1
|
Finotti A, Gasparello J, Zuccato C, Cosenza LC, Fabbri E, Bianchi N, Gambari R. Effects of Mithramycin on BCL11A Gene Expression and on the Interaction of the BCL11A Transcriptional Complex to γ-Globin Gene Promoter Sequences. Genes (Basel) 2023; 14:1927. [PMID: 37895276 PMCID: PMC10606601 DOI: 10.3390/genes14101927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
The anticancer drug mithramycin (MTH), has been proposed for drug repurposing after the finding that it is a potent inducer of fetal hemoglobin (HbF) production in erythroid precursor cells (ErPCs) from β-thalassemia patients. In this respect, previously published studies indicate that MTH is very active in inducing increased expression of γ-globin genes in erythroid cells. This is clinically relevant, as it is firmly established that HbF induction is a valuable approach for the therapy of β-thalassemia and for ameliorating the clinical parameters of sickle-cell disease (SCD). Therefore, the identification of MTH biochemical/molecular targets is of great interest. This study is inspired by recent robust evidence indicating that the expression of γ-globin genes is controlled in adult erythroid cells by different transcriptional repressors, including Oct4, MYB, BCL11A, Sp1, KLF3 and others. Among these, BCL11A is very important. In the present paper we report evidence indicating that alterations of BCL11A gene expression and biological functions occur during MTH-mediated erythroid differentiation. Our study demonstrates that one of the mechanisms of action of MTH is a down-regulation of the transcription of the BCL11A gene, while a second mechanism of action is the inhibition of the molecular interactions between the BCL11A complex and specific sequences of the γ-globin gene promoter.
Collapse
Affiliation(s)
- Alessia Finotti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.Z.); (L.C.C.); (E.F.); (N.B.)
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.Z.); (L.C.C.); (E.F.); (N.B.)
| | - Cristina Zuccato
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.Z.); (L.C.C.); (E.F.); (N.B.)
| | - Lucia Carmela Cosenza
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.Z.); (L.C.C.); (E.F.); (N.B.)
| | - Enrica Fabbri
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.Z.); (L.C.C.); (E.F.); (N.B.)
| | - Nicoletta Bianchi
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.Z.); (L.C.C.); (E.F.); (N.B.)
- Department of Translational Medicine and for Romagna, Ferrara University, 44121 Ferrara, Italy
| | - Roberto Gambari
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Ferrara University, 44121 Ferrara, Italy
| |
Collapse
|
2
|
Tong M, Ziplow JL, Mark P, de la Monte SM. Dietary Soy Prevents Alcohol-Mediated Neurocognitive Dysfunction and Associated Impairments in Brain Insulin Pathway Signaling in an Adolescent Rat Model. Biomolecules 2022; 12:676. [PMID: 35625605 PMCID: PMC9139005 DOI: 10.3390/biom12050676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alcohol-related brain degeneration is linked to cognitive-motor deficits and impaired signaling through insulin/insulin-like growth factor type 1 (IGF-1)-Akt pathways that regulate cell survival, plasticity, metabolism, and homeostasis. In addition, ethanol inhibits Aspartyl-asparaginyl-β-hydroxylase (ASPH), a downstream target of insulin/IGF-1-Akt signaling and an activator of Notch networks. Previous studies have suggested that early treatment with insulin sensitizers or dietary soy could reduce or prevent the long-term adverse effects of chronic ethanol feeding. OBJECTIVE The goal of this study was to assess the effects of substituting soy isolate for casein to prevent or reduce ethanol's adverse effects on brain structure and function. METHODS Young adolescent male and female Long Evans were used in a 4-way model as follows: Control + Casein; Ethanol + Casein; Control + Soy; Ethanol + Soy; Control = 0% ethanol; Ethanol = 26% ethanol (caloric). Rats were fed isocaloric diets from 4 to 11 weeks of age. During the final experimental week, the Morris Water maze test was used to assess spatial learning (4 consecutive days), after which the brains were harvested to measure the temporal lobe expression of the total phospho-Akt pathway and downstream target proteins using multiplex bead-based enzyme-linked immunosorbent assays (ELISAs) and duplex ELISAs. RESULTS Ethanol inhibited spatial learning and reduced brain weight, insulin signaling through Akt, and the expression of ASPH when standard casein was provided as the protein source. The substitution of soy isolate for casein largely abrogated the adverse effects of chronic ethanol feeding. In contrast, Notch signaling protein expression was minimally altered by ethanol or soy isolate. CONCLUSIONS These novel findings suggest that the insulin sensitizer properties of soy isolate may prevent some of the adverse effects that chronic ethanol exposure has on neurobehavioral function and insulin-regulated metabolic pathways in adolescent brains.
