1
|
Priya B, Kirubakaran S. TLK1 as a therapeutic target in TMZ resistant glioblastoma using small molecule inhibitor. Sci Rep 2025; 15:14691. [PMID: 40287404 PMCID: PMC12033314 DOI: 10.1038/s41598-025-86599-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/13/2025] [Indexed: 04/29/2025] Open
Abstract
The acquired resistance to existing therapies poses a grave concern in achieving successful therapeutic outcomes. Temozolomide (TMZ), a widely used alkylating chemotherapeutic in Glioblastoma therapy, often encounters resistance, necessitating the investigation of the underlying mechanisms of TMZ-acquired resistance. To study TMZ resistance, a cell-based model system was generated by intermittently exposing glioblastoma cells to increasing concentrations and time of TMZ over six months. The survival response of cells at higher concentrations confirmed TMZ-resistant cells, which exhibited a phenotypic shift toward a mesenchymal-like state, with decreased epithelial traits, indicating mesenchymal-epithelial transition (MET). This transition likely facilitates the stabilization and clonal growth of TMZ-resistant cells. Subsequent analysis revealed elevated expression of TLK1, a DNA repair protein, thus reinforcing its potential involvement in mechanisms associated with acquired resistance. To explore the therapeutic aspect of TLK1 inhibition, we utilized an in-house developed TLK1 inhibitor, J54. The inhibition of TLK1 in TMZ-resistant cells enhanced cytotoxicity, indicating TLK1 as a potential target to combat TMZ resistance. Moreover, TLK1 inhibition reduced cell migration and invasion, implying its role in promoting metastasis. In conclusion, our study sheds light on the role of TLK1 in the context of TMZ resistance, highlighting its potential as a valuable target for therapeutic intervention.
Collapse
Affiliation(s)
- Bhanu Priya
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Palaj Campus, Gandhinagar, Gujarat, 382355, India
| | - Sivapriya Kirubakaran
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
2
|
West K, Nguyen TN, Tengler K, Kreiling N, Raney K, Ghosal G, Leung J. Autophosphorylation of the Tousled-like kinases TLK1 and TLK2 regulates recruitment to damaged chromatin via PCNA interaction. Nucleic Acids Res 2025; 53:gkae1279. [PMID: 39727191 PMCID: PMC11879137 DOI: 10.1093/nar/gkae1279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Tousled-like kinases 1 and 2 (TLK1 and 2) are cell cycle-regulated serine/threonine kinases that are involved in multiple biological processes. Mutation of TLK1 and 2 confer neurodegenerative diseases. Recent studies demonstrate that TLK1 and 2 are involved in DNA repair. However, there is no direct evidence that TLK1 and 2 function at DNA damage sites. Here, we show that both TLK1 and TLK2 are hyper-autophosphorylated at their N-termini, at least in part, mediated by their homo- or hetero- dimerization. We found that TLK1 and 2 hyper-autophosphorylation suppresses their recruitment to damaged chromatin. Furthermore, both TLK1 and 2 associate with PCNA specifically through their evolutionarily conserved non-canonical PCNA-interacting protein (PIP) box at the N-terminus, and mutation of the PIP-box abolishes their recruitment to DNA damage sites. Mechanistically, the TLK1 and 2 hyper-autophosphorylation masks the PIP-box and negatively regulates their recruitment to the DNA damage site. Overall, our study dissects the detailed genetic regulation of TLK1 and 2 at damaged chromatin, which provides important insights into their emerging roles in DNA repair.
Collapse
Affiliation(s)
- Kirk L West
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 Markham St, Little Rock, AR 72205, USA
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 Markham St, Little Rock, AR 72205, USA
| | - Tram T N Nguyen
- Department of Radiation Oncology, University of Texas Health and Science Center, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Kyle A Tengler
- Department of Radiation Oncology, University of Texas Health and Science Center, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Natasha Kreiling
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, S 42nd &, Emile St, Omaha, NE 68198, USA
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 Markham St, Little Rock, AR 72205, USA
| | - Gargi Ghosal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, S 42nd &, Emile St, Omaha, NE 68198, USA
| | - Justin W Leung
- Department of Radiation Oncology, University of Texas Health and Science Center, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| |
Collapse
|
3
|
Kim MA, Kim B, Jeon J, Lee J, Jang H, Baek M, Seo SU, Shin D, Dutta A, Lee KY. Tousled-like kinase loss confers PARP inhibitor resistance in BRCA1-mutated cancers by impeding non-homologous end joining repair. Mol Med 2025; 31:18. [PMID: 39844055 PMCID: PMC11753094 DOI: 10.1186/s10020-025-01066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/03/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Double-strand breaks (DSBs) are primarily repaired through non-homologous end joining (NHEJ) and homologous recombination (HR). Given that DSBs are highly cytotoxic, PARP inhibitors (PARPi), a prominent class of anticancer drugs, are designed to target tumors with HR deficiency (HRD), such as those harboring BRCA mutations. However, many tumor cells acquire resistance to PARPi, often by restoring HR in HRD cells through the inactivation of NHEJ. Therefore, identifying novel regulators of NHEJ could provide valuable insights into the mechanisms underlying PARPi resistance. METHODS Cellular DSBs were assessed using neutral comet assays and phospho-H2AX immunoblotting. Fluorescence-based reporter assays quantified repair via NHEJ or HR. The recruitment of proteins that promote NHEJ and HR to DSBs was analyzed using immunostaining, live-cell imaging following laser-induced microirradiation, and FokI-inducible single DSB generation. Loss-of-function experiments were performed in multiple human cancer cell lines using siRNA-mediated knockdown or CRISPR-Cas9 gene knockout. Cell viability assays were conducted to evaluate resistance to PARP inhibitors. Additionally, bioinformatic analyses of public databases were performed to investigate the association between TLK expression and BRCA1 status. RESULTS We demonstrate that human tousled-like kinase (TLK) orthologs are essential for NHEJ-mediated repair of DSBs and for PARPi sensitivity in cells with BRCA1 mutation. TLK1 and TLK2 exhibit redundant roles in promoting NHEJ, and their deficiency results in a significant accumulation of DSBs. TLKs are required for the proper localization of 53BP1, a key factor in promoting the NHEJ pathway. Consequently, TLK deficiency induces PARPi resistance in triple-negative breast cancer (TNBC) and ovarian cancer (OVCA) cell lines with BRCA1 deficiency, as TLK deficiency in BRCA1-depleted cells, impairs 53BP1 recruitment to DSBs and reduces NHEJ efficiency, while restoring HR. CONCLUSIONS We have identified TLK proteins as novel regulators of NHEJ repair and PARPi sensitivity in BRCA1-depleted cells, suggesting that TLK repression may represent a previously unrecognized mechanism by which BRCA1 mutant cancers acquire PARPi resistance.
Collapse
Affiliation(s)
- Min-Ah Kim
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Banseok Kim
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Jihyeon Jeon
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Jonghyun Lee
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Hyeji Jang
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Minjae Baek
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Dongkwan Shin
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Anindya Dutta
- Department of Genetics, University of Alabama, Birmingham, AL, 35233, USA
| | - Kyung Yong Lee
- Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea.
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea.
| |
Collapse
|
4
|
Priya B, Chhabria D, Mahesh Dhongdi J, Kirubakaran S. A novel approach to investigate the combinatorial effects of TLK1 (Tousled-Like Kinase1) inhibitors with Temozolomide for glioblastoma therapy. Bioorg Chem 2024; 151:107643. [PMID: 39029318 DOI: 10.1016/j.bioorg.2024.107643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
Glioblastoma multiforme (GBM) is an aggressive, incurable brain tumor with poor prognosis and limited treatment options. Temozolomide (TMZ) is the standard chemotherapeutic treatment for GBM, but its efficacy has drawn strong criticism from clinicians due to short survival gains and frequent relapses. One critical limitation of TMZ therapy is the hyperactivation of DNA repair pathways, which over time neutralizes the cytotoxic effects of TMZ, thus highlighting the urgent need for new treatment approaches. Addressing this, our study explores the therapeutic potential of in-house-designed phenothiazine-based Tousled-like kinase-1 (TLK1) inhibitors for GBM treatment. TLK1, overexpressed in GBM, plays a role in DNA repair. Phenothiazines are known to cross the blood-brain barrier (BBB). Among all molecules, J54 was identified as a potential lead molecule with improved cytotoxicity. In the context of O6-methylguanine-DNA methyltransferase (MGMT)-deficient GBM cells, the combined administration of phenothiazines and TMZ exhibited a collective reduction in clonogenic growth, coupled with anti-migratory and anti-invasion effects. Conversely, in MGMT-proficient cells, phenothiazine monotherapy alone showed reduced clonogenic growth, along with anti-migratory and anti-invasion effects. Notably, a synergistic increase in γH2AX levels and concurrent attenuation of DNA repair upon combinatorial exposure to TMZ and J54 were observed, implying increased cytotoxicity due to sustained DNA strand breaks. Overall, this study provides new insights into TLK1 inhibition for GBM therapy. Collectively, these findings indicate that TLK1 is one of the upregulated kinases in GBM and phenothiazine-based TLK1 inhibitors could be a promising treatment option for GBM patients.
