was evaluated under heat and acid stress conditions. In addition, the effect of the extra-copies of the clpB gene in the symbiotic performance was evaluated using plant growth assays (hydroponic and pot trials). The clpB-transformed strain is more tolerant to heat shock than the strain transformed with pPHU231, supporting the involvement of ClpB in rhizobia heat shock tolerance. Both plant growth assays showed that ClpB has an important role in chickpea-rhizobia symbiosis. The nodulation kinetics analysis showed a higher rate of nodule appearance with the clpB-transformed strain. This strain also induced a greater number of nodules and, more notably, its symbiotic effectiveness increased ~60% at pH5 and 83% at pH7, compared to the wild-type strain. Furthermore, a higher frequency of root hair curling was also observed in plants inoculated with the clpB-transformed strain, compared to the wild-type strain. The superior root hair curling induction, nodulation ability and symbiotic effectiveness of the clpB-transformed strain may be explained by an increased expression of symbiosis genes. Indeed, higher transcript levels of the nodulation genes nodA and nodC (~3 folds) were detected in the clpB-transformed strain. The improvement of rhizobia by addition of extra-copies of the clpB gene may be a promising strategy to obtain strains with enhanced stress tolerance and symbiotic effectiveness, thus contributing to their success as crop inoculants, particularly under environmental stresses. This is the first report on the successful improvement of a rhizobium with a chaperone gene.
Collapse
Affiliation(s)
- Ana Paço
- ICAAM–Instituto de Ciências Agrárias e Ambientais Mediterrânicas (Laboratório de Microbiologia do Solo), Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002–554, Évora, Portugal
| | - Clarisse Brígido
- ICAAM–Instituto de Ciências Agrárias e Ambientais Mediterrânicas (Laboratório de Microbiologia do Solo), Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002–554, Évora, Portugal
- IIFA–Instituto de Investigação e Formação Avançada, Universidade de Évora, Ap. 94, 7002–554, Évora, Portugal
| | - Ana Alexandre
- ICAAM–Instituto de Ciências Agrárias e Ambientais Mediterrânicas (Laboratório de Microbiologia do Solo), Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002–554, Évora, Portugal
- IIFA–Instituto de Investigação e Formação Avançada, Universidade de Évora, Ap. 94, 7002–554, Évora, Portugal
| | - Pedro F. Mateos
- Departamento de Microbiología y Genética, Centro Hispano Luso de Investigaciones Agrarias, Universidad de Salamanca, 37007, Salamanca, Spain
| | - Solange Oliveira
- ICAAM–Instituto de Ciências Agrárias e Ambientais Mediterrânicas (Laboratório de Microbiologia do Solo), Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002–554, Évora, Portugal
| |
Collapse
|
7
|
Moscatiello R, Zaccarin M, Ercolin F, Damiani E, Squartini A, Roveri A, Navazio L. Identification of ferredoxin II as a major calcium binding protein in the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. BMC Microbiol 2015; 15:16. [PMID: 25648224 PMCID: PMC4322793 DOI: 10.1186/s12866-015-0352-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Legumes establish with rhizobial bacteria a nitrogen-fixing symbiosis which is of the utmost importance for both plant nutrition and a sustainable agriculture. Calcium is known to act as a key intracellular messenger in the perception of symbiotic signals by both the host plant and the microbial partner. Regulation of intracellular free Ca(2+) concentration, which is a fundamental prerequisite for any Ca(2+)-based signalling system, is accomplished by complex mechanisms including Ca(2+) binding proteins acting as Ca(2+) buffers. In this work we investigated the occurrence of Ca(2+) binding proteins in Mesorhizobium loti, the specific symbiotic partner of the model legume Lotus japonicus. RESULTS A soluble, low molecular weight protein was found to share several biochemical features with the eukaryotic Ca(2+)-binding proteins calsequestrin and calreticulin, such as Stains-all blue staining on SDS-PAGE, an acidic isoelectric point and a Ca(2+)-dependent shift of electrophoretic mobility. The protein was purified to homogeneity by an ammonium sulfate precipitation procedure followed by anion-exchange chromatography on DEAE-Cellulose and electroendosmotic preparative electrophoresis. The Ca(2+) binding ability of the M. loti protein was demonstrated by (45)Ca(2+)-overlay assays. ESI-Q-TOF MS/MS analyses of the peptides generated after digestion with either trypsin or endoproteinase AspN identified the rhizobial protein as ferredoxin II and confirmed the presence of Ca(2+) adducts. CONCLUSIONS The present data indicate that ferredoxin II is a major Ca(2+) binding protein in M. loti that may participate in Ca(2+) homeostasis and suggest an evolutionarily ancient origin for protein-based Ca(2+) regulatory systems.