Collapse
Affiliation(s)
- Ming Tong
- Liver Research Center, Division of Gastroenterology, Department of Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02808, USA; (M.T.); (J.L.Z.); (P.M.)
| | - Jason L. Ziplow
- Liver Research Center, Division of Gastroenterology, Department of Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02808, USA; (M.T.); (J.L.Z.); (P.M.)
| | - Princess Mark
- Liver Research Center, Division of Gastroenterology, Department of Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02808, USA; (M.T.); (J.L.Z.); (P.M.)
| | - Suzanne M. de la Monte
- Liver Research Center, Division of Gastroenterology, Departments of Medicine, Neurology and Pathology and Laboratory Medicine, Rhode Island Hospital, Providence, RI 02808, USA
- Women and Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence VA Medical Center, Providence, RI 02808, USA
| |
Collapse
|
3
|
Influence of DAT1 Promotor Methylation on Sports Performance. Genes (Basel) 2021; 12:genes12091425. [PMID: 34573407 PMCID: PMC8464919 DOI: 10.3390/genes12091425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
In the mammalian genome, DNA methylation is an epigenetic mechanism involving the transfer of a methyl group onto the C5 position of the cytosine to form 5-methylcytosine. DNA methylation regulates gene expression by recruiting proteins involved in gene repression or by inhibiting the binding of transcription factors (TFs) to DNA. As there are still many questions concerning the role of methylation in creating personality, we concentrated on searching for such associations. The research group was 100 sports male subjects (mean age = 22.88, SD = 6.35), whereas the control group included 239 healthy male volunteers matched for age (mean age = 21.69, SD = 3.39), both of European origin. The methods used in our research were as follows: DNA isolation, methylation-specific PCR, sequencing chromatophores, all conducted according to the manufacturer’s procedure. To evaluate personality traits, the NEO Five-Factor Personality Inventory (NEO-FFI) and STAI Inventory were used. We observed the existence of a statistically significant correlation for all the aspects of personality covered and CpG islands’ methylation. Nonetheless, we think that the tested group and the number of tested promotor islands in the DAT1 gene are still too small to make explicit conclusions, so it needs further profound analysis.
Collapse
|
4
|
Peng H, Guo Q, Xiao Y, Su T, Jiang TJ, Guo LJ, Wang M. ASPH Regulates Osteogenic Differentiation and Cellular Senescence of BMSCs. Front Cell Dev Biol 2020; 8:872. [PMID: 33015050 PMCID: PMC7494742 DOI: 10.3389/fcell.2020.00872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Osteogenesis and senescence of BMSCs play great roles in age-related bone loss. However, the causes of these dysfunctions remain unclear. In this study, we identified a differentially expressed ASPH gene in middle-aged and elderly aged groups which were obtained from GSE35955. Subsequent analysis in various databases, such as TCGA, GTEx, and CCLE, revealed that ASPH had positive correlations with several osteogenic markers. The depletion of mouse Asph suppressed the capacity of osteogenic differentiation in bone marrow mesenchymal stem cells (BMSCs). Notably, the expression of ASPH in vitro decreased during aging and senescence. The deficiency of Asph accelerated cellular senescence in BMSCs. Conversely, the overexpression of Asph enhanced the capacity of osteogenic differentiation and inhibited cellular senescence. Mechanistically, ASPH regulated Wnt signaling mediated by Gsk3β. Taken together, our data established that ASPH was potentially involved in the pathogenesis of age-related bone loss through regulating cellular senescence and osteogenic differentiation, which provides some new insights to treat age-related bone loss.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Wang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
5
|
Yu W, Gao J, Hao R, Yang J, Wei J. Effects of simulated digestion on black chokeberry ( Aronia melanocarpa (Michx.) Elliot) anthocyanins and intestinal flora. Journal of Food Science and Technology 2020; 58:1511-1523. [PMID: 33746279 DOI: 10.1007/s13197-020-04664-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/05/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022]
Abstract
In this study, the changes of anthocyanin content, total phenols, antioxidant capacity, microbiota composition before and after digestion and intestine fermentation in stomach and intestine were studied. The results indicated that after simulated gastrointestinal digestion, compared with the original sample, the total phenol content and anthocyanin content of intestinal digestion group for 2 h (ID 2 group) decreased by 53.64% and 70.45%, respectively, DPPH inhibition rate was 32.75% and T-AOC values of the extracts decreased to 62.89U/mg. The anthocyanins were identified to be composed of cyanidin-3-arabinoside, cyanidin-3-galactoside, cyanidin-3-xyloside, and cyanidin-3-glucoside. Black Chokeberry (Aronia melanocarpa (Michx.) Elliot) anthocyanins significantly increased the relative richness of Bacteroides, promoted the growth of Bifidobacterium, Blautia, Faecalibacterium, and inhibited the growth of Prevotella, Megamonas, Escherichia/Shigella, etc. Anthocyanins have a positive regulatory effect on intestinal flora. These studies also provide essential information for the development of anthocyanin related health care products and drug products.