Collapse
Affiliation(s)
- Bhanu Priya
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj Campus, Gujarat 382355, India
| | - Dimple Chhabria
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj Campus, Gujarat 382355, India
| | - Janhvi Mahesh Dhongdi
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj Campus, Gujarat 382355, India
| | - Sivapriya Kirubakaran
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj Campus, Gujarat 382355, India.
| |
Collapse
|
5
|
Villamor-Payà M, Sanchiz-Calvo M, Smak J, Pais L, Sud M, Shankavaram U, Lovgren AK, Austin-Tse C, Ganesh VS, Gay M, Vilaseca M, Arauz-Garofalo G, Palenzuela L, VanNoy G, O’Donnell-Luria A, Stracker TH. De novo TLK1 and MDM1 mutations in a patient with a neurodevelopmental disorder and immunodeficiency. iScience 2024; 27:109984. [PMID: 38868186 PMCID: PMC11166698 DOI: 10.1016/j.isci.2024.109984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
The Tousled-like kinases 1 and 2 (TLK1/TLK2) regulate DNA replication, repair and chromatin maintenance. TLK2 variants underlie the neurodevelopmental disorder (NDD) 'Intellectual Disability, Autosomal Dominant 57' (MRD57), characterized by intellectual disability and microcephaly. Several TLK1 variants have been reported in NDDs but their functional significance is unknown. A male patient presenting with ID, seizures, global developmental delay, hypothyroidism, and primary immunodeficiency was determined to have a heterozygous TLK1 variant (c.1435C>G, p.Q479E), as well as a mutation in MDM1 (c.1197dupT, p.K400∗). Cells expressing TLK1 p.Q479E exhibited reduced cytokine responses and elevated DNA damage, but not increased radiation sensitivity or DNA repair defects. The TLK1 p.Q479E variant impaired kinase activity but not proximal protein interactions. Our study provides the first functional characterization of NDD-associated TLK1 variants and suggests that, such as TLK2, TLK1 variants may impact development in multiple tissues and should be considered in the diagnosis of rare NDDs.
Collapse
Affiliation(s)
- Marina Villamor-Payà
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| | - María Sanchiz-Calvo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Jordann Smak
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| | - Lynn Pais
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Malika Sud
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Uma Shankavaram
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| | - Alysia Kern Lovgren
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Christina Austin-Tse
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vijay S. Ganesh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Marina Gay
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Marta Vilaseca
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Gianluca Arauz-Garofalo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Lluís Palenzuela
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Grace VanNoy
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anne O’Donnell-Luria
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Travis H. Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
West KL, Kreiling N, Raney KD, Ghosal G, Leung JW. Autophosphorylation of the Tousled-like kinases TLK1 and TLK2 regulates recruitment to damaged chromatin via PCNA interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590659. [PMID: 38712247 PMCID: PMC11071368 DOI: 10.1101/2024.04.22.590659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Tousled-like kinases 1 and 2 (TLK1 and 2) are cell cycle-regulated serine/threonine kinases that are involved in multiple biological processes. Mutation of TLK1 and 2 confer neurodegenerative diseases. Recent studies demonstrate that TLK1 and 2 are involved in DNA repair. However, there is no direct evidence that TLK1 and 2 function at DNA damage sites. Here, we show that both TLK1 and TLK2 are hyper-autophosphorylated at their N-termini, at least in part, mediated by their homo- or hetero-dimerization. We found that TLK1 and 2 hyper-autophosphorylation suppresses their recruitment to damaged chromatin. Furthermore, both TLK1 and 2 associate with PCNA specifically through their evolutionarily conserved non-canonical PCNA-interacting protein (PIP) box at the N-terminus, and mutation of the PIP-box abolishes their recruitment to DNA damage sites. Mechanistically, the TLK1 and 2 hyper-autophosphorylation masks the PIP-box and negatively regulates their recruitment to the DNA damage site. Overall, our study dissects the detailed genetic regulation of TLK1 and 2 at damaged chromatin, which provides important insights into their emerging roles in DNA repair.
Collapse
Affiliation(s)
- Kirk L. West
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Natasha Kreiling
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Kevin D. Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Gargi Ghosal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Justin W Leung
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Department of Radiation Oncology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
| |
Collapse
|
7
|
Stracker TH, Osagie OI, Escorcia FE, Citrin DE. Exploiting the DNA Damage Response for Prostate Cancer Therapy. Cancers (Basel) 2023; 16:83. [PMID: 38201511 PMCID: PMC10777950 DOI: 10.3390/cancers16010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Prostate cancers that progress despite androgen deprivation develop into castration-resistant prostate cancer, a fatal disease with few treatment options. In this review, we discuss the current understanding of prostate cancer subtypes and alterations in the DNA damage response (DDR) that can predispose to the development of prostate cancer and affect its progression. We identify barriers to conventional treatments, such as radiotherapy, and discuss the development of new therapies, many of which target the DDR or take advantage of recurring genetic alterations in the DDR. We place this in the context of advances in understanding the genetic variation and immune landscape of CRPC that could help guide their use in future treatment strategies. Finally, we discuss several new and emerging agents that may advance the treatment of lethal disease, highlighting selected clinical trials.
Collapse
Affiliation(s)
- Travis H. Stracker
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| | - Oloruntoba I. Osagie
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| | - Freddy E. Escorcia
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah E. Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| |
Collapse
|
8
|
Sun RC, Li J, Li YX, Wang HZ, Dal E, Wang ML, Li YX. Tousled-like kinase 1 promotes gastric cancer progression by regulating the tumor growth factor-beta signaling pathway. World J Gastroenterol 2023; 29:5919-5934. [PMID: 38111505 PMCID: PMC10725561 DOI: 10.3748/wjg.v29.i44.5919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/23/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND The role of Tousled-like kinase 1 (TLK1) in in gastric cancer (GC) remains unclear. AIM To investigate the expression, biological function, and underlying mechanisms of TLK1 in GC. METHODS We measured TLK1 protein expression levels and localized TLK1 in GC cells and tissues by western blot and immunofluorescence, respectively. We transfected various GC cells with lentiviruses to create TLK1 overexpression and knockdown lines and established the functional roles of TLK1 through in vitro colony formation, 5-ethynyl-2`-deoxyuridine, and Transwell assays as well as flow cytometry. We applied bioinformatics to elucidate the signaling pathways associated with TLK1. We performed in vivo validation of TLK1 functions by inducing subcutaneous xenograft tumors in nude mice. RESULTS TLK1 was significantly upregulated in GC cells and tissues compared to their normal counterparts and was localized mainly to the nucleus. TLK1 knockdown significantly decreased colony formation, proliferation, invasion, and migration but increased apoptosis in GC cells. TLK1 overexpression had the opposite effects. Bioinformatics revealed, and subsequent experiments verified, that the tumor growth factor-beta signaling pathway was implicated in TLK1-mediated GC progression. The in vivo assays confirmed that TLK1 promotes tumorigenesis in GC. CONCLUSION The findings of the present study indicated that TLK1 plays a crucial role in GC progression and is, therefore, promising as a therapeutic target against this disease.
Collapse
Affiliation(s)
- Ruo-Chuan Sun
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Jing Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Ya-Xian Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Hui-Zhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Emre Dal
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, United States
| | - Ming-Liang Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Yong-Xiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| |
Collapse
|
9
|
Chan Y, Tang X, Cai D, Liu Y, Li D, Su J, Neng G, Yin Y, Geng Z, Zhu S, Zhang J, Jiang L, Zhu B. The relationship of maternal polymorphisms of genes related to meiosis and DNA damage repair with fetal chromosomal stability. J Perinat Med 2023; 51:1082-1096. [PMID: 37486214 DOI: 10.1515/jpm-2022-0613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/24/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVES To evaluate the association between maternal polymorphisms of NANOS3 rs2016163, HELQ rs4693089, PRIM1 rs2277339, TLK1 rs10183486, ERCC6 rs2228526, EXO1 rs1635501, DMC1 rs5757133, and MSH5 rs2075789 and fetal chromosomal abnormality. METHODS This retrospective case-control study included 571 women with fetal chromosome abnormalities (330 pregnant women diagnosed with fetal aneuploidy, 241 with fetal de novo structural chromosome pregnancy) and 811 healthy pregnant women between January 2018 and April 2022. All the above polymorphisms were tested using SNaPshot. RESULTS All the eight polymorphisms were analyzed for genotypes, alleles, under dominant and recessive genetic models. Significant distribution differences of TLK1 rs10183486 in fetal chromosome structural abnormality were found between the case group and control subjects who were <35 years of age [Genotype: p=0.029; Dominant: OR (95 %CI)=0.46 (0.25-0.82), p=0.01 and allele: OR (95 %CI)=0.47 (0.27-0.82), p=0.01 respectively], while no difference was found in the recessive model [OR (95 %CI)=2.49 (0.31-20.40), p=0.39]. In advanced age subgroups for fetal aneuploidy, significant differences were found in genotypes analysis of PRIM1 rs2277339 (p=0.008), allele analysis of TLK1 rs10183486 [OR (95 %CI)=0.62 (0.42-0.91), p=0.02]. For the fetal chromosome structural abnormality population, HELQ rs4693089 revealed a significant distribution difference (p=0.01) but not in the allele, dominant and recessive genetic models analysis (p>0.05 individually). CONCLUSIONS For older women, maternal PRIM1 rs2277339 and TLK1 rs10183486 polymorphisms may be associated with fetal aneuploidy, while HELQ rs4693089 may be associated with fetal chromosome structural abnormality. Also, carriers of T allele of TLK1 rs10183486 have a lower risk of fetal chromosome structural abnormality in younger women.
