1
|
Makino Y, Hodgson NW, Doenier E, Serbin AV, Osada K, Artoni P, Dickey M, Sullivan B, Potter-Dickey A, Komanchuk J, Sekhon B, Letourneau N, Ryan ND, Trauth J, Cameron JL, Hensch TK. Sleep-sensitive dopamine receptor expression in male mice underlies attention deficits after a critical period of early adversity. Sci Transl Med 2024; 16:eadh9763. [PMID: 39383245 DOI: 10.1126/scitranslmed.adh9763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/03/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024]
Abstract
Early life stress (ELS) yields cognitive impairments of unknown molecular and physiological origin. We found that fragmented maternal care of mice during a neonatal critical period from postnatal days P2-9 elevated dopamine receptor D2R and suppressed D4R expression, specifically within the anterior cingulate cortex (ACC) in only the male offspring. This was associated with poor performance on a two-choice visual attention task, which was acutely rescued in adulthood by local or systemic pharmacological rebalancing of D2R/D4R activity. Furthermore, ELS male mice demonstrated heightened hypothalamic orexin and persistently disrupted sleep. Given that acute sleep deprivation in normally reared male mice mimicked the ACC dopamine receptor subtype modulation and disrupted attention of ELS mice, sleep loss likely underlies cognitive deficits in ELS mice. Likewise, sleep impairment mediated the attention deficits associated with early adversity in human children, as demonstrated by path analysis on data collected with multiple questionnaires for a large child cohort. A deeper understanding of the sex-specific cognitive consequences of ELS thus has the potential to reveal therapeutic strategies for overcoming them.
Collapse
Affiliation(s)
- Yuichi Makino
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- International Research Center for Neurointelligence, UTIAS, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nathaniel W Hodgson
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Emma Doenier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Anna Victoria Serbin
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Koya Osada
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Pietro Artoni
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Matthew Dickey
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Breanna Sullivan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Jelena Komanchuk
- School of Nursing, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Bikram Sekhon
- School of Nursing, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Nicole Letourneau
- School of Nursing, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Neal D Ryan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jeanette Trauth
- Department of Behavioral and Community Health Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Judy L Cameron
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Takao K Hensch
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- International Research Center for Neurointelligence, UTIAS, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
2
|
Savage AL, Wilm TP, Khursheed K, Shatunov A, Morrison KE, Shaw PJ, Shaw CE, Smith B, Breen G, Al-Chalabi A, Moss D, Bubb VJ, Quinn JP. An evaluation of a SVA retrotransposon in the FUS promoter as a transcriptional regulator and its association to ALS. PLoS One 2014; 9:e90833. [PMID: 24608899 PMCID: PMC3946630 DOI: 10.1371/journal.pone.0090833] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/04/2014] [Indexed: 12/13/2022] Open
Abstract
Genetic mutations of FUS have been linked to many diseases including Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration. A primate specific and polymorphic retrotransposon of the SINE-VNTR-Alu (SVA) family is present upstream of the FUS gene. Here we have demonstrated that this retrotransposon can act as a classical transcriptional regulatory domain in the context of a reporter gene construct both in vitro in the human SK-N-AS neuroblastoma cell line and in vivo in a chick embryo model. We have also demonstrated that the SVA is composed of multiple distinct regulatory domains, one of which is a variable number tandem repeat (VNTR). The ability of the SVA and its component parts to direct reporter gene expression supported a hypothesis that this region could direct differential FUS expression in vivo. The SVA may therefore contribute to the modulation of FUS expression exhibited in and associated with neurological disorders including ALS where FUS regulation may be an important parameter in progression of the disease. As VNTRs are often clinical associates for disease progression we determined the extent of polymorphism within the SVA. In total 2 variants of the SVA were identified based within a central VNTR. Preliminary analysis addressed the association of these SVA variants within a small sporadic ALS cohort but did not reach statistical significance, although we did not include other parameters such as SNPs within the SVA or an environmental factor in this analysis. The latter may be particularly important as the transcriptional and epigenetic properties of the SVA are likely to be directed by the environment of the cell.