Collapse
Affiliation(s)
- Wenchen Yu
- School of Life Science, Liaoning University, Chongshan Middle road 66, Huanggu District, Shenyang, 110036 Liaoning China
| | - Jun Gao
- Liaoning Forestry Academy, Shenyang, 110032 China
| | - Ruobing Hao
- School of Life Science, Liaoning University, Chongshan Middle road 66, Huanggu District, Shenyang, 110036 Liaoning China
| | - Jing Yang
- School of Life Science, Liaoning University, Chongshan Middle road 66, Huanggu District, Shenyang, 110036 Liaoning China
| | - Jie Wei
- School of Life Science, Liaoning University, Chongshan Middle road 66, Huanggu District, Shenyang, 110036 Liaoning China
| |
Collapse
|
6
|
Tong M, Gonzalez-Navarrete H, Kirchberg T, Gotama B, Yalcin EB, Kay J, de la Monte SM. Ethanol-Induced White Matter Atrophy Is Associated with Impaired Expression of Aspartyl-Asparaginyl- β-Hydroxylase (ASPH) and Notch Signaling in an Experimental Rat Model. JOURNAL OF DRUG AND ALCOHOL RESEARCH 2017; 6:236033. [PMID: 29204305 PMCID: PMC5711436 DOI: 10.4303/jdar/236033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alcohol-induced white matter (WM) degeneration is linked to cognitive-motor deficits and impairs insulin/insulin-like growth factor (IGF) and Notch networks regulating oligodendrocyte function. Ethanol downregulates Aspartyl-Asparaginyl-β-Hydroxylase (ASPH) which drives Notch. These experiments determined if alcohol-related WM degeneration was linked to inhibition of ASPH and Notch. Adult Long Evans rats were fed for 3, 6 or 8 weeks with liquid diets containing 26% ethanol (caloric) and in the last two weeks prior to each endpoint they were binged with 2 g/kg ethanol, 3×/week. Controls were studied in parallel. Histological sections of the frontal lobe and cerebellar vermis were used for image analysis. Frontal WM proteins were used for Western blotting and duplex ELISAs. The ethanol exposures caused progressive reductions in frontal and cerebellar WM. Ethanol-mediated frontal WM atrophy was associated with reduced expression of ASPH, Jagged 1, HES-1, and HIF-1α. These findings link ethanol-induced WM atrophy to inhibition of ASPH expression and signaling through Notch networks, including HIF-1α.
Collapse
Affiliation(s)
- Ming Tong
- Liver Research Center, Division of Gastroenterology and Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | | | | - Billy Gotama
- Molecular Pharmacology and Biotechnology Graduate Program, Brown University, Providence, RI 02912, USA
- Brown University, Providence, RI 02912, USA
| | - Emine B. Yalcin
- Liver Research Center, Division of Gastroenterology and Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Jared Kay
- Liver Research Center, Division of Gastroenterology and Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Suzanne M. de la Monte
- Liver Research Center, Division of Gastroenterology and Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- Departments of Neurology, Neurosurgery, and Pathology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
7
|
Bianchi N, Cosenza LC, Lampronti I, Finotti A, Breveglieri G, Zuccato C, Fabbri E, Marzaro G, Chilin A, De Angelis G, Borgatti M, Gallucci C, Alfieri C, Ribersani M, Isgrò A, Marziali M, Gaziev J, Morrone A, Sodani P, Lucarelli G, Gambari R, Paciaroni K. Structural and Functional Insights on an Uncharacterized Aγ-Globin-Gene Polymorphism Present in Four β0-Thalassemia Families with High Fetal Hemoglobin Levels. Mol Diagn Ther 2016; 20:161-73. [PMID: 26897028 DOI: 10.1007/s40291-016-0187-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Several DNA polymorphisms have been associated with high production of fetal hemoglobin (HbF), although the molecular basis is not completely understood. In order to identify and characterize novel HbF-associated elements, we focused on five probands and their four families (from Egypt, Iraq and Iran) with thalassemia major (either β(0)-IVSII-1 or β(0)-IVSI-1) and unusual HbF elevation (>98 %), congenital or acquired after rejection of bone marrow transplantation, suggesting an anticipated favorable genetic background to high HbF expression. METHODS Patient recruitment, genomic DNA sequencing, western blotting, electrophoretic mobility shift assays, surface plasmon resonance (SPR) biospecific interaction analysis, bioinformatics analyses based on docking experiments. RESULTS A polymorphism of the Aγ-globin gene is here studied in four families with β(0)-thalassemia (β(0)-IVSII-1 and β(0)-IVSI-1) and expressing unusual high HbF levels, congenital or acquired after rejection of bone marrow transplantation. This (G→A) polymorphism is present at position +25 of the Aγ-globin genes, corresponding to a 5'-UTR region of the Aγ-globin mRNA and, when present, is physically linked in chromosomes 11 of all the familiar members studied to the XmnI polymorphism and to the β(0)-thalassemia mutations. The region corresponding to the +25(G→A) polymorphism of the Aγ-globin gene belongs to a sequence recognized by DNA-binding protein complexes, including LYAR (Ly-1 antibody reactive clone), a zinc-finger transcription factor previously proposed to be involved in down-regulation of the expression of γ-globin genes in erythroid cells. CONCLUSION We found a novel polymorphism of the Aγ-globin gene in four families with β(0)-thalassemia and high levels of HbF expression. Additionally, we report evidence suggesting that the Aγ-globin gene +25(G→A) polymorphism decreases the efficiency of the interaction between this sequence and specific DNA binding protein complexes.