Collapse
Affiliation(s)
- Ying Chan
- Department of Medical Genetics, NHC Key Laboratory of Periconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, The First People's Hospital of Yunnan Province, Kunming, P.R. China
| | - Xinhua Tang
- Department of Medical Genetics, NHC Key Laboratory of Periconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, The First People's Hospital of Yunnan Province, Kunming, P.R. China
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, P.R. China
| | - Dongling Cai
- School of Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, P.R. China
| | - Yize Liu
- School of Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, P.R. China
| | - Dongmei Li
- Department of Medical Genetics, NHC Key Laboratory of Periconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, The First People's Hospital of Yunnan Province, Kunming, P.R. China
| | - Jie Su
- Department of Medical Genetics, NHC Key Laboratory of Periconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, The First People's Hospital of Yunnan Province, Kunming, P.R. China
| | - Guowei Neng
- Department of Medical Genetics, NHC Key Laboratory of Periconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, The First People's Hospital of Yunnan Province, Kunming, P.R. China
| | - Yifei Yin
- Department of Medical Genetics, NHC Key Laboratory of Periconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, The First People's Hospital of Yunnan Province, Kunming, P.R. China
| | - Zibiao Geng
- Department of Medical Genetics, NHC Key Laboratory of Periconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, The First People's Hospital of Yunnan Province, Kunming, P.R. China
| | - Shu Zhu
- Department of Medical Genetics, NHC Key Laboratory of Periconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, The First People's Hospital of Yunnan Province, Kunming, P.R. China
| | - Jinman Zhang
- Department of Medical Genetics, NHC Key Laboratory of Periconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, The First People's Hospital of Yunnan Province, Kunming, P.R. China
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, P.R. China
| | - Lihong Jiang
- Department of Cardiothoracic Surgery, First People's Hospital of Yunnan Province, 157, Jinbi Road, Kunming, 650032, China
| | - Baosheng Zhu
- Department of Medical Genetics, NHC Key Laboratory of Periconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, The First People's Hospital of Yunnan Province, Kunming, P.R. China
- School of Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, P.R. China
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, P.R. China
| |
Collapse
|
10
|
Barroso-Chinea P, Salas-Hernández J, Cruz-Muros I, López-Fernández J, Freire R, Afonso-Oramas D. Expression of RAD9B in the mesostriatal system of rats and humans: Overexpression in a 6-OHDA rat model of Parkinson's disease. Ann Anat 2023; 250:152135. [PMID: 37460044 DOI: 10.1016/j.aanat.2023.152135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder that affects primarily the dopaminergic (DAergic) neurons of the mesostriatal system, among other nuclei of the brain. Although it is considered an idiopathic disease, oxidative stress is believed to be involved in DAergic neuron death and therefore plays an important role in the onset and development of the disease. RAD9B is a paralog of the RAD9 checkpoint, sharing some similar functions related to DNA damage resistance and apoptosis, as well as the ability to form 9-1-1 heterotrimers with RAD1 and HUS1. METHODS In addition to immunohistochemistry, immunofluorescence and Western-blot analysis, we implemented Quantitative RT-PCR and in situ hybridization techniques. RESULTS We demonstrated RAD9B expression in rat and human mesencephalic DAergic cells using specific markers. Additionally, we observed significant overexpression of RAD9B mRNA (p<0.01) and protein (p<0.01) in the midbrain 48 h after inducing damage with 150 µg of 6-hydroxydopamine (6-OHDA) injected in a rat model of PD. Regarding protein expression, the increased levels were observed in neurons of the mesostriatal system and returned to normal 5 days post-injury. CONCLUSIONS This response to a neurotoxin, known to produce oxidative stress specifically on DAergic neurons indicates the potential importance of RAD9B in this highly vulnerable population to cell death. In this model, RAD9B function appears to provide neuroprotection, as the induced lesion resulted in only mild degeneration. This observation highlights the potential of RAD9B checkpoint protein as a valuable target for future therapeutic interventions aimed at promoting neuroprotection.
Collapse
Affiliation(s)
- Pedro Barroso-Chinea
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain; Instituto Universitario de Neurociencias (IUNE). Universidad de La Laguna, Tenerife, Spain.
| | - Josmar Salas-Hernández
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Ignacio Cruz-Muros
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Jonathan López-Fernández
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Raimundo Freire
- Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain; Fundación Canaria del Instituto de Investigación Sanitaria de Canarias (FIISC), Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain; Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Domingo Afonso-Oramas
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain; Instituto Universitario de Neurociencias (IUNE). Universidad de La Laguna, Tenerife, Spain.
| |
Collapse
|
11
|
Ghosh I, De Benedetti A. Untousling the Role of Tousled-like Kinase 1 in DNA Damage Repair. Int J Mol Sci 2023; 24:13369. [PMID: 37686173 PMCID: PMC10487508 DOI: 10.3390/ijms241713369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
DNA damage repair lies at the core of all cells' survival strategy, including the survival strategy of cancerous cells. Therefore, targeting such repair mechanisms forms the major goal of cancer therapeutics. The mechanism of DNA repair has been tousled with the discovery of multiple kinases. Recent studies on tousled-like kinases have brought significant clarity on the effectors of these kinases which stand to regulate DSB repair. In addition to their well-established role in DDR and cell cycle checkpoint mediation after DNA damage or inhibitors of replication, evidence of their suspected involvement in the actual DSB repair process has more recently been strengthened by the important finding that TLK1 phosphorylates RAD54 and regulates some of its activities in HRR and localization in the cell. Earlier findings of its regulation of RAD9 during checkpoint deactivation, as well as defined steps during NHEJ end processing, were earlier hints of its broadly important involvement in DSB repair. All this has opened up new avenues to target cancer cells in combination therapy with genotoxins and TLK inhibitors.
Collapse
Affiliation(s)
| | - Arrigo De Benedetti
- Department of Medicine, Department of Biochemistry, Louisiana Health Science Center-Shreveport, Shreveport, LA 71103, USA;
| |
Collapse
|
12
|
Villamor-Payà M, Sanchiz-Calvo M, Smak J, Pais L, Sud M, Shankavaram U, Lovgren AK, Austin-Tse C, Ganesh VS, Gay M, Vilaseca M, Arauz-Garofalo G, Palenzuela L, VanNoy G, O'Donnell-Luria A, Stracker TH. Identification of a de novo mutation in TLK1 associated with a neurodevelopmental disorder and immunodeficiency. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.22.23294267. [PMID: 37662408 PMCID: PMC10473813 DOI: 10.1101/2023.08.22.23294267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background The Tousled-like kinases 1 and 2 (TLK1/TLK2) regulate DNA replication, repair and chromatin maintenance. TLK2 variants are associated with 'Intellectual Disability, Autosomal Dominant 57' (MRD57), a neurodevelopmental disorder (NDD) characterized by intellectual disability (ID), autism spectrum disorder (ASD) and microcephaly. Several TLK1 variants have been reported in NDDs but their functional significance is unknown. Methods A male patient presenting with ID, seizures, global developmental delay, hypothyroidism, and primary immunodeficiency was determined to have a novel, heterozygous variant in TLK1 (c.1435C>G, p.Q479E) by genome sequencing (GS). Single cell gel electrophoresis, western blot, flow cytometry and RNA-seq were performed in patient-derived lymphoblast cell lines. In silico, biochemical and proteomic analysis were used to determine the functional impact of the p.Q479E variant and previously reported NDD-associated TLK1 variant, p.M566T. Results Transcriptome sequencing in patient-derived cells confirmed expression of TLK1 transcripts carrying the p.Q479E variant and revealed alterations in genes involved in class switch recombination and cytokine signaling. Cells expressing the p.Q479E variant exhibited reduced cytokine responses and higher levels of spontaneous DNA damage but not increased sensitivity to radiation or DNA repair defects. The p.Q479E and p.M566T variants impaired kinase activity but did not strongly alter localization or proximal protein interactions. Conclusion Our study provides the first functional characterization of TLK1 variants associated with NDDs and suggests potential involvement in central nervous system and immune system development. Our results indicate that, like TLK2 variants, TLK1 variants may impact development in multiple tissues and should be considered in the diagnosis of rare NDDs.