Collapse
Affiliation(s)
- Roberto Moscatiello
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy.
| | - Mattia Zaccarin
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35131, Padova, Italy.
| | - Flavia Ercolin
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy.
| | - Ernesto Damiani
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131, Padova, Italy.
| | - Andrea Squartini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Viale dell'Università 16, 35020, Legnaro, Padova, Italy.
| | - Antonella Roveri
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35131, Padova, Italy.
| | - Lorella Navazio
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy.
| |
Collapse
|
8
|
Nomura H, Shiina T. Calcium signaling in plant endosymbiotic organelles: mechanism and role in physiology. MOLECULAR PLANT 2014; 7:1094-1104. [PMID: 24574521 DOI: 10.1093/mp/ssu020] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Recent studies have demonstrated that chloroplasts and mitochondria evoke specific Ca(2+) signals in response to biotic and abiotic stresses in a stress-dependent manner. The identification of Ca(2+) transporters and Ca(2+) signaling molecules in chloroplasts and mitochondria implies that they play roles in controlling not only intra-organellar functions, but also extra-organellar processes such as plant immunity and stress responses. It appears that organellar Ca(2+) signaling might be more important to plant cell functions than previously thought. This review briefly summarizes what is known about the molecular basis of Ca(2+) signaling in plant mitochondria and chloroplasts.
Collapse
Affiliation(s)
- Hironari Nomura
- Department of Health and Nutrition, Gifu Women's University, 80 Taromaru, Gifu 501-2592, Japan
| | - Takashi Shiina
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku Kyoto 606-8522, Japan
| |
Collapse
|
9
|
Evaluation of the ecotoxicity of pollutants with bioluminescent microorganisms. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 145:65-135. [PMID: 25216953 DOI: 10.1007/978-3-662-43619-6_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This chapter deals with the use of bioluminescent microorganisms in environmental monitoring, particularly in the assessment of the ecotoxicity of pollutants. Toxicity bioassays based on bioluminescent microorganisms are an interesting complement to classical toxicity assays, providing easiness of use, rapid response, mass production, and cost effectiveness. A description of the characteristics and main environmental applications in ecotoxicity testing of naturally bioluminescent microorganisms, covering bacteria and eukaryotes such as fungi and dinoglagellates, is reported in this chapter. The main features and applications of a wide variety of recombinant bioluminescent microorganisms, both prokaryotic and eukaryotic, are also summarized and critically considered. Quantitative structure-activity relationship models and hormesis are two important concepts in ecotoxicology; bioluminescent microorganisms have played a pivotal role in their development. As pollutants usually occur in complex mixtures in the environment, the use of both natural and recombinant bioluminescent microorganisms to assess mixture toxicity has been discussed. The main information has been summarized in tables, allowing quick consultation of the variety of luminescent organisms, bioluminescence gene systems, commercially available bioluminescent tests, environmental applications, and relevant references.