Collapse
Affiliation(s)
- Nicoletta Bianchi
- Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy
| | | | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy
| | - Giulia Breveglieri
- Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy
| | - Cristina Zuccato
- Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy
| | - Enrica Fabbri
- Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Adriana Chilin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Gioia De Angelis
- International Centre for Transplantation in Thalassemia and Sickle Cell Anaemia, Mediterranean Institute of Haematology, Policlinic of "Tor Vergata" University, Rome, Italy
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy
| | - Cristiano Gallucci
- International Centre for Transplantation in Thalassemia and Sickle Cell Anaemia, Mediterranean Institute of Haematology, Policlinic of "Tor Vergata" University, Rome, Italy
| | - Cecilia Alfieri
- International Centre for Transplantation in Thalassemia and Sickle Cell Anaemia, Mediterranean Institute of Haematology, Policlinic of "Tor Vergata" University, Rome, Italy
| | - Michela Ribersani
- International Centre for Transplantation in Thalassemia and Sickle Cell Anaemia, Mediterranean Institute of Haematology, Policlinic of "Tor Vergata" University, Rome, Italy
| | - Antonella Isgrò
- International Centre for Transplantation in Thalassemia and Sickle Cell Anaemia, Mediterranean Institute of Haematology, Policlinic of "Tor Vergata" University, Rome, Italy
| | - Marco Marziali
- International Centre for Transplantation in Thalassemia and Sickle Cell Anaemia, Mediterranean Institute of Haematology, Policlinic of "Tor Vergata" University, Rome, Italy
| | - Javid Gaziev
- International Centre for Transplantation in Thalassemia and Sickle Cell Anaemia, Mediterranean Institute of Haematology, Policlinic of "Tor Vergata" University, Rome, Italy
| | - Aldo Morrone
- International Centre for Transplantation in Thalassemia and Sickle Cell Anaemia, Mediterranean Institute of Haematology, Policlinic of "Tor Vergata" University, Rome, Italy
| | - Pietro Sodani
- International Centre for Transplantation in Thalassemia and Sickle Cell Anaemia, Mediterranean Institute of Haematology, Policlinic of "Tor Vergata" University, Rome, Italy
| | - Guido Lucarelli
- International Centre for Transplantation in Thalassemia and Sickle Cell Anaemia, Mediterranean Institute of Haematology, Policlinic of "Tor Vergata" University, Rome, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy.
- Biotechnology Center, Ferrara University, Ferrara, Italy.
| | - Katia Paciaroni
- International Centre for Transplantation in Thalassemia and Sickle Cell Anaemia, Mediterranean Institute of Haematology, Policlinic of "Tor Vergata" University, Rome, Italy
| |
Collapse
|
8
|
Yang P, Xu ZP, Chen T, He ZY. Long noncoding RNA expression profile analysis of colorectal cancer and metastatic lymph node based on microarray data. Onco Targets Ther 2016; 9:2465-78. [PMID: 27217770 PMCID: PMC4853163 DOI: 10.2147/ott.s102348] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as an important part of biological progress in cancers, yet the aberrant lncRNAs implicated in colorectal cancer (CRC) with lymph node metastasis remain unknown. In this study, a total of 390 lncRNA transcripts and 508 mRNA transcripts were dysregulated in tumor tissues compared with paired metastatic lymph nodes. Functional prediction showed that lots of lncRNAs might be involved in biological pathways related to CRC metastasis by cis-regulation and trans-regulation of coexpressed genes. As a representative, ENST00000430471 was associated with cell proliferation and invasion of CRC cells. These results provided support for further investigations of the metastatic pathogenesis of CRC.
