1
|
Bukhnikashvili L. Overlaps Between CDS Regions of Protein-Coding Genes in the Human Genome: A Case Study on the NR1D1-THRA Gene Pair. J Mol Evol 2023; 91:963-975. [PMID: 38006429 DOI: 10.1007/s00239-023-10147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/12/2023] [Indexed: 11/27/2023]
Abstract
For several decades, it has been known that a substantial number of genes within human DNA exhibit overlap; however, the biological and evolutionary significance of these overlaps remain poorly understood. This study focused on investigating specific instances of overlap where the overlapping DNA region encompasses the coding DNA sequences (CDSs) of protein-coding genes. The results revealed that proteins encoded by overlapping CDSs exhibit greater disorder than those from nonoverlapping CDSs. Additionally, these DNA regions were identified as GC-rich. This could be partially attributed to the absence of stop codons from two distinct reading frames rather than one. Furthermore, these regions were found to harbour fewer single-nucleotide polymorphism (SNP) sites, possibly due to constraints arising from the overlapping state where mutations could affect two genes simultaneously.While elucidating these properties, the NR1D1-THRA gene pair emerged as an exceptional case with highly structured proteins and a distinctly conserved sequence across eutherian mammals. Both NR1D1 and THRA are nuclear receptors lacking a ligand-binding domain at their C-terminus, which is the region where these gene pairs overlap. The NR1D1 gene is involved in the regulation of circadian rhythm, while the THRA gene encodes a thyroid hormone receptor, and both play crucial roles in various physiological processes. This study suggests that, in addition to their well-established functions, the specifically overlapping CDS regions of these genes may encode protein segments with additional, yet undiscovered, biological roles.
Collapse
|
2
|
Hönes GS, Härting N, Mittag J, Kaiser FJ. TRα2—An Untuned Second Fiddle or Fine-Tuning Thyroid Hormone Action? Int J Mol Sci 2022; 23:ijms23136998. [PMID: 35806002 PMCID: PMC9266318 DOI: 10.3390/ijms23136998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Thyroid hormones (THs) control a wide range of physiological functions essential for metabolism, growth, and differentiation. On a molecular level, TH action is exerted by nuclear receptors (TRs), which function as ligand-dependent transcription factors. Among several TR isoforms, the function of TRα2 remains poorly understood as it is a splice variant of TRα with an altered C-terminus that is unable to bind T3. This review highlights the molecular characteristics of TRα2, proposed mechanisms that regulate alternative splicing and indications pointing towards an antagonistic function of this TR isoform in vitro and in vivo. Moreover, remaining knowledge gaps and major challenges that complicate TRα2 characterization, as well as future strategies to fully uncover its physiological relevance, are discussed.
Collapse
Affiliation(s)
- Georg Sebastian Hönes
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
- Correspondence:
| | - Nina Härting
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany; (N.H.); (F.J.K.)
| | - Jens Mittag
- Institute for Endocrinology and Diabetes-Molecular Endocrinology, Center of Brain Behavior and Metabolism CBBM, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany;
| | - Frank J. Kaiser
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany; (N.H.); (F.J.K.)
| |
Collapse
|
3
|
Abstract
Modern genome-scale methods that identify new genes, such as proteogenomics and ribosome profiling, have revealed, to the surprise of many, that overlap in genes, open reading frames and even coding sequences is widespread and functionally integrated into prokaryotic, eukaryotic and viral genomes. In parallel, the constraints that overlapping regions place on genome sequences and their evolution can be harnessed in bioengineering to build more robust synthetic strains and constructs. With a focus on overlapping protein-coding and RNA-coding genes, this Review examines their discovery, topology and biogenesis in the context of their genome biology. We highlight exciting new uses for sequence overlap to control translation, compress synthetic genetic constructs, and protect against mutation.
Collapse
|
4
|
Adlanmerini M, Nguyen HC, Krusen BM, Teng CW, Geisler CE, Peed LC, Carpenter BJ, Hayes MR, Lazar MA. Hypothalamic REV-ERB nuclear receptors control diurnal food intake and leptin sensitivity in diet-induced obese mice. J Clin Invest 2021; 131:140424. [PMID: 33021965 DOI: 10.1172/jci140424] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Obesity occurs when energy expenditure is outweighed by energy intake. Tuberal hypothalamic nuclei, including the arcuate nucleus (ARC), ventromedial nucleus (VMH), and dorsomedial nucleus (DMH), control food intake and energy expenditure. Here we report that, in contrast with females, male mice lacking circadian nuclear receptors REV-ERBα and -β in the tuberal hypothalamus (HDKO mice) gained excessive weight on an obesogenic high-fat diet due to both decreased energy expenditure and increased food intake during the light phase. Moreover, rebound food intake after fasting was markedly increased in HDKO mice. Integrative transcriptomic and cistromic analyses revealed that such disruption in feeding behavior was due to perturbed REV-ERB-dependent leptin signaling in the ARC. Indeed, in vivo leptin sensitivity was impaired in HDKO mice on an obesogenic diet in a diurnal manner. Thus, REV-ERBs play a crucial role in hypothalamic control of food intake and diurnal leptin sensitivity in diet-induced obesity.