Collapse
|
10
|
Arrigoni G, Tolin S, Moscatiello R, Masi A, Navazio L, Squartini A. Calcium-dependent regulation of genes for plant nodulation in Rhizobium leguminosarum detected by iTRAQ quantitative proteomic analysis. J Proteome Res 2013; 12:5323-30. [PMID: 24041410 DOI: 10.1021/pr400656g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rhizobia, the nitrogen-fixing bacterial symbionts of legumes, represent an agricultural application of primary relevance and a model of plant-microbe molecular dialogues. We recently described rhizobium proteome alterations induced by plant flavonoids using iTRAQ. Herein, we further extend that experimentation, proving that the transient elevation in cytosolic calcium is a key signaling event necessary for the expression of the nodulation (nod) genes. Ca(2+) involvement in nodulation is a novel issue that we recently flagged with genetic and physiological approaches and that hereby we demonstrate also by proteomics. Exploiting the multiple combinations of 4-plex iTRAQ, we analyzed Rhizobium leguminosarum cultures grown with or without the nod gene-inducing plant flavonoid naringenin and in the presence or absence of the extracellular Ca(2+) chelator EGTA. We quantified over a thousand proteins, 189 of which significantly altered upon naringenin and/or EGTA stimulation. The expression of NodA, highly induced by naringenin, is strongly reduced when calcium availability is limited by EGTA. This confirms, from a proteomic perspective, that a Ca(2+) influx is a necessary early step in flavonoid-mediated legume nodulation by rhizobia. We also observed other proteins affected by the different treatments, whose identities and roles in nodulation and rhizobium physiology are likewise discussed.
Collapse
Affiliation(s)
- Giorgio Arrigoni
- Proteomics Center of Padova University , Via G. Orus 2b, 35129 Padova, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Tolin S, Arrigoni G, Moscatiello R, Masi A, Navazio L, Sablok G, Squartini A. Quantitative analysis of the naringenin-inducible proteome in Rhizobium leguminosarum by isobaric tagging and mass spectrometry. Proteomics 2013; 13:1961-72. [PMID: 23580418 DOI: 10.1002/pmic.201200472] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/17/2013] [Accepted: 03/12/2013] [Indexed: 11/05/2022]
Abstract
The rhizobium-legume interaction is a critical cornerstone of crop productivity and environmental sustainability. Its potential improvement relies on elucidation of the complex molecular dialogue between its two partners. In the present study, the proteomic patterns of gnotobiotic cultures of Rhizobium leguminosarum bv. viciae 3841 grown for 6 h in presence or absence of the nod gene-inducing plant flavonoid naringenin (10 μM) were analyzed using the iTRAQ approach. A total of 1334 proteins were identified corresponding to 18.67% of the protein-coding genes annotated in the sequenced genome of bv. viciae 3841. The abundance levels of 47 proteins were increased upon naringenin treatment showing fold change ratios ranging from 1.5 to 25 in two biological replicates. Besides the nod units, naringenin enhanced the expression of a number of other genes, many of which organized in operons, including β(1-2) glucan production and secretion, succinoglycan export, the RopA outer membrane protein with homology to an oligogalacturonide-specific porin motif, other enzymes for carbohydrate and amino acid metabolism, and proteins involved in the translation machinery. Data were validated at the transcriptional and phenotypic levels by RT-PCR and an assay of secreted sugars in culture supernatants, respectively. The current approach provides not only a high-resolution analysis of the prokaryotic proteome but also unravels the rhizobium molecular dialogue with legumes by detecting the enhanced expression of several symbiosis-associated proteins, whose flavonoid-dependency had not yet been reported.
