1
|
Alli N, Lou-Hing A, Bolt EL, He L. POLD3 as Controller of Replicative DNA Repair. Int J Mol Sci 2024; 25:12417. [PMID: 39596481 PMCID: PMC11595029 DOI: 10.3390/ijms252212417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/01/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Multiple modes of DNA repair need DNA synthesis by DNA polymerase enzymes. The eukaryotic B-family DNA polymerase complexes delta (Polδ) and zeta (Polζ) help to repair DNA strand breaks when primed by homologous recombination or single-strand DNA annealing. DNA synthesis by Polδ and Polζ is mutagenic, but is needed for the survival of cells in the presence of DNA strand breaks. The POLD3 subunit of Polδ and Polζ is at the heart of DNA repair by recombination, by modulating polymerase functions and interacting with other DNA repair proteins. We provide the background to POLD3 discovery, investigate its structure, as well as function in cells. We highlight unexplored structural aspects of POLD3 and new biochemical data that will help to understand the pivotal role of POLD3 in DNA repair and mutagenesis in eukaryotes, and its impact on human health.
Collapse
Affiliation(s)
- Nabilah Alli
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Anna Lou-Hing
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Edward L. Bolt
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Liu He
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| |
Collapse
|
2
|
Tian C, Zhang Q, Jia J, Zhou J, Zhang Z, Karri S, Jiang J, Dickinson Q, Yao Y, Tang X, Huang Y, Guo T, He Z, Liu Z, Gao Y, Yang X, Wu Y, Chan KM, Zhang D, Han J, Yu C, Gan H. DNA polymerase delta governs parental histone transfer to DNA replication lagging strand. Proc Natl Acad Sci U S A 2024; 121:e2400610121. [PMID: 38713623 PMCID: PMC11098083 DOI: 10.1073/pnas.2400610121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/01/2024] [Indexed: 05/09/2024] Open
Abstract
Chromatin replication is intricately intertwined with the recycling of parental histones to the newly duplicated DNA strands for faithful genetic and epigenetic inheritance. The transfer of parental histones occurs through two distinct pathways: leading strand deposition, mediated by the DNA polymerase ε subunits Dpb3/Dpb4, and lagging strand deposition, facilitated by the MCM helicase subunit Mcm2. However, the mechanism of the facilitation of Mcm2 transferring parental histones to the lagging strand while moving along the leading strand remains unclear. Here, we show that the deletion of Pol32, a nonessential subunit of major lagging-strand DNA polymerase δ, results in a predominant transfer of parental histone H3-H4 to the leading strand during replication. Biochemical analyses further demonstrate that Pol32 can bind histone H3-H4 both in vivo and in vitro. The interaction of Pol32 with parental histone H3-H4 is disrupted through the mutation of the histone H3-H4 binding domain within Mcm2. Our findings identify the DNA polymerase δ subunit Pol32 as a critical histone chaperone downstream of Mcm2, mediating the transfer of parental histones to the lagging strand during DNA replication.