Collapse
Affiliation(s)
- Marine Adlanmerini
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| | - Hoang Cb Nguyen
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| | - Brianna M Krusen
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| | - Clare W Teng
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| | - Caroline E Geisler
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lindsey C Peed
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| | - Bryce J Carpenter
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| | - Matthew R Hayes
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine.,Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| |
Collapse
|
5
|
Romero-Barrios N, Legascue MF, Benhamed M, Ariel F, Crespi M. Splicing regulation by long noncoding RNAs. Nucleic Acids Res 2018; 46:2169-2184. [PMID: 29425321 PMCID: PMC5861421 DOI: 10.1093/nar/gky095] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/05/2018] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
Massive high-throughput sequencing techniques allowed the identification of thousands of noncoding RNAs (ncRNAs) and a plethora of different mRNA processing events occurring in higher organisms. Long ncRNAs can act directly as long transcripts or can be processed into active small si/miRNAs. They can modulate mRNA cleavage, translational repression or the epigenetic landscape of their target genes. Recently, certain long ncRNAs have been shown to play a crucial role in the regulation of alternative splicing in response to several stimuli or during disease. In this review, we focus on recent discoveries linking gene regulation by alternative splicing and its modulation by long and small ncRNAs.
Collapse
Affiliation(s)
- Natali Romero-Barrios
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Universities Paris-Sud, Evry and Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
| | - Maria Florencia Legascue
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000 Santa Fe, Argentina
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Universities Paris-Sud, Evry and Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000 Santa Fe, Argentina
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Universities Paris-Sud, Evry and Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
| |
Collapse
|
6
|
Ong OTW, Young LJ, Old JM. Evaluation of reference genes for gene expression in red-tailed phascogale ( Phascogale calura) liver, lung, small intestine and spleen. PeerJ 2016; 4:e2552. [PMID: 27761339 PMCID: PMC5068414 DOI: 10.7717/peerj.2552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/12/2016] [Indexed: 11/20/2022] Open
Abstract
Background Reference genes serve an important role as an endogenous control/standard for data normalisation in gene expression studies. Although reference genes have recently been suggested for marsupials, independent analysis of reference genes on different immune tissues is yet to be tested. Therefore, an assessment of reference genes is needed for the selection of stable, expressed genes across different marsupial tissues. Methods The study was conducted on red-tailed phascogales (Phascogale calura) using five juvenile and five adult males. The stability of five reference genes (glyceraldehyde-3-phosphate dehydrogenase, GAPDH; β-actin, ACTB; 18S rRNA, 18S; 28S rRNA, 28S; and ribosomal protein L13A, RPL13A) was investigated using SYBR Green and analysed with the geNorm application available in qBasePLUS software. Results Gene stability for juvenile and adult tissue samples combined show that GAPDH was most stable in liver and lung tissue, and 18S in small intestine and spleen. While all reference genes were suitable for small intestine and spleen tissues, all reference genes except 28S were stable for lung and only 18S and 28S were stable for liver tissue. Separating the two age groups, we found that two different reference genes were considered stable in juveniles (ACTB and GAPDH) and adults (18S and 28S), and RPL13A was not stable for juvenile small intestine tissue. Except for 28S, all reference genes were stable in juvenile and adult lungs, and all five reference genes were stable in spleen tissue. Discussion Based on expression stability, ACTB and GAPDH are suitable for all tissues when studying the expression of marsupials in two age groups, except for adult liver tissues. The expression stability between juvenile and adult liver tissue was most unstable, as the stable reference genes for juveniles and adults were different. Juvenile and adult lung, small intestine and spleen share similar stable reference genes, except for small intestine tissues where all reference genes were stable in adults but RPL13A was not suitable in juveniles.
Collapse
Affiliation(s)
- Oselyne T W Ong
- School of Science and Health, Western Sydney University , Richmond , New South Wales , Australia
| | - Lauren J Young
- School of Science and Health, Western Sydney University , Richmond , New South Wales , Australia
| | - Julie M Old
- School of Science and Health, Western Sydney University , Richmond , New South Wales , Australia
| |
Collapse
|
7
|
Munroe SH, Morales CH, Duyck TH, Waters PD. Evolution of the Antisense Overlap between Genes for Thyroid Hormone Receptor and Rev-erbα and Characterization of an Exonic G-Rich Element That Regulates Splicing of TRα2 mRNA. PLoS One 2015; 10:e0137893. [PMID: 26368571 PMCID: PMC4569393 DOI: 10.1371/journal.pone.0137893] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/24/2015] [Indexed: 11/18/2022] Open
Abstract
The α-thyroid hormone receptor gene (TRα) codes for two functionally distinct proteins: TRα1, the α-thyroid hormone receptor; and TRα2, a non-hormone-binding variant. The final exon of TRα2 mRNA overlaps the 3' end of Rev-erbα mRNA, which encodes another nuclear receptor on the opposite strand of DNA. To understand the evolution of this antisense overlap, we sequenced these genes and mRNAs in the platypus Orthorhynchus anatinus. Despite its strong homology with other mammals, the platypus TRα/Rev-erbα locus lacks elements essential for expression of TRα2. Comparative analysis suggests that alternative splicing of TRα2 mRNA expression evolved in a stepwise fashion before the divergence of eutherian and marsupial mammals. A short G-rich element (G30) located downstream of the alternative 3'splice site of TRα2 mRNA and antisense to the 3'UTR of Rev-erbα plays an important role in regulating TRα2 splicing. G30 is tightly conserved in eutherian mammals, but is absent in marsupials and monotremes. Systematic deletions and substitutions within G30 have dramatically different effects on TRα2 splicing, leading to either its inhibition or its enhancement. Mutations that disrupt one or more clusters of G residues enhance splicing two- to three-fold. These results suggest the G30 sequence can adopt a highly structured conformation, possibly a G-quadruplex, and that it is part of a complex splicing regulatory element which exerts both positive and negative effects on TRα2 expression. Since mutations that strongly enhance splicing in vivo have no effect on splicing in vitro, it is likely that the regulatory role of G30 is mediated through linkage of transcription and splicing.
Collapse
Affiliation(s)
- Stephen H. Munroe
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
- * E-mail:
| | - Christopher H. Morales
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Tessa H. Duyck
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Paul D. Waters
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Australia, Sydney, Australia
| |
Collapse
|