Collapse
Affiliation(s)
- Marina Villamor-Payà
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| | - María Sanchiz-Calvo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Jordann Smak
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| | - Lynn Pais
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Malika Sud
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Uma Shankavaram
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| | - Alysia Kern Lovgren
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Christina Austin-Tse
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vijay S Ganesh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Marina Gay
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Marta Vilaseca
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Gianluca Arauz-Garofalo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Lluís Palenzuela
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Grace VanNoy
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anne O'Donnell-Luria
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- National Cancer Institute, Center for Cancer Research, Radiation Oncology Branch, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Bhoir S, De Benedetti A. Targeting Prostate Cancer, the 'Tousled Way'. Int J Mol Sci 2023; 24:11100. [PMID: 37446279 DOI: 10.3390/ijms241311100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Androgen deprivation therapy (ADT) has been the mainstay of prostate cancer (PCa) treatment, with success in developing more effective inhibitors of androgen synthesis and antiandrogens in clinical practice. However, hormone deprivation and AR ablation have caused an increase in ADT-insensitive PCas associated with a poor prognosis. Resistance to ADT arises through various mechanisms, and most castration-resistant PCas still rely on the androgen axis, while others become truly androgen receptor (AR)-independent. Our research identified the human tousled-like kinase 1 (TLK1) as a crucial early mediator of PCa cell adaptation to ADT, promoting androgen-independent growth, inhibiting apoptosis, and facilitating cell motility and metastasis. Although explicit, the growing role of TLK1 biology in PCa has remained underrepresented and elusive. In this review, we aim to highlight the diverse functions of TLK1 in PCa, shed light on the molecular mechanisms underlying the transition from androgen-sensitive (AS) to an androgen-insensitive (AI) disease mediated by TLK1, and explore potential strategies to counteract this process. Targeting TLK1 and its associated signaling could prevent PCa progression to the incurable metastatic castration-resistant PCa (mCRPC) stage and provide a promising approach to treating PCa.
Collapse
Affiliation(s)
- Siddhant Bhoir
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA 71103, USA
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
14
|
Xu X, Su S, Cao Y, Zhao S, Li W, Qin Y. Variation analysis of tousled like kinase 1 gene in patients with sporadic premature ovarian insufficiency. Gynecol Endocrinol 2020; 36:33-35. [PMID: 31362519 DOI: 10.1080/09513590.2019.1630606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Tousled like kinase 1 (TLK1), a member of DNA repair family, participates in the regulation of chromatin assembly and is associated with early menopause and premature ovarian insufficiency (POI) in European women. However, whether the sequence variant in the TLK1 gene was causative for POI is still elusive. Here we performed direct sequencing of the TLK1 gene in 192 patients with sporadic POI. All exons and exon-intron boundaries of TLK1 were amplified and sequenced. Six known single-nucleotide polymorphisms were identified in POI, including rs149844334, rs11553951, rs757600673, rs2277339, rs113416007 and rs17283147. No novel variant was identified, which indicates that sequence variants in the coding region of TLK1 might be uncommon in Chinese women with POI. The role of TLK1 in POI pathogenesis needs to be further explored in larger cohorts from Chinese and other ethnic populations.
Collapse
Affiliation(s)
- Xiaofei Xu
- Center for Reproductive Medicine, Shandong University National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Shizhen Su
- Center for Reproductive Medicine, Shandong University National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Yongzhi Cao
- Center for Reproductive Medicine, Shandong University National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Shidou Zhao
- Center for Reproductive Medicine, Shandong University National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Weiping Li
- Ren Ji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yingying Qin
- Center for Reproductive Medicine, Shandong University National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| |
Collapse
|
15
|
Segura-Bayona S, Stracker TH. The Tousled-like kinases regulate genome and epigenome stability: implications in development and disease. Cell Mol Life Sci 2019; 76:3827-3841. [PMID: 31302748 PMCID: PMC11105529 DOI: 10.1007/s00018-019-03208-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/05/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023]
Abstract
The Tousled-like kinases (TLKs) are an evolutionarily conserved family of serine-threonine kinases that have been implicated in DNA replication, DNA repair, transcription, chromatin structure, viral latency, cell cycle checkpoint control and chromosomal stability in various organisms. The functions of the TLKs appear to depend largely on their ability to regulate the H3/H4 histone chaperone ASF1, although numerous TLK substrates have been proposed. Over the last few years, a clearer picture of TLK function has emerged through the identification of new partners, the definition of specific roles in development and the elucidation of their structural and biochemical properties. In addition, the TLKs have been clearly linked to human disease; both TLK1 and TLK2 are frequently amplified in human cancers and TLK2 mutations have been identified in patients with neurodevelopmental disorders characterized by intellectual disability (ID), autism spectrum disorder (ASD) and microcephaly. A better understanding of the substrates, regulation and diverse roles of the TLKs is needed to understand their functions in neurodevelopment and determine if they are viable targets for cancer therapy. In this review, we will summarize current knowledge of TLK biology and its potential implications in development and disease.
Collapse
Affiliation(s)
- Sandra Segura-Bayona
- Department of Oncology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/Baldiri Reixac 10, 08028, Barcelona, Spain.
- The Francis Crick Institute, London, UK.
| | - Travis H Stracker
- Department of Oncology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/Baldiri Reixac 10, 08028, Barcelona, Spain.
| |
Collapse
|
16
|
Abstract
We recently demonstrated that the circadian clock component CRY2 is an essential cofactor in the SCFFBXL3-mediated ubiquitination of c-MYC. Because our demonstration that CRY2 recruits phosphorylated substrates to SCFFBXL3 was unexpected, we investigated the scope of this role by searching for additional substrates of FBXL3 that require CRY1 or CRY2 as cofactors. Here, we describe an affinity purification mass spectrometry (APMS) screen through which we identified more than one hundred potential substrates of SCFFBXL3+CRY1/2, including the cell cycle regulated Tousled-like kinase, TLK2. Both CRY1 and CRY2 recruit TLK2 to SCFFBXL3, and TLK2 kinase activity is required for this interaction. Overexpression or genetic deletion of CRY1 and/or CRY2 decreases or enhances TLK2 protein abundance, respectively. These findings reinforce the idea that CRYs function as co-factors for SCFFBXL3, provide a resource of potential substrates, and establish a molecular connection between the circadian and cell cycle oscillators via CRY-modulated turnover of TLK2.
Collapse
|
17
|
Molecular basis of Tousled-Like Kinase 2 activation. Nat Commun 2018; 9:2535. [PMID: 29955062 PMCID: PMC6023931 DOI: 10.1038/s41467-018-04941-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 06/06/2018] [Indexed: 12/21/2022] Open
Abstract
Tousled-like kinases (TLKs) are required for genome stability and normal development in numerous organisms and have been implicated in breast cancer and intellectual disability. In humans, the similar TLK1 and TLK2 interact with each other and TLK activity enhances ASF1 histone binding and is inhibited by the DNA damage response, although the molecular mechanisms of TLK regulation remain unclear. Here we describe the crystal structure of the TLK2 kinase domain. We show that the coiled-coil domains mediate dimerization and are essential for activation through ordered autophosphorylation that promotes higher order oligomers that locally increase TLK2 activity. We show that TLK2 mutations involved in intellectual disability impair kinase activity, and the docking of several small-molecule inhibitors of TLK activity suggest that the crystal structure will be useful for guiding the rationale design of new inhibition strategies. Together our results provide insights into the structure and molecular regulation of the TLKs. The Tousled-like kinase (TLKs) family belongs to a distinct branch of Ser/Thr kinases that exhibit the highest levels of activity during DNA replication. Here the authors present the crystal structure of the kinase domain from human TLK2 and propose an activation model for TLK2 based on biochemical and phosphoproteomics experiments.
Collapse
|
18
|
Lee J, Kim MS, Park SH, Jang YK. Tousled-like kinase 1 is a negative regulator of core transcription factors in murine embryonic stem cells. Sci Rep 2018; 8:334. [PMID: 29321513 PMCID: PMC5762884 DOI: 10.1038/s41598-017-18628-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/13/2017] [Indexed: 11/19/2022] Open
Abstract
Although the differentiation of pluripotent cells in embryonic stem cells (ESCs) is often associated with protein kinase-mediated signaling pathways and Tousled-like kinase 1 (Tlk1) is required for development in several species, the role of Tlk1 in ESC function remains unclear. Here, we used mouse ESCs to study the function of Tlk1 in pluripotent cells. The knockdown (KD)-based Tlk1-deficient cells showed that Tlk1 is not essential for ESC self-renewal in an undifferentiated state. However, Tlk1-KD cells formed irregularly shaped embryoid bodies and induced resistance to differentiation cues, indicating their failure to differentiate into an embryoid body. Consistent with their failure to differentiate, Tlk1-KD cells failed to downregulate the expression of undifferentiated cell markers including Oct4, Nanog, and Sox2 during differentiation, suggesting a negative role of Tlk1. Interestingly, Tlk1 overexpression sufficiently downregulated the expression of core pluripotency factors possibly irrespective of its kinase activity, thereby leading to a partial loss of self-renewal ability even in an undifferentiated state. Moreover, Tlk1 overexpression caused severe growth defects and G2/M phase arrest as well as apoptosis. Collectively, our data suggest that Tlk1 negatively regulates the expression of pluripotency factors, thereby contributing to the scheduled differentiation of mouse ESCs.