Collapse
Affiliation(s)
- Congcong Tian
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Qin Zhang
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province610041, China
| | - Jing Jia
- Hormel Institute, University of Minnesota, Austin, MN55912
| | - Jiaqi Zhou
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Ziwei Zhang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | | | - Jiuhang Jiang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong510642, China
| | | | - Yuan Yao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Xiaorong Tang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China
| | - Yuxin Huang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong510642, China
| | - Ting Guo
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- School of Life Sciences, Henan University, Kaifeng475004, China
- Shenzhen Research Institute of Henan University, Shenzhen518000, China
| | - Ziwei He
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen518172, China
| | - Zheng Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen518172, China
| | - Yuan Gao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Xinran Yang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| | - Yuchun Wu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
- Pathology and Pathophysiology Basic Medical School, Qingdao University, Qindao266000, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administration Region, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen518172, China
| | - Daoqin Zhang
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA94305
| | - Junhong Han
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province610041, China
| | - Chuanhe Yu
- Hormel Institute, University of Minnesota, Austin, MN55912
| | - Haiyun Gan
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, China
| |
Collapse
|
3
|
Teng ZW, Wu HZ, Ye XH, Fang Q, Zhou HX, Ye GY. An endoparasitoid uses its egg surface proteins to regulate its host immune response. INSECT SCIENCE 2022; 29:1030-1046. [PMID: 34687499 DOI: 10.1111/1744-7917.12978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
With proteomic analysis, we identified 379 egg surface proteins from an endoparasitoid, Cotesia chilonis. Proteins containing conserved enzymatic domains constitute a large proportion of egg surface components. Some proteins, such as superoxidase dismutase, homolog of C. rubecula 32-kDa protein, and immunoevasive protein-2A, are classical parasitism factors that have known functions in host immunity regulation. Melanization assays revealed that a novel egg surface protein, C. chilonis egg surface serpin domain-containing protein had the same function as a C. chilonis venom serpin, as both suppressed host melanization in a dose-dependent manner. C. chilonis egg surface serpin domain-containing protein is mainly transcribed in C. chilonis oocytes with follicular cells, and it is located on both the anterior and posterior sides of the mature egg surface. Additionally, we used LC-MS/MS to identify 586 binding proteins sourced from C. suppressalis plasma located on the eggshell surface of C. chilonis, which included some immunity-related proteins. These results not only indicate that C. chilonis uses its egg surface proteins to reduce the immune response of its host but also imply that endoparasitoid egg surface proteins might be a new parasitism factor involved in host immune regulation.
Collapse
Affiliation(s)
- Zi-Wen Teng
- China-Australia Cooperation Base of Crop Health and Invasive Species, China-Australia Joint Institute of Agricultural and Environmental Health, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hui-Zi Wu
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xin-Hai Ye
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hong-Xu Zhou
- China-Australia Cooperation Base of Crop Health and Invasive Species, China-Australia Joint Institute of Agricultural and Environmental Health, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Ji J, Tang X, Hu W, Maggert KA, Rong YS. The processivity factor Pol32 mediates nuclear localization of DNA polymerase delta and prevents chromosomal fragile site formation in Drosophila development. PLoS Genet 2019; 15:e1008169. [PMID: 31100062 PMCID: PMC6542543 DOI: 10.1371/journal.pgen.1008169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/30/2019] [Accepted: 04/30/2019] [Indexed: 12/29/2022] Open
Abstract
The Pol32 protein is one of the universal subunits of DNA polymerase δ (Pol δ), which is responsible for genome replication in eukaryotic cells. Although the role of Pol32 in DNA repair has been well-characterized, its exact function in genome replication remains obscure as studies in single cell systems have not established an essential role for Pol32 in the process. Here we characterize Pol32 in the context of Drosophila melanogaster development. In the rapidly dividing embryonic cells, loss of Pol32 halts genome replication as it specifically disrupts Pol δ localization to the nucleus. This function of Pol32 in facilitating the nuclear import of Pol δ would be similar to that of accessory subunits of DNA polymerases from mammalian Herpes viruses. In post-embryonic cells, loss of Pol32 reveals mitotic fragile sites in the Drosophila genome, a defect more consistent with Pol32’s role as a polymerase processivity factor. Interestingly, these fragile sites do not favor repetitive sequences in heterochromatin, with the rDNA locus being a striking exception. Our study uncovers a possibly universal function for DNA polymerase ancillary factors and establishes a powerful system for the study of chromosomal fragile sites in a non-mammalian organism. Cancer etiological studies suggest that the majority of pathological mutations occurred under near normal DNA replication conditions, emphasizing the importance of understanding replication regulation under non-lethal conditions. To gain such a better understanding, we investigated the function of Pol32, a conserved ancillary subunit of the essential DNA polymerase Delta complex, through the development of the fruit fly Drosophila. We uncovered a previously unappreciated function of Pol32 in regulating the nuclear import of the polymerase complex, and this function is developmentally regulated. By utilizing mutations in pol32 and other replication factors, we have started to define basic features of Chromosome Fragile Sites (CFS) in Drosophila somatic cells. CFS is a major source of genome instability associated with replication stresses, and has been an important topic of cancer biology. We discovered that CFS formation does not favor genomic regions with repetitive sequences except the highly transcribed locus encoding ribosomal RNA. Our work lays the groundwork for future studies using Drosophila as an alternative system to uncover the most fundamental features of CFS.