Collapse
Affiliation(s)
- Peng Yang
- The Second Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Zi-Peng Xu
- The Second Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Tao Chen
- The Second Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Zhen-Yu He
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
9
|
Generation and Characterization of a Transgenic Mouse Carrying a Functional Human β -Globin Gene with the IVSI-6 Thalassemia Mutation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:687635. [PMID: 26097845 PMCID: PMC4434229 DOI: 10.1155/2015/687635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/03/2014] [Accepted: 12/03/2014] [Indexed: 11/17/2022]
Abstract
Mouse models that carry mutations causing thalassemia represent a suitable tool to test in vivo new mutation-specific therapeutic approaches. Transgenic mice carrying the β-globin IVSI-6 mutation (the most frequent in Middle-Eastern regions and recurrent in Italy and Greece) are, at present, not available. We report the production and characterization of a transgenic mouse line (TG-β-IVSI-6) carrying the IVSI-6 thalassemia point mutation within the human β-globin gene. In the TG-β-IVSI-6 mouse (a) the transgenic integration region is located in mouse chromosome 7; (b) the expression of the transgene is tissue specific; (c) as expected, normally spliced human β-globin mRNA is produced, giving rise to β-globin production and formation of a human-mouse tetrameric chimeric hemoglobin muα-globin2/huβ-globin2 and, more importantly, (d) the aberrant β-globin-IVSI-6 RNAs are present in blood cells. The TG-β-IVSI-6 mouse reproduces the molecular features of IVSI-6 β-thalassemia and might be used as an in vivo model to characterize the effects of antisense oligodeoxynucleotides targeting the cryptic sites responsible for the generation of aberrantly spliced β-globin RNA sequences, caused by the IVSI-6 mutation. These experiments are expected to be crucial for the development of a personalized therapy for β-thalassemia.
Collapse
|
10
|
Finotti A, Bianchi N, Fabbri E, Borgatti M, Breveglieri G, Gasparello J, Gambari R. Erythroid induction of K562 cells treated with mithramycin is associated with inhibition of raptor gene transcription and mammalian target of rapamycin complex 1 (mTORC1) functions. Pharmacol Res 2014; 91:57-68. [PMID: 25478892 PMCID: PMC4309890 DOI: 10.1016/j.phrs.2014.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 12/21/2022]
Abstract
Rapamycin, an inhibitor of mTOR activity, is a potent inducer of erythroid differentiation and fetal hemoglobin production in β-thalassemic patients. Mithramycin (MTH) was studied to see if this inducer of K562 differentiation also operates through inhibition of mTOR. We can conclude from the study that the mTOR pathway is among the major transcript classes affected by mithramycin-treatment in K562 cells and a sharp decrease of raptor protein production and p70S6 kinase is detectable in mithramycin treated K562 cells. The promoter sequence of the raptor gene contains several Sp1 binding sites which may explain its mechanism of action. We hypothesize that the G + C-selective DNA-binding drug mithramycin is able to interact with these sequences and to inhibit the binding of Sp1 to the raptor promoter due to the following results: (a) MTH strongly inhibits the interactions between Sp1 and Sp1-binding sites of the raptor promoter (studied by electrophoretic mobility shift assays, EMSA); (b) MTH strongly reduces the recruitment of Sp1 transcription factor to the raptor promoter in intact K562 cells (studied by chromatin immunoprecipitation experiments, ChIP); (c) Sp1 decoy oligonucleotides are able to specifically inhibit raptor mRNA accumulation in K562 cells. In conclusion, raptor gene expression is involved in mithramycin-mediated induction of erythroid differentiation of K562 cells and one of its mechanism of action is the inhibition of Sp1 binding to the raptor promoter.
Collapse
Affiliation(s)
- Alessia Finotti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Italy
| | - Enrica Fabbri
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Italy
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Italy
| | - Giulia Breveglieri
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Italy
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Italy.