Collapse
Affiliation(s)
- Jina Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.,Initiative for Biological Function and Systems, Yonsei University, Seoul, 03722, Republic of Korea
| | - Min Seong Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.,Initiative for Biological Function and Systems, Yonsei University, Seoul, 03722, Republic of Korea
| | - Su Hyung Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.,Initiative for Biological Function and Systems, Yonsei University, Seoul, 03722, Republic of Korea.,Center for Genomic Integrity, Institute for Basic Science, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan, 689-798, Republic of Korea
| | - Yeun Kyu Jang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea. .,Initiative for Biological Function and Systems, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
19
|
Differential requirements for Tousled-like kinases 1 and 2 in mammalian development. Cell Death Differ 2017; 24:1872-1885. [PMID: 28708136 DOI: 10.1038/cdd.2017.108] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 12/20/2022] Open
Abstract
The regulation of chromatin structure is critical for a wide range of essential cellular processes. The Tousled-like kinases, TLK1 and TLK2, regulate ASF1, a histone H3/H4 chaperone, and likely other substrates, and their activity has been implicated in transcription, DNA replication, DNA repair, RNA interference, cell cycle progression, viral latency, chromosome segregation and mitosis. However, little is known about the functions of TLK activity in vivo or the relative functions of the highly similar TLK1 and TLK2 in any cell type. To begin to address this, we have generated Tlk1- and Tlk2-deficient mice. We found that while TLK1 was dispensable for murine viability, TLK2 loss led to late embryonic lethality because of placental failure. TLK2 was required for normal trophoblast differentiation and the phosphorylation of ASF1 was reduced in placentas lacking TLK2. Conditional bypass of the placental phenotype allowed the generation of apparently healthy Tlk2-deficient mice, while only the depletion of both TLK1 and TLK2 led to extensive genomic instability, indicating that both activities contribute to genome maintenance. Our data identifies a specific role for TLK2 in placental function during mammalian development and suggests that TLK1 and TLK2 have largely redundant roles in genome maintenance.
Collapse
|
20
|
Abstract
More than 0.5 million new cases of head and neck cancer are diagnosed worldwide each year, and approximately 75% of them are treated with radiation alone or in combination with other cancer treatments. A majority of patients treated with radiotherapy develop significant oral off-target effects because of the unavoidable irradiation of normal tissues. Salivary glands that lie within treatment fields are often irreparably damaged and a decline in function manifests as dry mouth or xerostomia. Limited ability of the salivary glands to regenerate lost acinar cells makes radiation-induced loss of function a chronic problem that affects the quality of life of the patients well beyond the completion of radiotherapy. The restoration of saliva production after irradiation has been a daunting challenge, and this review provides an overview of promising gene therapeutics that either improve the gland’s ability to survive radiation insult, or alternately, restore fluid flow after radiation. The salient features and shortcomings of each approach are discussed.
Collapse
Affiliation(s)
- Renjith Parameswaran Nair
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130, United States of America
| | - Gulshan Sunavala-Dossabhoy
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130, United States of America
| |
Collapse
|
21
|
Timiri Shanmugam PS, Nair RP, De Benedetti A, Caldito G, Abreo F, Sunavala-Dossabhoy G. Tousled kinase activator, gallic acid, promotes homologous recombinational repair and suppresses radiation cytotoxicity in salivary gland cells. Free Radic Biol Med 2016; 93:217-26. [PMID: 26855419 PMCID: PMC5257199 DOI: 10.1016/j.freeradbiomed.2015.12.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/18/2015] [Accepted: 12/24/2015] [Indexed: 01/19/2023]
Abstract
Accidental or medical radiation exposure of the salivary glands can gravely impact oral health. Previous studies have shown the importance of Tousled-like kinase 1 (TLK1) and its alternate start variant TLK1B in cell survival against genotoxic stresses. Through a high-throughput library screening of natural compounds, the phenolic phytochemical, gallic acid (GA), was identified as a modulator of TLK1/1B. This small molecule possesses anti-oxidant and free radical scavenging properties, but in this study, we report that in vitro it promotes survival of human salivary acinar cells, NS-SV-AC, through repair of ionizing radiation damage. Irradiated cells treated with GA show improved clonogenic survival compared to untreated controls. And, analyses of DNA repair kinetics by alkaline single-cell gel electrophoresis and γ-H2AX foci immunofluorescence indicate rapid resolution of DNA breaks in drug-treated cells. Study of DR-GFP transgene repair indicates GA facilitates homologous recombinational repair to establish a functional GFP gene. In contrast, inactivation of TLK1 or its shRNA knockdown suppressed resolution of radiation-induced DNA tails in NS-SV-AC, and homology directed repair in DR-GFP cells. Consistent with our results in culture, animals treated with GA after exposure to fractionated radiation showed better preservation of salivary function compared to saline-treated animals. Our results suggest that GA-mediated transient modulation of TLK1 activity promotes DNA repair and suppresses radiation cytoxicity in salivary gland cells.
Collapse
Affiliation(s)
- Prakash Srinivasan Timiri Shanmugam
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Renjith Parameshwaran Nair
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Gloria Caldito
- Department of Computational Biology and Bioinformatics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Fleurette Abreo
- Department of Pathology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Gulshan Sunavala-Dossabhoy
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA.
| |
Collapse
|
22
|
Timiri Shanmugam PS, Nair RP, DeBenedetti A, Caldito G, Abreo F, Sunavala-Dossabhoy G. DNA damage response and repair data with pharmacological modulators of Tousled. Data Brief 2016; 7:1073-7. [PMID: 27408917 PMCID: PMC4927964 DOI: 10.1016/j.dib.2016.03.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 12/05/2022] Open
Abstract
Human Tousled kinase 1 (TLK1) plays an important role in chromatin remodeling, replication, and DNA damage response and repair. TLK1 activity is immediately, but transiently, downregulated after genotoxic insult, and its recovery is important for exit from checkpoint arrest and cell survival after radiation. The data in this article compliments research presented in the paper titled, “Tousled kinase activator, gallic acid, promotes DNA repair and suppresses radiation cytotoxicity in salivary gland cells” [1]. The identification of small molecule activators and inhibitors of TLK1 provided an opportunity to pharmacologically alter the protein׳s activity to elucidate its role in DNA damage response pathways. TLK1 effectors, gallic acid (GA) and thioridazine (THD) activate and inhibit the kinase, respectively, and the data report on the impact of these compounds and the significance of TLK1 to DNA break repair and the survival of human salivary acinar cells.
Collapse
Affiliation(s)
| | | | | | - Gloria Caldito
- Department of Computational Biology and Bioinformatics, USA
| | - Fleurette Abreo
- Department of Pathology, LSU Health Sciences Center, Shreveport, LA, USA
| | | |
Collapse
|
23
|
Bruinsma W, van den Berg J, Aprelia M, Medema RH. Tousled-like kinase 2 regulates recovery from a DNA damage-induced G2 arrest. EMBO Rep 2016; 17:659-70. [PMID: 26931568 DOI: 10.15252/embr.201540767] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 02/04/2016] [Indexed: 11/09/2022] Open
Abstract
In order to maintain a stable genome, cells need to detect and repair DNA damage before they complete the division cycle. To this end, cell cycle checkpoints prevent entry into the next cell cycle phase until the damage is fully repaired. Proper reentry into the cell cycle, known as checkpoint recovery, requires that a cell retains its original cell cycle state during the arrest. Here, we have identified Tousled-like kinase 2 (Tlk2) as an important regulator of recovery after DNA damage in G2. We show that Tlk2 regulates the Asf1A histone chaperone in response to DNA damage and that depletion of Asf1A also produces a recovery defect. Both Tlk2 and Asf1A are required to restore histone H3 incorporation into damaged chromatin. Failure to do so affects expression of pro-mitotic genes and compromises the cellular competence to recover from damage-induced cell cycle arrests. Our results demonstrate that Tlk2 promotes Asf1A function during the DNA damage response in G2 to allow for proper restoration of chromatin structure at the break site and subsequent recovery from the arrest.