Collapse
Affiliation(s)
- Jingyun Ji
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaona Tang
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Wen Hu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Keith A. Maggert
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States of America
| | - Yikang S. Rong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
5
|
Tritto P, Palumbo V, Micale L, Marzulli M, Bozzetti MP, Specchia V, Palumbo G, Pimpinelli S, Berloco M. Loss of Pol32 in Drosophila melanogaster causes chromosome instability and suppresses variegation. PLoS One 2015; 10:e0120859. [PMID: 25826374 PMCID: PMC4380491 DOI: 10.1371/journal.pone.0120859] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 01/27/2015] [Indexed: 11/29/2022] Open
Abstract
Pol32 is an accessory subunit of the replicative DNA Polymerase δ and of the translesion Polymerase ζ. Pol32 is involved in DNA replication, recombination and repair. Pol32’s participation in high- and low-fidelity processes, together with the phenotypes arising from its disruption, imply multiple roles for this subunit within eukaryotic cells, not all of which have been fully elucidated. Using pol32 null mutants and two partial loss-of-function alleles pol32rd1 and pol32rds in Drosophila melanogaster, we show that Pol32 plays an essential role in promoting genome stability. Pol32 is essential to ensure DNA replication in early embryogenesis and it participates in the repair of mitotic chromosome breakage. In addition we found that pol32 mutantssuppress position effect variegation, suggesting a role for Pol32 in chromatin architecture.
Collapse
Affiliation(s)
- Patrizia Tritto
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy
| | - Valeria Palumbo
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Università degli Studi di Roma “La Sapienza”, 00185 Roma, Italy
| | - Lucia Micale
- IRCCS Casa Sollievo Della Sofferenza Hospital, 71013 San Giovanni Rotondo, Italy
| | - Marco Marzulli
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, United States of America
| | - Maria Pia Bozzetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy
| | - Valeria Specchia
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy
| | - Gioacchino Palumbo
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy
| | - Sergio Pimpinelli
- Istituto Pasteur—Fondazione Cenci Bolognetti and Dipartimento di Biologia e Biotecnologie “C. Darwin”, Università degli Studi di Roma “La Sapienza”, 00185 Roma, Italy
| | - Maria Berloco
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy
- * E-mail:
| |
Collapse
|
6
|
Waisertreiger ISR, Liston VG, Menezes MR, Kim HM, Lobachev KS, Stepchenkova EI, Tahirov TH, Rogozin IB, Pavlov YI. Modulation of mutagenesis in eukaryotes by DNA replication fork dynamics and quality of nucleotide pools. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:699-724. [PMID: 23055184 PMCID: PMC3893020 DOI: 10.1002/em.21735] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 06/01/2023]
Abstract
The rate of mutations in eukaryotes depends on a plethora of factors and is not immediately derived from the fidelity of DNA polymerases (Pols). Replication of chromosomes containing the anti-parallel strands of duplex DNA occurs through the copying of leading and lagging strand templates by a trio of Pols α, δ and ϵ, with the assistance of Pol ζ and Y-family Pols at difficult DNA template structures or sites of DNA damage. The parameters of the synthesis at a given location are dictated by the quality and quantity of nucleotides in the pools, replication fork architecture, transcription status, regulation of Pol switches, and structure of chromatin. The result of these transactions is a subject of survey and editing by DNA repair.