| |
Collapse
|
11
|
Christensen LL, Tobiasen H, Holm A, Schepeler T, Ostenfeld MS, Thorsen K, Rasmussen MH, Birkenkamp-Demtroeder K, Sieber OM, Gibbs P, Lubinski J, Lamy P, Laurberg S, Oster B, Hansen KQ, Hagemann-Madsen R, Byskov K, Ørntoft TF, Andersen CL. MiRNA-362-3p induces cell cycle arrest through targeting of E2F1, USF2 and PTPN1 and is associated with recurrence of colorectal cancer. Int J Cancer 2013; 133:67-78. [PMID: 23280316 DOI: 10.1002/ijc.28010] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/07/2012] [Accepted: 12/13/2012] [Indexed: 01/12/2023]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer deaths in Western countries. A significant number of CRC patients undergoing curatively intended surgery subsequently develop recurrence and die from the disease. MicroRNAs (miRNAs) are aberrantly expressed in cancers and appear to have both diagnostic and prognostic significance. In this study, we identified novel miRNAs associated with recurrence of CRC, and their possible mechanism of action. TaqMan(®) Human MicroRNA Array Set v2.0 was used to profile the expression of 667 miRNAs in 14 normal colon mucosas and 46 microsatellite stable CRC tumors. Four miRNAs (miR-362-3p, miR-570, miR-148 a* and miR-944) were expressed at a higher level in tumors from patients with no recurrence (p<0.015), compared with tumors from patients with recurrence. A significant association with increased disease free survival was confirmed for miR-362-3p in a second independent cohort of 43 CRC patients, using single TaqMan(®) microRNA assays. In vitro functional analysis showed that over-expression of miR-362-3p in colon cancer cell lines reduced cell viability, and proliferation mainly due to cell cycle arrest. E2F1, USF2 and PTPN1 were identified as potential miR-362-3p targets by mRNA profiling of HCT116 cells over-expressing miR-362-3p. Subsequently, these genes were confirmed as direct targets by Luciferase reporter assays and their knockdown in vitro phenocopied the effects of miR-362-3p over-expression. We conclude that miR-362-3p may be a novel prognostic marker in CRC, and hypothesize that the positive effects of augmented miR-362-3p expression may in part be mediated through the targets E2F1, USF2 and PTPN1.
Collapse
|
12
|
Finotti A, Borgatti M, Bezzerri V, Nicolis E, Lampronti I, Dechecchi M, Mancini I, Cabrini G, Saviano M, Avitabile C, Romanelli A, Gambari R. Effects of decoy molecules targeting NF-kappaB transcription factors in Cystic fibrosis IB3-1 cells: recruitment of NF-kappaB to the IL-8 gene promoter and transcription of the IL-8 gene. ARTIFICIAL DNA, PNA & XNA 2012; 3:97-296. [PMID: 22772035 PMCID: PMC3429536 DOI: 10.4161/adna.21061] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
One of the clinical features of cystic fibrosis (CF) is a deep inflammatory process, which is characterized by production and release of cytokines and chemokines, among which interleukin 8 (IL-8) represents one of the most important. Accordingly, there is a growing interest in developing therapies against CF to reduce the excessive inflammatory response in the airways of CF patients. Since transcription factor NF-kappaB plays a critical role in IL-8 expression, the transcription factor decoy (TFD) strategy might be of interest. In order to demonstrate that TFD against NF-kappaB interferes with the NF-kappaB pathway we proved, by chromatin immunoprecipitation (ChIP) that treatment with TFD oligodeoxyribonucleotides of cystic fibrosis IB3–1 cells infected with Pseudomonas aeruginosa leads to a decrease occupancy of the Il-8 gene promoter by NF-kappaB factors. In order to develop more stable therapeutic molecules, peptide nucleic acids (PNAs) based agents were considered. In this respect PNA-DNA-PNA (PDP) chimeras are molecules of great interest from several points of view: (1) they can be complexed with liposomes and microspheres; (2) they are resistant to DNases, serum and cytoplasmic extracts; (3) they are potent decoy molecules. By using electrophoretic mobility shift assay and RT-PCR analysis we have demonstrated that (1) the effects of PDP/PDP NF-kappaB decoy chimera on accumulation of pro-inflammatory mRNAs in P.aeruginosa infected IB3–1 cells reproduce that of decoy oligonucleotides; in particular (2) the PDP/PDP chimera is a strong inhibitor of IL-8 gene expression; (3) the effect of PDP/PDP chimeras, unlike those of ODN-based decoys, are observed even in the absence of protection with lipofectamine. These informations are of great impact, in our opinion, for the development of stable molecules to be used in non-viral gene therapy of cystic fibrosis.