Collapse
Affiliation(s)
- Serena Tolin
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, Legnaro, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
Eremeeva EV, Natashin PV, Song L, Zhou Y, van Berkel WJH, Liu ZJ, Vysotski ES. Oxygen activation of apo-obelin-coelenterazine complex. Chembiochem 2013; 14:739-45. [PMID: 23494831 DOI: 10.1002/cbic.201300002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Indexed: 11/09/2022]
Abstract
Ca(2+) -regulated photoproteins use a noncovalently bound 2-hydroperoxycoelenterazine ligand to emit light in response to Ca(2+) binding. To better understand the mechanism of formation of active photoprotein from apoprotein, coelenterazine and molecular oxygen, we investigated the spectral properties of the anaerobic apo-obelin-coelenterazine complex and the kinetics of its conversion into active photoprotein after exposure to air. Our studies suggest that coelenterazine bound within the anaerobic complex might be a mixture of N7-protonated and C2(-) anionic forms, and that oxygen shifts the equilibrium in favor of the C2(-) anion as a result of peroxy anion formation. Proton removal from N7 and further protonation of peroxy anion and the resulting formation of 2-hydroperoxycoelenterazine in obelin might occur with the assistance of His175. It is proposed that this conserved His residue might play a key role both in formation of active photoprotein and in Ca(2+) -triggering of the bioluminescence reaction.
Collapse
Affiliation(s)
- Elena V Eremeeva
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Brígido C, Robledo M, Menéndez E, Mateos PF, Oliveira S. A ClpB chaperone knockout mutant of Mesorhizobium ciceri shows a delay in the root nodulation of chickpea plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1594-1604. [PMID: 23134119 DOI: 10.1094/mpmi-05-12-0140-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Several molecular chaperones are known to be involved in bacteria stress response. To investigate the role of chaperone ClpB in rhizobia stress tolerance as well as in the rhizobia-plant symbiosis process, the clpB gene from a chickpea microsymbiont, strain Mesorhizobium ciceri LMS-1, was identified and a knockout mutant was obtained. The ClpB knockout mutant was tested to several abiotic stresses, showing that it was unable to grow after a heat shock and it was more sensitive to acid shock than the wild-type strain. A plant-growth assay performed to evaluate the symbiotic performance of the clpB mutant showed a higher proportion of ineffective root nodules obtained with the mutant than with the wild-type strain. Nodulation kinetics analysis showed a 6- to 8-day delay in nodule appearance in plants inoculated with the ΔclpB mutant. Analysis of nodC gene expression showed lower levels of transcript in the ΔclpB mutant strain. Analysis of histological sections of nodules formed by the clpB mutant showed that most of the nodules presented a low number of bacteroids. No differences in the root infection abilities of green fluorescent protein-tagged clpB mutant and wild-type strains were detected. To our knowledge, this is the first study that presents evidence of the involvement of the chaperone ClpB from rhizobia in the symbiotic nodulation process.
Collapse
|
14
|
Moscatiello R, Baldan B, Squartini A, Mariani P, Navazio L. Oligogalacturonides: novel signaling molecules in Rhizobium-legume communications. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1387-1395. [PMID: 22835276 DOI: 10.1094/mpmi-03-12-0066-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Oligogalacturonides are pectic fragments of the plant cell wall, whose signaling role has been described thus far during plant development and plant-pathogen interactions. In the present work, we evaluated the potential involvement of oligogalacturonides in the molecular communications between legumes and rhizobia during the establishment of nitrogen-fixing symbiosis. Oligogalacturonides with a degree of polymerization of 10 to 15 were found to trigger a rapid intracellular production of reactive oxygen species in Rhizobium leguminosarum bv. viciae 3841. Accumulation of H(2)O(2), detected by both 2',7'-dichlorodihydrofluorescein diacetate-based fluorescence and electron-dense deposits of cerium perhydroxides, was transient and did not affect bacterial cell viability, due to the prompt activation of the katG gene encoding a catalase. Calcium measurements carried out in R. leguminosarum transformed with the bioluminescent Ca(2+) reporter aequorin demonstrated the induction of a rapid and remarkable intracellular Ca(2+) increase in response to oligogalacturonides. When applied jointly with naringenin, oligogalacturonides effectively inhibited flavonoid-induced nod gene expression, indicating an antagonistic interplay between oligogalacturonides and inducing flavonoids in the early stages of plant root colonization. The above data suggest a novel role for oligogalacturonides as signaling molecules released in the rhizosphere in the initial rhizobium-legume interaction.