Collapse
Affiliation(s)
- Irina S.-R. Waisertreiger
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Victoria G. Liston
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Miriam R. Menezes
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Hyun-Min Kim
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A
| | - Kirill S. Lobachev
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A
| | - Elena I. Stepchenkova
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
- Saint Petersburg Branch of Vavilov Institute of General Genetics, Universitetskaya emb. 7/9, St Petersburg, 199034, Russia
- Department of Genetics, Saint Petersburg University, Universitetskaya emb. 7/9, St Petersburg, 199034, Russia
| | - Tahir H. Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Igor B. Rogozin
- National Center for Biotechnology Information NLM, National Institutes of Health, Bethesda, MD 20894, U.S.A
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia
| | - Youri. I. Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
- Department of Genetics, Saint Petersburg University, Universitetskaya emb. 7/9, St Petersburg, 199034, Russia
| |
Collapse
|
7
|
Kane DP, Shusterman M, Rong Y, McVey M. Competition between replicative and translesion polymerases during homologous recombination repair in Drosophila. PLoS Genet 2012; 8:e1002659. [PMID: 22532806 PMCID: PMC3330096 DOI: 10.1371/journal.pgen.1002659] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 03/04/2012] [Indexed: 12/04/2022] Open
Abstract
In metazoans, the mechanism by which DNA is synthesized during homologous recombination repair of double-strand breaks is poorly understood. Specifically, the identities of the polymerase(s) that carry out repair synthesis and how they are recruited to repair sites are unclear. Here, we have investigated the roles of several different polymerases during homologous recombination repair in Drosophila melanogaster. Using a gap repair assay, we found that homologous recombination is impaired in Drosophila lacking DNA polymerase zeta and, to a lesser extent, polymerase eta. In addition, the Pol32 protein, part of the polymerase delta complex, is needed for repair requiring extensive synthesis. Loss of Rev1, which interacts with multiple translesion polymerases, results in increased synthesis during gap repair. Together, our findings support a model in which translesion polymerases and the polymerase delta complex compete during homologous recombination repair. In addition, they establish Rev1 as a crucial factor that regulates the extent of repair synthesis. DNA polymerases are required during both DNA replication and various types of DNA repair. DNA double-strand breaks are frequently repaired by homologous recombination, a conservative process in which DNA is copied into the break site from a similar template. The specific polymerases that operate during homologous recombination repair of DNA double-strand breaks have not been fully characterized in multicellular organisms. In this study, we created mutant strains of Drosophila lacking one or more DNA polymerases and determined their ability to synthesize large amounts of DNA during homologous recombination. We found that the error-prone translesion polymerases eta and zeta play overlapping roles during the initiation of synthesis, while the Pol32 subunit of the replicative polymerase delta complex is required for repair involving large amounts of synthesis. In addition, we showed that flies lacking the Rev1 translesion polymerase synthesize more DNA during gap repair than their normal counterparts. Our results demonstrate that both replicative and translesion polymerases are involved in homologous recombination and identify Rev1 as a protein that may regulate the access of various polymerases to double-strand break repair intermediates.