Collapse
Affiliation(s)
- Abigail L. Savage
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool, United Kingdom
| | - Thomas P. Wilm
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool, United Kingdom
| | - Kejhal Khursheed
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool, United Kingdom
| | - Aleksey Shatunov
- Clinical Neuroscience, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Karen E. Morrison
- School of Clinical and Experimental Medicine, College of Medicine and Dentistry, University of Birmingham, Birmingham, United Kingdom; and Neurosciences Division, University Hospital Birmingham NHS Foundation Trust, Birmingham, West Midlands, United Kingdom
| | - Pamela J. Shaw
- Academic Unit of Neurology, Department of Neuroscience, Sheffield Institute for Translational Research, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - Christopher E. Shaw
- Clinical Neuroscience, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Bradley Smith
- Clinical Neuroscience, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Gerome Breen
- MRC Social Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, King's College London, London, United Kingdom; National Institute for Health Research Biomedical Research, Centre for Mental Health, South London, United Kingdom; and Maudsley NHS Foundation Trust and Institute of Psychiatry, King's College London, London, United Kingdom
| | - Ammar Al-Chalabi
- Clinical Neuroscience, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Diana Moss
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, The University of Liverpool, Liverpool, United Kingdom
| | - Vivien J. Bubb
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool, United Kingdom
| | - John P. Quinn
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
3
|
Quinn JP, Warburton A, Myers P, Savage AL, Bubb VJ. Polymorphic variation as a driver of differential neuropeptide gene expression. Neuropeptides 2013; 47:395-400. [PMID: 24210140 DOI: 10.1016/j.npep.2013.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 11/15/2022]
Abstract
The regulation of neuropeptide gene expression and their receptors in a tissue specific and stimulus inducible manner will determine in part behaviour and physiology. This can be a dynamic process resulting from short term changes in response to the environment or long term modulation imposed by epigenetically determined mechanisms established during life experiences. The latter underpins what is termed 'nature and nurture, or 'gene×environment interactions'. Dynamic gene expression of neuropeptides or their receptors is a key component of signalling in the CNS and their inappropriate regulation is therefore a predicted target underpinning psychiatric disorders and neuropathological processes. Finding the regulatory domains within our genome which have the potential to direct gene expression is a difficult challenge as 98% of our genome is non-coding and, with the exception of proximal promoter regions, such elements can be quite distant from the gene that they regulate. This review will deal with how we can find such domains by addressing both the most conserved non-exonic regions in the genome using comparative genomics and the most recent or constantly evolving DNA such as repetitive DNA or retrotransposons. We shall also explore how polymorphic changes in such domains can be associated with CNS disorders by altering the appropriate gene expression patterns which maintain normal physiology.
Collapse
Affiliation(s)
- John P Quinn
- Neurogenetics in Wellbeing and Disease Section, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, UK.
| | | | | | | | | |
Collapse
|
4
|
Paredes UM, Quinn JP, D'Souza UM. Allele-specific transcriptional activity of the variable number of tandem repeats in 5' region of the DRD4 gene is stimulus specific in human neuronal cells. GENES BRAIN AND BEHAVIOR 2012; 12:282-7. [PMID: 23013251 DOI: 10.1111/j.1601-183x.2012.00857.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/17/2012] [Accepted: 09/17/2012] [Indexed: 01/08/2023]
Abstract
The dopamine receptor D4 (DRD4) gene includes several variable number of tandem repeat loci that have been suggested to modulate DRD4 gene expression patterns. Previous studies showed differential basal activity of the two most common variants of a tandem repeat (120 bp per repeat unit) located in the 5' region adjacent to the DRD4 promoter in human cell lines. In this communication, we further characterized the ability of this polymorphic repeat to elicit tissue-, allele- and stimuli-specific transcriptional activity in vitro. The short and long variants of the DRD4 5' tandem repeat were cloned into a luciferase reporter gene construct containing the SV40 promoter. The luciferase constructs were cotransfected with expression vectors of two ubiquitously expressed human transcription factors (TFs), CCCTC-binding factor (CTCF) and upstream stimulatory factor 2 (USF2), into human cell lines and primary cultures of neonate rat cortex and luciferase activity measured. Overexpression with these TFs resulted in differential cell- and allele-specific transcriptional activities of the luciferase constructs. The results of our experiments show that variants of this tandem repeat in the 5' promoter of the DRD4 gene will direct differential reporter gene transcriptional activity in a cell-type-specific manner dependent on the signal pathways activated.
Collapse
Affiliation(s)
- U M Paredes
- MRC Centre for Social, Genetic and Developmental Psychiatry (SGDP), Institute of Psychiatry, King's College, University of London, London.
| | | | | |
Collapse
|
5
|
Paredes UM, Bubb VJ, Haddley K, Macho GA, Quinn JP. Intronic tandem repeat in the serotonin transporter gene in Old World monkeys: a new transcriptional regulator? J Mol Neurosci 2011; 47:401-7. [PMID: 22038691 DOI: 10.1007/s12031-011-9664-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 10/12/2011] [Indexed: 11/28/2022]
Abstract
The serotonin transporter gene (SLC6A4) is heavily involved in the regulation of social behaviour of primates. Old World monkeys (e.g. macaques, baboons) have been used to study interactions between variation in the SLC6A4 gene and behaviour. Correlations of variation at one polymorphism located in the promoter region (known as 5HTTLPR) and variation at SLC6A4 expression levels, serotonin turnover and behaviour has been widely studied. In Old World monkeys, the third intron of the SLC6A4 gene also presents a tandem repeat, which sequence varies across species by a few point substitutions. We predict that in these species, this repeated region also acts as transcriptional regulatory domain and that sequence variation at this polymorphic locus might result in differential levels of expression in gene-environment interactions. For testing these hypotheses, the tandem repeat of Mandrillus sphinx and Cercopithecus aethiops from the third intron were cloned into a reporter gene vector and delivered to either primary cultures of rat neonate frontal cortex or the human cell line (JAr) to analyse their transcriptional activities. These repeated sequences supported significantly different levels of gene expression only when delivered into frontal cortex cultures. Furthermore, we tested in silico if such substitutions could have an effect on their binding profile to RNA- and DNA-binding proteins and on splicing. Taken together our results suggest that the tandem repeat in the third intron of the SLC6A4 gene of Old World monkeys could constitute a second transcriptional regulator as suggested for the 5HTTLPR and therefore contribute to diversification of serotonin-related behaviour in these primates.
Collapse
Affiliation(s)
- Ursula M Paredes
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | | | | | | | | |
Collapse
|