Collapse
Affiliation(s)
- Wytse Bruinsma
- Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands Department of Medical Oncology and Cancer Genomics Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen van den Berg
- Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Melinda Aprelia
- Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands Department of Medical Oncology and Cancer Genomics Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - René H Medema
- Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands Department of Medical Oncology and Cancer Genomics Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
24
|
Awate S, De Benedetti A. TLK1B mediated phosphorylation of Rad9 regulates its nuclear/cytoplasmic localization and cell cycle checkpoint. BMC Mol Biol 2016; 17:3. [PMID: 26860083 PMCID: PMC4746922 DOI: 10.1186/s12867-016-0056-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/26/2016] [Indexed: 01/09/2023] Open
Abstract
Background The Tousled like kinase 1B (TLK1B) is critical for DNA repair and survival of cells. Upon DNA damage, Chk1 phosphorylates TLK1B at S457 leading to its transient inhibition. Once TLK1B regains its kinase activity it phosphorylates Rad9 at S328. In this work we investigated the significance of this mechanism by overexpressing mutant TLK1B in which the inhibitory phosphorylation site was eliminated. Results and discussion These cells expressing TLK1B resistant to DNA damage showed constitutive phosphorylation of Rad9 S328 that occurred even in the presence of hydroxyurea (HU), and this resulted in a delayed checkpoint recovery. One possible explanation was that premature phosphorylation of Rad9 caused its dissociation from 9-1-1 at stalled replication forks, resulting in their collapse and prolonged activation of the S-phase checkpoint. We found that phosphorylation of Rad9 at S328 results in its dissociation from chromatin and redistribution to the cytoplasm. This results in double stranded breaks formation with concomitant activation of ATM and phosphorylation of H2AX. Furthermore, a Rad9 (S328D) phosphomimic mutant was exclusively localized to the cytoplasm and not the chromatin. Another Rad9 phosphomimic mutant (T355D), which is also a site phosphorylated by TLK1, localized normally. In cells expressing the mutant TLK1B treated with HU, Rad9 association with Hus1 and WRN was greatly reduced, suggesting again that its phosphorylation causes its premature release from stalled forks. Conclusions We propose that normally, the inactivation of TLK1B following replication arrest and genotoxic stress functions to allow the retention of 9-1-1 at the sites of damage or stalled forks. Following reactivation of TLK1B, whose synthesis is concomitantly induced by genotoxins, Rad9 is hyperphosphorylated at S328, resulting in its dissociation and inactivation of the checkpoint that occurs once repair is complete. Electronic supplementary material The online version of this article (doi:10.1186/s12867-016-0056-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sanket Awate
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130, USA.
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130, USA.
| |
Collapse
|
25
|
Yeh TH, Huang SY, Lan WY, Liaw GJ, Yu JY. Modulation of cell morphogenesis by tousled-like kinase in the Drosophila follicle cell. Dev Dyn 2015; 244:852-65. [PMID: 25981356 DOI: 10.1002/dvdy.24292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 04/30/2015] [Accepted: 05/07/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tousled-like kinase (Tlk) is a conserved serine/threonine kinase regulating DNA replication, chromatin assembly, and DNA repair. Previous studies have suggested that Tlk is involved in cell morphogenesis in vitro. In addition, tlk genetically interact with Rho1, which encodes a key regulator of the cytoskeleton. However, whether Tlk plays a physiological role in cell morphogenesis and cytoskeleton rearrangement remains unknown. RESULTS In tlk mutant follicle cells, area of the apical domain was reduced. The density of microtubules was increased in tlk mutant cells. The density of actin filaments was increased in the apical region and decreased in the basal region. Because area of the apical domain was reduced, we examined the levels of proteins located in the apical region by using immunofluorescence. The fluorescence intensities of two adherens junction proteins Armadillo (Arm) and DE-cadherin (DE-cad), atypical protein kinase C (aPKC), and Notch, were all increased in tlk mutant cells. The basolateral localized Discs large (Dlg) shifted apically in tlk mutant cells. CONCLUSIONS Increase of protein densities in the apical region might be resulted from disruption of the cytoskeleton and shrinkage of the apical domain. Together, these data suggest a novel role of Tlk in maintaining cell morphology, possibly through modulating the cytoskeleton.
Collapse
Affiliation(s)
- Tsung-Han Yeh
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Yu Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Wan-Yu Lan
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Gwo-Jen Liaw
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Jenn-Yah Yu
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
26
|
Takeishi Y, Iwaya-Omi R, Ohashi E, Tsurimoto T. Intramolecular Binding of the Rad9 C Terminus in the Checkpoint Clamp Rad9-Hus1-Rad1 Is Closely Linked with Its DNA Binding. J Biol Chem 2015; 290:19923-32. [PMID: 26088138 DOI: 10.1074/jbc.m115.669002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Indexed: 12/20/2022] Open
Abstract
The human checkpoint clamp Rad9-Hus1-Rad1 (9-1-1) is loaded onto chromatin by its loader complex, Rad17-RFC, following DNA damage. The 120-amino acid (aa) stretch of the Rad9 C terminus (C-tail) is unstructured and projects from the core ring structure (CRS). Recent studies showed that 9-1-1 and CRS bind DNA independently of Rad17-RFC. The DNA-binding affinity of mutant 9(ΔC)-1-1, which lacked the Rad9 C-tail, was much higher than that of wild-type 9-1-1, suggesting that 9-1-1 has intrinsic DNA binding activity that manifests in the absence of the C-tail. C-tail added in trans interacted with CRS and prevented it from binding to DNA. We narrowed down the amino acid sequence in the C-tail necessary for CRS binding to a 15-aa stretch harboring two conserved consecutive phenylalanine residues. We prepared 9-1-1 mutants containing the variant C-tail deficient for CRS binding, and we demonstrated that the mutant form restored DNA binding as efficiently as 9(ΔC)-1-1. Furthermore, we mapped the sequence necessary for TopBP1 binding within the same 15-aa stretch, demonstrating that TopBP1 and CRS share the same binding region in the C-tail. Indeed, we observed their competitive binding to the C-tail with purified proteins. The importance of interaction between 9-1-1 and TopBP1 for DNA damage signaling suggests that the competitive interactions of TopBP1 and CRS with the C-tail will be crucial for the activation mechanism.
Collapse
Affiliation(s)
- Yukimasa Takeishi
- From the Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Rie Iwaya-Omi
- From the Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Eiji Ohashi
- From the Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Toshiki Tsurimoto
- From the Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
27
|
Timiri Shanmugam PS, Dayton RD, Palaniyandi S, Abreo F, Caldito G, Klein RL, Sunavala-Dossabhoy G. Recombinant AAV9-TLK1B administration ameliorates fractionated radiation-induced xerostomia. Hum Gene Ther 2014; 24:604-12. [PMID: 23614651 DOI: 10.1089/hum.2012.235] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Salivary glands are highly susceptible to radiation, and patients with head and neck cancer treated with radiotherapy invariably suffer from its distressing side effect, salivary hypofunction. The reduction in saliva disrupts oral functions, and significantly impairs oral health. Previously, we demonstrated that adenoviral-mediated expression of Tousled-like kinase 1B (TLK1B) in rat submandibular glands preserves salivary function after single-dose ionizing radiation. To achieve long-term transgene expression for protection of salivary gland function against fractionated radiation, this study examines the usefulness of recombinant adeno-associated viral vector for TLK1B delivery. Lactated Ringers or AAV2/9 with either TLK1B or GFP expression cassette were retroductally delivered to rat submandibular salivary glands (10(11) vg/gland), and animals were exposed, or not, to 20 Gy in eight fractions of 2.5 Gy/day. AAV2/9 transduced predominantly the ductal cells, including the convoluted granular tubules of the submandibular glands. Transgene expression after virus delivery could be detected within 5 weeks, and stable gene expression was observed till the end of study. Pilocarpine-stimulated saliva output measured at 8 weeks after completion of radiation demonstrated >10-fold reduction in salivary flow in saline- and AAV2/9-GFP-treated animals compared with the respective nonirradiated groups (90.8% and 92.5% reduction in salivary flow, respectively). Importantly, there was no decrease in stimulated salivary output after irradiation in animals that were pretreated with AAV2/9-TLK1B (121.5% increase in salivary flow; p<0.01). Salivary gland histology was better preserved after irradiation in TLK1B-treated group, though not significantly, compared with control groups. Single preemptive delivery of AAV2/9-TLK1B averts salivary dysfunction resulting from fractionated radiation. Although AAV2/9 transduces mostly the ductal cells of the gland, their protection against radiation assists in preserving submandibular gland function. AAV2/9-TLK1B treatment could prove beneficial in attenuating xerostomia in patients with head and neck cancer undergoing radiotherapy.