Collapse
Affiliation(s)
- Daniel P. Kane
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Michael Shusterman
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Yikang Rong
- National Cancer Institute, Bethesda, Maryland, United States of America
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
- Program in Genetics, Tufts Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
8
|
Rahmeh AA, Zhou Y, Xie B, Li H, Lee EYC, Lee MYWT. Phosphorylation of the p68 Subunit of Pol δ Acts as a Molecular Switch To Regulate Its Interaction with PCNA. Biochemistry 2011; 51:416-24. [DOI: 10.1021/bi201638e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amal A. Rahmeh
- Department
of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| | - Yajing Zhou
- Department
of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| | - Bin Xie
- Department
of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| | - Hao Li
- Department
of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| | - Ernest Y. C. Lee
- Department
of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| | - Marietta Y. W. T. Lee
- Department
of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| |
Collapse
|
9
|
Brocas C, Charbonnier JB, Dhérin C, Gangloff S, Maloisel L. Stable interactions between DNA polymerase δ catalytic and structural subunits are essential for efficient DNA repair. DNA Repair (Amst) 2010; 9:1098-111. [PMID: 20813592 DOI: 10.1016/j.dnarep.2010.07.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/19/2010] [Accepted: 07/23/2010] [Indexed: 11/24/2022]
Abstract
Eukaryotic DNA polymerase δ (Pol δ) activity is crucial for chromosome replication and DNA repair and thus, plays an essential role in genome stability. In Saccharomyces cerevisiae, Pol δ is a heterotrimeric complex composed of the catalytic subunit Pol3, the structural B subunit Pol31, and Pol32, an additional auxiliary subunit. Pol3 interacts with Pol31 thanks to its C-terminal domain (CTD) and this interaction is of functional importance both in DNA replication and DNA repair. Interestingly, deletion of the last four C-terminal Pol3 residues, LSKW, in the pol3-ct mutant does not affect DNA replication but leads to defects in homologous recombination and in break-induced replication (BIR) repair pathways. The defect associated with pol3-ct could result from a defective interaction between Pol δ and a protein involved in recombination. However, we show that the LSKW motif is required for the interaction between Pol3 C-terminal end and Pol31. This loss of interaction is relevant in vivo since we found that pol3-ct confers HU sensitivity on its own and synthetic lethality with a POL32 deletion. Moreover, pol3-ct shows genetic interactions, both suppression and synthetic lethality, with POL31 mutant alleles. Structural analyses indicate that the B subunit of Pol δ displays a major conserved region at its surface and that pol31 alleles interacting with pol3-ct, correspond to substitutions of Pol31 amino acids that are situated in this particular region. Superimposition of our Pol31 model on the 3D architecture of the phylogenetically related DNA polymerase α (Pol α) suggests that Pol3 CTD interacts with the conserved region of Pol31, thus providing a molecular basis to understand the defects associated with pol3-ct. Taken together, our data highlight a stringent dependence on Pol δ complex stability in DNA repair.
Collapse
Affiliation(s)
- Clémentine Brocas
- CEA, DSV, iRCM, Bâtiment 05/BP6, Fontenay-aux-Roses, F-92265, France
| | | | | | | | | |
Collapse
|
10
|
Sanchez Garcia J, Baranovskiy AG, Knatko EV, Gray FC, Tahirov TH, MacNeill SA. Functional mapping of the fission yeast DNA polymerase delta B-subunit Cdc1 by site-directed and random pentapeptide insertion mutagenesis. BMC Mol Biol 2009; 10:82. [PMID: 19686603 PMCID: PMC2734569 DOI: 10.1186/1471-2199-10-82] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 08/17/2009] [Indexed: 11/25/2022] Open
Abstract
Background DNA polymerase δ plays an essential role in chromosomal DNA replication in eukaryotic cells, being responsible for synthesising the bulk of the lagging strand. In fission yeast, Pol δ is a heterotetrameric enzyme comprising four evolutionarily well-conserved proteins: the catalytic subunit Pol3 and three smaller subunits Cdc1, Cdc27 and Cdm1. Pol3 binds directly to the B-subunit, Cdc1, which in turn binds the C-subunit, Cdc27. Human Pol δ comprises the same four subunits, and the crystal structure was recently reported of a complex of human p50 and the N-terminal domain of p66, the human orthologues of Cdc1 and Cdc27, respectively. Results To gain insights into the structure and function of Cdc1, random and directed mutagenesis techniques were used to create a collection of thirty alleles encoding mutant Cdc1 proteins. Each allele was tested for function in fission yeast and for binding of the altered protein to Pol3 and Cdc27 using the two-hybrid system. Additionally, the locations of the amino acid changes in each protein were mapped onto the three-dimensional structure of human p50. The results obtained from these studies identify amino acid residues and regions within the Cdc1 protein that are essential for interaction with Pol3 and Cdc27 and for in vivo function. Mutations specifically defective in Pol3-Cdc1 interactions allow the identification of a possible Pol3 binding surface on Cdc1. Conclusion In the absence of a three-dimensional structure of the entire Pol δ complex, the results of this study highlight regions in Cdc1 that are vital for protein function in vivo and provide valuable clues to possible protein-protein interaction surfaces on the Cdc1 protein that will be important targets for further study.