Collapse
Affiliation(s)
- Alessia Finotti
- ER-GenTech and BioPharmaNet, Department of Biochemistry and Molecular Biology, Università di Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Jennes I, Zuntini M, Mees K, Palagani A, Pedrini E, De Cock G, Fransen E, Vanden Berghe W, Sangiorgi L, Wuyts W. Identification and functional characterization of the human EXT1 promoter region. Gene 2011; 492:148-59. [PMID: 22037484 DOI: 10.1016/j.gene.2011.10.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 10/02/2011] [Accepted: 10/11/2011] [Indexed: 01/02/2023]
Abstract
BACKGROUND Mutations in Exostosin-1 (EXT1) or Exostosin-2 (EXT2) cause the autosomal dominant disorder multiple osteochondromas (MO). This disease is mainly characterized by the appearance of multiple cartilage-capped protuberances arising from children's metaphyses and is known to display clinical inter- and intrafamilial variations. EXT1 and EXT2 are both tumor suppressor genes encoding proteins that function as glycosyltransferases, catalyzing the biosynthesis of heparan sulfate. At present, however, very little is known about the regulation of these genes. Two of the most intriguing questions concerning the pathogenesis of MO are how disruption of a ubiquitously expressed gene causes this cartilage-specific disease and how the clinical intrafamilial variation can be explained. Since mutations in the EXT1 gene are responsible for ~65% of the MO families with known causal mutation, our aim was to isolate and characterize the EXT1 promoter region to elucidate the transcriptional regulation of this tumor suppressor gene. METHODS In the present study, luciferase reporter gene assays were used to experimentally confirm the in silico predicted EXT1 core promoter region. Subsequently, we evaluated the effect of single nucleotide polymorphisms (SNP's) on EXT1 promoter activity and transcription factor binding using luciferase assays, electrophoretic mobility shift assays (EMSA), and enzyme-linked immunosorbent assays (ELISA). Finally, a genotype-phenotype study was performed with the aim to identify one or more genetic modifiers influencing the clinical expression of MO. RESULTS Transient transfection of HEK293 cells with a series of luciferase reporter constructs mapped the EXT1 core promoter at approximately -917 bp upstream of the EXT1 start codon, within a 123 bp region. This region is conserved in mammals and located within a CpG-island containing a CAAT- and a GT-box. A polymorphic G/C-SNP at -1158 bp (rs34016643) was demonstrated to be located in a USF1 transcription factor binding site, which is lost with the presence of the C-allele resulting in a ~56% increase in EXT1 promoter activity. A genotype-phenotype study was suggestive for association of the C-allele with shorter stature, but also with a smaller number of osteochondromas. CONCLUSIONS We provide for the first time insight into the molecular regulation of EXT1. Although a larger patient population will be necessary for statistical significance, our data suggest the polymorphism rs34016643, in close proximity of the EXT1 promoter, to be a potential regulatory SNP, which could be a primary modifier that might explain part of the clinical variation observed in MO patients.
Collapse
Affiliation(s)
- Ivy Jennes
- Department of Medical Genetics, University of Antwerp, and Antwerp University Hospital, Edegem, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tamanini A, Borgatti M, Finotti A, Piccagli L, Bezzerri V, Favia M, Guerra L, Lampronti I, Bianchi N, Dall'Acqua F, Vedaldi D, Salvador A, Fabbri E, Mancini I, Nicolis E, Casavola V, Cabrini G, Gambari R. Trimethylangelicin reduces IL-8 transcription and potentiates CFTR function. Am J Physiol Lung Cell Mol Physiol 2011; 300:L380-90. [DOI: 10.1152/ajplung.00129.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic inflammatory response in the airway tract of patients affected by cystic fibrosis is characterized by an excessive recruitment of neutrophils to the bronchial lumina, driven by the chemokine interleukin (IL)-8. We previously found that 5-methoxypsoralen reduces Pseudomonas aeruginosa -dependent IL-8 transcription in bronchial epithelial cell lines, with an IC50 of 10 μM (Nicolis E, Lampronti I, Dechecchi MC, Borgatti M, Tamanini A, Bezzerri V, Bianchi N, Mazzon M, Mancini I, Giri MG, Rizzotti P, Gambari R, Cabrini G. Int Immunopharmacol 9: 1411–1422, 2009). Here, we extended the investigation to analogs of 5-methoxypsoralen, and we found that the most potent effect is obtained with 4,6,4′-trimethylangelicin (TMA), which inhibits P. aeruginosa -dependent IL-8 transcription at nanomolar concentration in IB3–1, CuFi-1, CFBE41o−, and Calu-3 bronchial epithelial cell lines. Analysis of phosphoproteins involved in proinflammatory transmembrane signaling evidenced that TMA reduces the phosphorylation of ribosomal S6 kinase-1 and AKT2/3, which we found indeed involved in P. aeruginosa -dependent activation of IL-8 gene transcription by testing the effect of pharmacological inhibitors. In addition, we found a docking site of TMA into NF-κB by in silico analysis, whereas inhibition of the NF-κB/DNA interactions in vitro by EMSA was observed at high concentrations (10 mM TMA). To further understand whether NF-κB pathway should be considered a target of TMA, chromatin immunoprecipitation was performed, and we observed that TMA (100 nM) preincubated in whole living cells reduced the interaction of NF-κB with the promoter of IL-8 gene. These results suggest that TMA could inhibit IL-8 gene transcription mainly by intervening on driving the recruitment of activated transcription factors on IL-8 gene promoter, as demonstrated here for NF-κB. Although the complete understanding of the mechanism of action of TMA deserves further investigation, an activity of TMA on phosphorylating pathways was already demonstrated by our study. Finally, since psoralens have been shown to potentiate cystic fibrosis transmembrane conductance regulator (CFTR)-mediated chloride transport, TMA was tested and found to potentiate CFTR-dependent chloride efflux. In conclusion, TMA is a dual-acting compound reducing excessive IL-8 expression and potentiating CFTR function.