Collapse
|
28
|
Yin X, Kim RH, Sun G, Miller JK, Li BD. Overexpression of Eukaryotic Initiation Factor 4E Is Correlated with Increased Risk for Systemic Dissemination in Node-Positive Breast Cancer Patients. J Am Coll Surg 2014; 218:663-71. [DOI: 10.1016/j.jamcollsurg.2013.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 12/13/2013] [Indexed: 10/25/2022]
|
29
|
Rath A, Hromas R, De Benedetti A. Fidelity of end joining in mammalian episomes and the impact of Metnase on joint processing. BMC Mol Biol 2014; 15:6. [PMID: 24655462 PMCID: PMC3998112 DOI: 10.1186/1471-2199-15-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 03/12/2014] [Indexed: 12/13/2022] Open
Abstract
Background Double Stranded Breaks (DSBs) are the most serious form of DNA damage and are repaired via homologous recombination repair (HRR) or non-homologous end joining (NHEJ). NHEJ predominates in mammalian cells at most stages of the cell cycle, and it is viewed as ‘error-prone’, although this notion has not been sufficiently challenged due to shortcomings of many current systems. Multi-copy episomes provide a large pool of genetic material where repair can be studied, as repaired plasmids can be back-cloned into bacteria and characterized for sequence alterations. Here, we used EBV-based episomes carrying 3 resistance marker genes in repair studies where a single DSB is generated with virally-encoded HO endonuclease cleaving rapidly at high efficiency for a brief time post-infection. We employed PCR and Southern blot to follow the kinetics of repair and formation of processing intermediates, and replica plating to screen for plasmids with altered joints resulting in loss of chloramphenicol resistance. Further, we employed this system to study the role of Metnase. Metnase is only found in humans and primates and is a key component of the NHEJ pathway, but its function is not fully characterized in intact cells. Results We found that repair of episomes by end-joining was highly accurate in 293 T cells that lack Metnase. Less than 10% of the rescued plasmids showed deletions. Instead, HEK293 cells (that do express Metnase) or 293 T transfected with Metnase revealed a large number of rescued plasmids with altered repaired joint, typically in the form of large deletions. Moreover, quantitative PCR and Southern blotting revealed less accurately repaired plasmids in Metnase expressing cells. Conclusions Our careful re-examination of fidelity of NHEJ repair in mammalian cells carrying a 3′ cohesive overhang at the ends revealed that the repair is efficient and highly accurate, and predominant over HRR. However, the background of the cells is important in establishing accuracy; with human cells perhaps surprisingly much more prone to generate deletions at the repaired junctions, if/when Metnase is abundantly expressed.
Collapse
Affiliation(s)
| | | | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA.
| |
Collapse
|
30
|
Garrote AM, Redondo P, Montoya G, Muñoz IG. Purification, crystallization and preliminary X-ray diffraction analysis of the kinase domain of human tousled-like kinase 2. Acta Crystallogr F Struct Biol Commun 2014; 70:354-7. [PMID: 24598926 PMCID: PMC3944701 DOI: 10.1107/s2053230x14002581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/04/2014] [Indexed: 11/10/2022] Open
Abstract
Tousled-like kinases (TLKs) are an evolutionarily conserved family of serine/threonine protein kinases involved in chromatin dynamics, including DNA replication and repair, transcription and chromosome segregation. The two members of the family reported in humans, namely TLK1 and TLK2, localize to the cell nucleus and are capable of forming homo- or hetero-oligomers by themselves. To characterize the role of TLK2, its C-terminal kinase domain was cloned and overexpressed in Escherichia coli followed by purification to homogeneity. Crystallization experiments in the presence of ATP-γ-S yielded crystals suitable for X-ray diffraction analysis belonging to two different space groups: tetragonal I4122 and cubic P213. The latter produced the best diffracting crystal (3.4 Å resolution using synchrotron radiation), with unit-cell parameters a = b = c = 126.05 Å, α = β = γ = 90°. The asymmetric unit contained one protein molecule, with a Matthews coefficient of 4.59 Å(3) Da(-1) and a solvent content of 73.23%.
Collapse
Affiliation(s)
- Ana M. Garrote
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Pilar Redondo
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Guillermo Montoya
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Structural Biology Group, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Inés G. Muñoz
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
31
|
Kelly R, Davey SK. Tousled-like kinase-dependent phosphorylation of Rad9 plays a role in cell cycle progression and G2/M checkpoint exit. PLoS One 2013; 8:e85859. [PMID: 24376897 PMCID: PMC3869942 DOI: 10.1371/journal.pone.0085859] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/06/2013] [Indexed: 11/23/2022] Open
Abstract
Genomic integrity is preserved by checkpoints, which act to delay cell cycle progression in the presence of DNA damage or replication stress. The heterotrimeric Rad9-Rad1-Hus1 (9-1-1) complex is a PCNA-like clamp that is loaded onto DNA at structures resulting from damage and is important for initiating and maintaining the checkpoint response. Rad9 possesses a C-terminal tail that is phosphorylated constitutively and in response to cell cycle position and DNA damage. Previous studies have identified tousled-like kinase 1 (TLK1) as a kinase that may modify Rad9. Here we show that Rad9 is phosphorylated in a TLK-dependent manner in vitro and in vivo, and that T355 within the C-terminal tail is the primary targeted residue. Phosphorylation of Rad9 at T355 is quickly reduced upon exposure to ionizing radiation before returning to baseline later in the damage response. We also show that TLK1 and Rad9 interact constitutively, and that this interaction is enhanced in chromatin-bound Rad9 at later stages of the damage response. Furthermore, we demonstrate via siRNA-mediated depletion that TLK1 is required for progression through S-phase in normally cycling cells, and that cells lacking TLK1 display a prolonged G2/M arrest upon exposure to ionizing radiation, a phenotype that is mimicked by over-expression of a Rad9-T355A mutant. Given that TLK1 has previously been shown to be transiently inactivated upon phosphorylation by Chk1 in response to DNA damage, we propose that TLK1 and Chk1 act in concert to modulate the phosphorylation status of Rad9, which in turn serves to regulate the DNA damage response.
Collapse
Affiliation(s)
- Ryan Kelly
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen’s University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Scott K. Davey
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen’s University, Kingston, Ontario, Canada
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
32
|
Ronald S, Awate S, Rath A, Carroll J, Galiano F, Dwyer D, Kleiner-Hancock H, Mathis JM, Vigod S, De Benedetti A. Phenothiazine Inhibitors of TLKs Affect Double-Strand Break Repair and DNA Damage Response Recovery and Potentiate Tumor Killing with Radiomimetic Therapy. Genes Cancer 2013; 4:39-53. [PMID: 23946870 DOI: 10.1177/1947601913479020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 01/25/2013] [Indexed: 11/16/2022] Open
Abstract
The Tousled-like kinases (TLKs) are involved in chromatin assembly, DNA repair, and transcription. Two TLK genes exist in humans, and their expression is often dysregulated in cancer. TLKs phosphorylate Asf1 and Rad9, regulating double-strand break (DSB) repair and the DNA damage response (DDR). TLKs maintain genomic stability and are important therapeutic intervention targets. We identified specific inhibitors of TLKs from several compound libraries, some of which belong to the family of phenothiazine antipsychotics. The inhibitors prevented the TLK-mediated phosphorylation of Rad9(S328) and impaired checkpoint recovery and DSB repair. The inhibitor thioridazine (THD) potentiated tumor killing with chemotherapy and also had activity alone. Staining for γ-H2AX revealed few positive cells in untreated tumors, but large numbers in mice treated with low doxorubicin or THD alone, possibly the result of the accumulation of DSBs that are not promptly repaired as they may occur in the harsh tumor growth environment.
Collapse
Affiliation(s)
- Sharon Ronald
- Department of Biochemistry and Molecular Biology and the Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Dillon PJ, Gregory SM, Tamburro K, Sanders MK, Johnson GL, Raab-Traub N, Dittmer DP, Damania B. Tousled-like kinases modulate reactivation of gammaherpesviruses from latency. Cell Host Microbe 2013; 13:204-14. [PMID: 23414760 DOI: 10.1016/j.chom.2012.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 10/08/2012] [Accepted: 12/20/2012] [Indexed: 11/30/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is linked to human malignancies. The majority of tumor cells harbor latent virus, and a small percentage undergo spontaneous lytic replication. Both latency and lytic replication are important for viral pathogenesis and spread, but the cellular players involved in the switch between the two viral life-cycle phases are not clearly understood. We conducted a small interfering RNA (siRNA) screen targeting the cellular kinome and identified Tousled-like kinases (TLKs) as cellular kinases that control KSHV reactivation from latency. Upon treatment of latent KSHV-infected cells with siRNAs targeting TLKs, we saw robust viral reactivation. Knockdown of TLKs in latent KSHV-infected cells induced expression of viral lytic proteins and production of infectious virus. TLKs were also found to play a role in regulating reactivation from latency of another related oncogenic gammaherpesvirus, Epstein-Barr virus. Our results establish the TLKs as cellular repressors of gammaherpesvirus reactivation.