Collapse
Affiliation(s)
- Javier Sanchez Garcia
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK.
| | | | | | | | | | | |
Collapse
|
11
|
Pavlov YI, Shcherbakova PV. DNA polymerases at the eukaryotic fork-20 years later. Mutat Res 2009; 685:45-53. [PMID: 19682465 DOI: 10.1016/j.mrfmmm.2009.08.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 08/05/2009] [Indexed: 10/20/2022]
Abstract
Function of the eukaryotic genome depends on efficient and accurate replication of anti-parallel DNA strands. Eukaryotic DNA polymerases have different properties adapted to perform a wide spectrum of DNA transactions. Here we focus on major players in the bulk replication, DNA polymerases of the B-family. We review the organization of the replication fork in eukaryotes in a historical perspective, analyze contemporary models and propose a new integrative model of the fork.
Collapse
Affiliation(s)
- Youri I Pavlov
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA.
| | | |
Collapse
|
12
|
Baranovskiy AG, Babayeva ND, Liston VG, Rogozin IB, Koonin EV, Pavlov YI, Vassylyev DG, Tahirov TH. X-ray structure of the complex of regulatory subunits of human DNA polymerase delta. Cell Cycle 2008; 7:3026-36. [PMID: 18818516 DOI: 10.4161/cc.7.19.6720] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The eukaryotic DNA polymerase delta (Pol delta) participates in genome replication, homologous recombination, DNA repair and damage tolerance. Regulation of the plethora of Pol delta functions depends on the interaction between the second (p50) and third (p66) non-catalytic subunits. We report the crystal structure of p50*p66(N) complex featuring oligonucleotide binding and phosphodiesterase domains in p50 and winged helix-turn-helix N-terminal domain in p66. Disruption of the interaction between the yeast orthologs of p50 and p66 by strategic amino acid changes leads to cold-sensitivity, sensitivity to hydroxyurea and to reduced UV mutagenesis, mimicking the phenotypes of strains where the third subunit of Pol delta is absent. The second subunits of all B family replicative DNA polymerases in archaea and eukaryotes, except Pol delta, share a three-domain structure similar to p50*p66(N), raising the possibility that a portion of the gene encoding p66 was derived from the second subunit gene relatively late in evolution.
Collapse
Affiliation(s)
- Andrey G Baranovskiy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Gao Y, Zhou Y, Xie B, Zhang S, Rahmeh A, Huang HS, Lee MYWT, Lee EYC. Protein Phosphatase-1 Is Targeted to DNA Polymerase δ via an Interaction with the p68 Subunit. Biochemistry 2008; 47:11367-76. [DOI: 10.1021/bi801122t] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yan Gao
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595
| | - Yajing Zhou
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595
| | - Bin Xie
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595
| | - Sufang Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595
| | - Amal Rahmeh
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595
| | - Hua-shan Huang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595
| | - Marietta Y. W. T. Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595
| | - Ernest Y. C. Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595
| |
Collapse
|
14
|
Phosphorylation of the C subunit (p66) of human DNA polymerase δ. Biochem Biophys Res Commun 2008; 367:264-70. [DOI: 10.1016/j.bbrc.2007.12.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Accepted: 12/10/2007] [Indexed: 11/22/2022]
|
15
|
Liu G, Warbrick E. The p66 and p12 subunits of DNA polymerase δ are modified by ubiquitin and ubiquitin-like proteins. Biochem Biophys Res Commun 2006; 349:360-6. [PMID: 16934752 DOI: 10.1016/j.bbrc.2006.08.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 08/11/2006] [Indexed: 11/21/2022]
Abstract
Modification by ubiquitin-like proteins is now known to be important for the functions of many proteins involved in DNA replication and repair. We have investigated the modification of human DNA polymerase delta by ubiquitin and SUMO proteins. We find that while the p125 and p50 subunits were not modified, the p12 subunit is ubiquitinated and the p66 subunit can be modified by ubiquitin and SUMO3. We show that levels of p12 are regulated by the proteasome, either directly or indirectly, through a mechanism that is not dependent upon p12 ubiquitination. We have mapped two sites of SUMO3-specific modification on the p66 subunit. SUMOylation by SUMO3 but not SUMO2 is unusual: their level of homology is so high that they are normally classified as variants of the same protein. However, our findings show that these two proteins can be distinguished in vivo and may have specific functions.