Collapse
|
15
|
Lery LMS, Hemerly AS, Nogueira EM, von Krüger WMA, Bisch PM. Quantitative proteomic analysis of the interaction between the endophytic plant-growth-promoting bacterium Gluconacetobacter diazotrophicus and sugarcane. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:562-576. [PMID: 21190439 DOI: 10.1094/mpmi-08-10-0178] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Gluconacetobacter diazotrophicus is a plant-growth-promoting bacterium that colonizes sugarcane. In order to investigate molecular aspects of the G. diazotrophicus-sugarcane interaction, we performed a quantitative mass spectrometry-based proteomic analysis by (15)N metabolic labeling of bacteria, root samples, and co-cultures. Overall, more than 400 proteins were analyzed and 78 were differentially expressed between the plant-bacterium interaction model and control cultures. A comparative analysis of the G. diazotrophicus in interaction with two distinct genotypes of sugarcane, SP70-1143 and Chunee, revealed proteins with fundamental roles in cellular recognition. G. diazotrophicus presented proteins involved in adaptation to atypical conditions and signaling systems during the interaction with both genotypes. However, SP70-1143 and Chunee, sugarcane genotypes with high and low contribution of biological nitrogen fixation, showed divergent responses in contact with G. diazotrophicus. The SP70-1143 genotype overexpressed proteins from signaling cascades and one from a lipid metabolism pathway, whereas Chunee differentially synthesized proteins involved in chromatin remodeling and protein degradation pathways. In addition, we have identified 30 bacterial proteins in the roots of the plant samples; from those, nine were specifically induced by plant signals. This is the first quantitative proteomic analysis of a bacterium-plant interaction, which generated insights into early signaling of the G. diazotrophicus-sugarcane interaction.
Collapse
Affiliation(s)
- Letícia M S Lery
- Unidade Multidisciplinar de Genômica, Instituto de Biofísica Carlos Chagas Filho da Universidade Federal do Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
16
|
Moscatiello R, Squartini A, Mariani P, Navazio L. Flavonoid-induced calcium signalling in Rhizobium leguminosarum bv. viciae. THE NEW PHYTOLOGIST 2010; 188:814-823. [PMID: 20738787 DOI: 10.1111/j.1469-8137.2010.03411.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
• Legume-rhizobium symbiosis requires a complex dialogue based on the exchange of diffusible signals between the partners. Compatible rhizobia express key nodulation (nod) genes in response to plant signals - flavonoids - before infection. Host plants sense counterpart rhizobial signalling molecules - Nod factors - through transient changes in intracellular free-calcium. Here we investigate the potential involvement of Ca(2+) in the symbiotic signalling pathway activated by flavonoids in Rhizobium leguminosarum bv. viciae. • By using aequorin-expressing rhizobial strains, we monitored intracellular Ca(2+) dynamics and the Ca(2+) dependence of nod gene transcriptional activation. • Flavonoid inducers triggered, in R. leguminosarum, transient increases in the concentration of intracellular Ca(2+) that were essential for the induction of nod genes. Signalling molecules not specifically related to rhizobia, such as strigolactones, were not perceived by rhizobia through Ca(2+) variations. A Rhizobium strain cured of the symbiotic plasmid responded to inducers with an unchanged Ca(2+) signature, showing that the transcriptional regulator NodD is not directly involved in this stage of flavonoid perception and plays its role downstream of the Ca(2+) signalling event. • These findings demonstrate a key role played by Ca(2+) in sensing and transducing plant-specific flavonoid signals in rhizobia and open up a new perspective in the flavonoid-NodD paradigm of nod gene regulation.
Collapse
|