Collapse
Affiliation(s)
- Patrick J Dillon
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
De Benedetti A. The Tousled-Like Kinases as Guardians of Genome Integrity. ISRN MOLECULAR BIOLOGY 2012; 2012:627596. [PMID: 23869254 PMCID: PMC3712517 DOI: 10.5402/2012/627596] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Tousled-like kinases (TLKs) function in processes of chromatin assembly, including replication, transcription, repair, and chromosome segregation. TLKs interact specifically (and phosphorylate) with the chromatin assembly factor Asf1, a histone H3-H4 chaperone, histone H3 itself at Ser10, and also Rad9, a key protein involved in DNA repair and cell cycle signaling following DNA damage. These interactions are believed to be responsible for the action of TLKs in double-stranded break repair and radioprotection and also in the propagation of the DNA damage response. Hence, I propose that TLKs play key roles in maintenance of genome integrity in many organisms of both kingdoms. In this paper, I highlight key issues of the known roles of these proteins, particularly in the context of DNA repair (IR and UV), their possible relevance to genome integrity and cancer development, and as possible targets for intervention in cancer management.
Collapse
Affiliation(s)
- Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| |
Collapse
|
35
|
Scher R, Garcia JBF, Pascoalino B, Schenkman S, Cruz AK. Characterization of anti-silencing factor 1 in Leishmania major. Mem Inst Oswaldo Cruz 2012; 107:377-86. [DOI: 10.1590/s0074-02762012000300013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 01/11/2012] [Indexed: 02/19/2023] Open
Affiliation(s)
- Ricardo Scher
- Universidade de São Paulo, Brasil; Universidade Federal de Sergipe, Brasil
| | | | | | | | | |
Collapse
|
36
|
Ronald S, Sunavala-Dossabhoy G, Adams L, Williams B, De Benedetti A. The expression of Tousled kinases in CaP cell lines and its relation to radiation response and DSB repair. Prostate 2011; 71:1367-73. [PMID: 21647934 DOI: 10.1002/pros.21358] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 01/14/2011] [Indexed: 12/22/2022]
Abstract
BACKGROUND The Tousled-like kinases (TLKs) function in processes of chromatin assembly, including replication, transcription, repair, and chromosome segregation. TLK1/1B interacts specifically with the chromatin assembly factor Asf1, a histone H3-H4 chaperone, and with Rad9, a protein involved in DNA repair, and these interactions are believed to be responsible for the action of TLKs in double-strand break repair and radioprotection. METHODS Western blotting and RT-PCR were used to analyze the expression of TLK1, TLK1B, and TLK2 in a panel of prostate cancer (CaP) cell lines. The pattern of radiotolerance in the cell lines was analyzed in parallel. DU145 and PC-3 cells were also probed with assays utilizing transfected plasmids that could be cleaved in vivo with adeno-expressed HO nuclease to assess the potential contribution of TLK1/1B in DSB repair. RESULTS This is the first report of TLKs' expression in a panel of CaP cell lines and their relationship to radioresistance. Furthermore, expression of TLK1B in non-expressing PC-3 cells rendered them highly resistant to radiation, and conversely, knockdown to TLK1/1B in expressing DU145 reduced their radiotolerance. CONCLUSIONS TLKs appear to be intimately linked to the pattern of resistance to DNA damage, and specifically DSBs, a finding that was not reported before for any cell lines, and certainly not systematically for human prostate cell lines.
Collapse
Affiliation(s)
- Sharon Ronald
- Department of Biochemistry and Molecular Biology and the Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | | | | | | | | |
Collapse
|
37
|
Kanikarla-Marie P, Ronald S, De Benedetti A. Nucleosome resection at a double-strand break during Non-Homologous Ends Joining in mammalian cells - implications from repressive chromatin organization and the role of ARTEMIS. BMC Res Notes 2011; 4:13. [PMID: 21255428 PMCID: PMC3035584 DOI: 10.1186/1756-0500-4-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 01/21/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The S. cerevisiae mating type switch model of double-strand break (DSB) repair, utilizing the HO endonuclease, is one of the best studied systems for both Homologous Recombination Repair (HRR) and direct ends-joining repair (Non-Homologous Ends Joining - NHEJ). We have recently transposed that system to a mammalian cell culture model taking advantage of an adenovirus expressing HO and an integrated genomic target. This made it possible to compare directly the mechanism of repair between yeast and mammalian cells for the same type of induced DSB. Studies of DSB repair have emphasized commonality of features, proteins and machineries between organisms, and differences when conservation is not found. Two proteins that stand out that differ between yeast and mammalian cells are DNA-PK, a protein kinase that is activated by the presence of DSBs, and Artemis, a nuclease whose activity is modulated by DNA-PK and ATM. In this report we describe how these two proteins may be involved in a specific pattern of ends-processing at the DSB, particularly in the context of heterochromatin. FINDINGS We previously published that the repair of the HO-induced DSB was generally accurate and occurred by simple rejoining of the cohesive 3'-overhangs generated by HO. During continuous passage of those cells in the absence of puromycin selection, the locus appears to have become more heterochromatic and silenced by displaying several features. 1) The site had become less accessible to cleavage by the HO endonuclease; 2) the expression of the puro mRNA, which confers resistance to puromycin, had become reduced; 3) occupancy of nucleosomes at the site (ChIP for histone H3) was increased, an indicator for more condensed chromatin. After reselection of these cells by addition of puromycin, many of these features were reversed. However, even the reselected cells were not identical in the pattern of cleavage and repair as the cells when originally created. Specifically, the pattern of repair revealed discrete deletions at the DSB that indicated unit losses of nucleosomes (or other protein complexes) before religation, represented by a ladder of PCR products reminiscent of an internucleosomal cleavage that is typically observed during apoptosis. This pattern of cleavage suggested to us that perhaps, Artemis, a protein that is believed to generate the internucleosomal fragments during apoptosis and in DSB repair, was involved in that specific pattern of ends-processing. Preliminary evidence indicates that this may be the case, since knock-down of Artemis with siRNA eliminated the laddering pattern and revealed instead an extensive exonucleolytic processing of the ends before religation. CONCLUSIONS e have generated a system in mammalian cells where the absence of positive selection resulted in chromatin remodeling at the target locus that recapitulates many of the features of the mating-type switching system in yeast. Specifically, just as for yeast HML and HMR, the locus had become transcriptionally repressed; accessibility to cleavage by the HO endonuclease was reduced; and processing of the ends was drastically changed. The switch was from high-fidelity religation of the cohesive ends, to a pattern of release of internucleosomal fragments, perhaps in search of micro-homology stretches for ligation. This is consistent with reports that the involvement of ATM, DNA-PK and Artemis in DSB repair is largely focused to heterochromatic regions, and not required for the majority of IR-induced DSB repair foci in euchromatin.
Collapse
Affiliation(s)
- Preeti Kanikarla-Marie
- Department of Biochemistry and Molecular Biology and the Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| | | | | |
Collapse
|
38
|
Palaniyandi S, Odaka Y, Green W, Abreo F, Caldito G, Benedetti AD, Sunavala-Dossabhoy G. Adenoviral delivery of Tousled kinase for the protection of salivary glands against ionizing radiation damage. Gene Ther 2010; 18:275-82. [DOI: 10.1038/gt.2010.142] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
39
|
De Benedetti A. Tousled kinase TLK1B mediates chromatin assembly in conjunction with Asf1 regardless of its kinase activity. BMC Res Notes 2010; 3:68. [PMID: 20222959 PMCID: PMC2845150 DOI: 10.1186/1756-0500-3-68] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 03/11/2010] [Indexed: 11/12/2022] Open
Abstract
Background The Tousled Like Kinases (TLKs) are involved in chromatin dynamics, including DNA replication and repair, transcription, and chromosome segregation. Indeed, the first two TLK1 substrates were identified as the histone H3 and Asf1 (a histone H3/H4 chaperone), which immediately suggested a function in chromatin remodeling. However, despite the straightforward assumption that TLK1 acts simply by phosphorylating its substrates and hence modifying their activity, TLK1 also acts as a chaperone. In fact, a kinase-dead (KD) mutant of TLK1B is functional in stimulating chromatin assembly in vitro. However, subtle effects of Asf1 phosphorylation are more difficult to probe in chromatin assembly assays. Not until very recently was the Asf1 site phosphorylated by TLK1 identified. This has allowed for probing directly the functionality of a site-directed mutant of Asf1 in chromatin assembly assays. Findings Addition of either wt or non-phosphorylatable mutant Asf1 to nuclear extract stimulates chromatin assembly on a plasmid. Similarly, TLK1B-KD stimulates chromatin assembly and it synergizes in reactions with supplemental Asf1 (wt or non-phosphorylatable mutant). Conclusions Although the actual function of TLKs as mediators of Asf1 activity cannot be easily studied in vivo, particularly since in mammalian cells there are two TLK genes and two Asf1 genes, we were able to study specifically the stimulation of chromatin assembly in vitro. In such assays, clearly the TLK1 kinase activity was not critical, as neither a non-phosphorylatable Asf1 nor use of the TLK1B-KD impaired the stimulation of nucleosome formation.
Collapse
Affiliation(s)
- Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology and the Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| |
Collapse
|