Collapse
Affiliation(s)
- Anna Tamanini
- Laboratory of Molecular Pathology, Laboratory of Clinical Chemistry and Haematology, University-Hospital, Verona
| | - Monica Borgatti
- BioPharmaNet, ER-GenTech, Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara
| | - Alessia Finotti
- BioPharmaNet, ER-GenTech, Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara
| | - Laura Piccagli
- BioPharmaNet, ER-GenTech, Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara
| | - Valentino Bezzerri
- Laboratory of Molecular Pathology, Laboratory of Clinical Chemistry and Haematology, University-Hospital, Verona
| | - Maria Favia
- Department of General and Environmental Physiology, University of Bari, Bari
| | - Lorenzo Guerra
- Department of General and Environmental Physiology, University of Bari, Bari
| | - Ilaria Lampronti
- BioPharmaNet, ER-GenTech, Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara
| | - Nicoletta Bianchi
- BioPharmaNet, ER-GenTech, Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara
| | | | - Daniela Vedaldi
- Department of Pharmaceutical Sciences, University of Padova, Padova; and
| | - Alessia Salvador
- Department of Pharmaceutical Sciences, University of Padova, Padova; and
| | - Enrica Fabbri
- BioPharmaNet, ER-GenTech, Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara
| | - Irene Mancini
- BioPharmaNet, ER-GenTech, Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara
| | - Elena Nicolis
- Laboratory of Molecular Pathology, Laboratory of Clinical Chemistry and Haematology, University-Hospital, Verona
| | - Valeria Casavola
- Department of General and Environmental Physiology, University of Bari, Bari
| | - Giulio Cabrini
- Laboratory of Molecular Pathology, Laboratory of Clinical Chemistry and Haematology, University-Hospital, Verona
| | - Roberto Gambari
- BioPharmaNet, ER-GenTech, Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara
- Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
15
|
Shumay E, Fowler JS, Volkow ND. Genomic features of the human dopamine transporter gene and its potential epigenetic States: implications for phenotypic diversity. PLoS One 2010; 5:e11067. [PMID: 20548783 PMCID: PMC2883569 DOI: 10.1371/journal.pone.0011067] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 05/18/2010] [Indexed: 02/06/2023] Open
Abstract
Human dopamine transporter gene (DAT1 or SLC6A3) has been associated with various brain-related diseases and behavioral traits and, as such, has been investigated intensely in experimental- and clinical-settings. However, the abundance of research data has not clarified the biological mechanism of DAT regulation; similarly, studies of DAT genotype-phenotype associations yielded inconsistent results. Hence, our understanding of the control of the DAT protein product is incomplete; having this knowledge is critical, since DAT plays the major role in the brain's dopaminergic circuitry. Accordingly, we reevaluated the genomic attributes of the SLC6A3 gene that might confer sensitivity to regulation, hypothesizing that its unique genomic characteristics might facilitate highly dynamic, region-specific DAT expression, so enabling multiple regulatory modes. Our comprehensive bioinformatic analyzes revealed very distinctive genomic characteristics of the SLC6A3, including high inter-individual variability of its sequence (897 SNPs, about 90 repeats and several CNVs spell out all abbreviations in abstract) and pronounced sensitivity to regulation by epigenetic mechanisms, as evident from the GC-bias composition (0.55) of the SLC6A3, and numerous intragenic CpG islands (27 CGIs). We propose that this unique combination of the genomic features and the regulatory attributes enables the differential expression of the DAT1 gene and fulfills seemingly contradictory demands to its regulation; that is, robustness of region-specific expression and functional dynamics.
Collapse
Affiliation(s)
- Elena Shumay
- Brookhaven National Laboratory, Medical Department, Upton, New York, United States of America
- * E-mail: (ES); (JSF); (NDV)
| | - Joanna S. Fowler
- Brookhaven National Laboratory, Medical Department, Upton, New York, United States of America
- * E-mail: (ES); (JSF); (NDV)
| | - Nora D. Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (ES); (JSF); (NDV)
| |
Collapse
|