Collapse
Affiliation(s)
- Geng Liu
- Department of Surgery and Molecular Oncology, University of Dundee, Ninewells Hospital, UK
| | | |
Collapse
|
16
|
Nasheuer HP, Pospiech H, Syväoja J. Progress Towards the Anatomy of the Eukaryotic DNA Replication Fork. Genome Integr 2006. [DOI: 10.1007/7050_016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
17
|
Pavlov YI, Shcherbakova PV, Rogozin IB. Roles of DNA Polymerases in Replication, Repair, and Recombination in Eukaryotes. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 255:41-132. [PMID: 17178465 DOI: 10.1016/s0074-7696(06)55002-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The functioning of the eukaryotic genome depends on efficient and accurate DNA replication and repair. The process of replication is complicated by the ongoing decomposition of DNA and damage of the genome by endogenous and exogenous factors. DNA damage can alter base coding potential resulting in mutations, or block DNA replication, which can lead to double-strand breaks (DSB) and to subsequent chromosome loss. Replication is coordinated with DNA repair systems that operate in cells to remove or tolerate DNA lesions. DNA polymerases can serve as sensors in the cell cycle checkpoint pathways that delay cell division until damaged DNA is repaired and replication is completed. Eukaryotic DNA template-dependent DNA polymerases have different properties adapted to perform an amazingly wide spectrum of DNA transactions. In this review, we discuss the structure, the mechanism, and the evolutionary relationships of DNA polymerases and their possible functions in the replication of intact and damaged chromosomes, DNA damage repair, and recombination.
Collapse
Affiliation(s)
- Youri I Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, Departments of Biochemistry and Molecular Biology, and Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | |
Collapse
|
18
|
Tanaka H, Ryu GH, Seo YS, MacNeill SA. Genetics of lagging strand DNA synthesis and maturation in fission yeast: suppression analysis links the Dna2-Cdc24 complex to DNA polymerase delta. Nucleic Acids Res 2004; 32:6367-77. [PMID: 15576681 PMCID: PMC535672 DOI: 10.1093/nar/gkh963] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 11/08/2004] [Accepted: 11/08/2004] [Indexed: 11/13/2022] Open
Abstract
The Cdc24 protein is essential for the completion of chromosomal DNA replication in fission yeast. Although its precise role in this process is unclear, Cdc24 forms a complex with Dna2, a conserved endonuclease-helicase implicated in the removal of the RNA-DNA primer during Okazaki fragment processing. To gain further insights into Cdc24-Dna2 function, we screened for chromosomal suppressors of the temperature-sensitive cdc24-M38 allele and mapped the suppressing mutations into six complementation groups. Two of these mutations defined genes encoding the Pol3 and Cdc27 subunits of DNA polymerase delta. Sequence analysis revealed that all the suppressing mutations in Cdc27 resulted in truncation of the protein and loss of sequences that included the conserved C-terminal PCNA binding motif, previously shown to play an important role in maximizing enzyme processivity in vitro. Deletion of this motif is shown to be sufficient for suppression of both cdc24-M38 and dna2-C2, a temperature-sensitive allele of dna2(+), suggesting that disruption of the interaction between Cdc27 and PCNA renders the activity of the Cdc24-Dna2 complex dispensable.
Collapse
Affiliation(s)
- Hiroyuki Tanaka
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | | | | | | |
Collapse
|