1
|
Huang J, Bao C, Yang C, Qu Y. Dual-tDCS Ameliorates Cerebral Injury and Promotes Motor Function Recovery via cGAS-STING Signaling Pathway in a Rat Model of Ischemic Stroke. Mol Neurobiol 2025; 62:4484-4498. [PMID: 39455539 DOI: 10.1007/s12035-024-04574-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Ischemic stroke is one of the leading causes of death and disability. Dual transcranial direct current stimulation (dual-tDCS) is a promising intervention to treat ischemic stroke, but its efficacy and underlying mechanism remain to be verified. Cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has recently emerged as a key mediator in cerebral injury. However, little is known about the effect of cGAS-STING on neuronal damage in ischemic stroke, and it remains to be studied whether the cGAS-STING pathway is involved in tDCS intervention for ischemic stroke. Therefore, we aimed to investigate whether dual-tDCS can alleviate ischemic brain injury in a rat model of ischemic stroke and if so, whether via cGAS-STING pathway. Middle cerebral artery occlusion (MCAO) was employed to induce a rat model of ischemic stroke. Male SD rats weighing 250-280 g were randomly assigned to the Sham, MCAO, Dual-tDCS, Dual-tDCS + RU.521, and Dual-tDCS + 2'3'-cGAMP groups, with 10 rats in each group completing the experiment. Behavioral, morphological, MRI, and molecular biological methods were performed. We found that the cGAS-STING pathway was activated and expressed in neurons after MCAO. Dual-tDCS improved motor function and infarct volume, inhibited neuronal apoptosis, promoted the expression of neurotrophins (BDNF and NGF), CD31, and VEGF, and suppressed inflammation reaction after MCAO via the cGAS-STING pathway. Taken together, dual-tDCS may improve MCAO-induced brain injury and promote the recovery of motor function, resulting from the inhibition of neuronal apoptosis and inflammation reaction, as well as promotion of the expression of nerve plasticity- and angiogenesis-related proteins, via cGAS-STING pathway.
Collapse
Affiliation(s)
- Jiapeng Huang
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuncha Bao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chunlan Yang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yun Qu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Rostami M, Lee A, Frazer AK, Akalu Y, Siddique U, Pearce AJ, Tallent J, Kidgell DJ. Determining the effects of transcranial alternating current stimulation on corticomotor excitability and motor performance: A sham-controlled comparison of four frequencies. Neuroscience 2025; 568:12-26. [PMID: 39798837 DOI: 10.1016/j.neuroscience.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/11/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Transcranial alternating current stimulation (tACS) modulates brain oscillations and corticomotor plasticity. We examined the effects of four tACS frequencies (20 Hz, 40 Hz, 60 Hz, and 80 Hz) on motor cortex (M1) excitability and motor performance. In a randomised crossover design, 12 adults received 20-minute tACS sessions, with Sham as control. Corticomotor and intracortical excitability was measured up to 60-minutes post-tACS. Motor performance was evaluated using the Grooved Pegboard Test (GPT) and sensorimotor assessments. Our findings demonstrated frequency-dependent modulation of corticomotor excitability based on MEP amplitude. 20 Hz and 40 Hz tACS reduced MEPs, while 60 Hz and 80 Hz increased MEPs. Inhibition (cortical silent period, SP) was reduced across all tACS frequencies compared to Sham, with 20 Hz and 40 Hz showing consistent reductions, 60 Hz showing effects at post-0 and post-30, and 80 Hz at post-60. Furthermore, 60 Hz tACS decreased intracortical inhibition at post-0, while intracortical facilitation increased with 20 Hz and 60 Hz at post-0, and 40 Hz at post-60. Motor performance remained unaffected across frequencies. Regression analyses revealed that shorter SP at 60 min post 60 Hz tACS predicted faster reaction times, while greater MEP amplitudes at 60 min following 80 Hz tACS predicted improved hand dexterity. Overall, beta and gamma tACS frequencies modulate M1 excitability, with consistent effects on SP, suggesting potential use in conditions involving SP elongation, such as stroke and Huntington's disease. These findings highlight 60 Hz tACS as a potential tool for motor rehabilitation therapies.
Collapse
Affiliation(s)
- Mohamad Rostami
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia
| | - Annemarie Lee
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia
| | - Ashlyn K Frazer
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia
| | - Yonas Akalu
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia; Department of Human Physiology School of Medicine University of Gondar Ethiopia
| | - Ummatul Siddique
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia
| | - Alan J Pearce
- School of Health Science Swinburne University of Technology Melbourne Australia
| | - Jamie Tallent
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia; School of Sport Rehabilitation and Exercise Sciences University of Essex Colchester UK
| | - Dawson J Kidgell
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia.
| |
Collapse
|
3
|
Seitz S, Schuster-Amft C, Wandel J, Bonati LH, Parmar K, Gerth HU, Behrendt F. Effect of concurrent action observation, peripheral nerve stimulation and motor imagery on dexterity in patients after stroke: a pilot study. Sci Rep 2024; 14:14858. [PMID: 38937566 PMCID: PMC11211322 DOI: 10.1038/s41598-024-65911-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024] Open
Abstract
Research to improve and expand treatment options for motor impairment after stroke remains an important issue in rehabilitation as the reduced ability to move affected limbs is still a limiting factor in the selection of training content for stroke patients. The combination of action observation and peripheral nerve stimulation is a promising method for inducing increased excitability and plasticity in the primary motor cortex of healthy subjects. In addition, as reported in the literature, the use of action observation and motor imagery in conjunction has an advantage over the use of one or the other alone in terms of the activation of motor-related brain regions. The aim of the pilot study was thus to combine these findings into a multimodal approach and to evaluate the potential impact of the concurrent application of the three methods on dexterity in stroke patients. The paradigm developed accordingly was tested with 10 subacute patients, in whom hand dexterity, thumb-index pinch force and thumb tapping speed were measured for a baseline assessment and directly before and after the single intervention. During the 10-min session, patients were instructed to watch a repetitive thumb-index finger tapping movement displayed on a monitor and to imagine the sensations that would arise from physically performing the same motion. They were also repeatedly electrically stimulated at the wrist on the motorically more affected body side and asked to place their hand behind the monitor for the duration of the session to support integration of the displayed hand into their own body schema. The data provide a first indication of a possible immediate effect of a single application of this procedure on the dexterity in patients after stroke.
Collapse
Affiliation(s)
- Sarina Seitz
- Research Department, Reha Rheinfelden, Rheinfelden, Switzerland
- Institute of Physiotherapy, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Corina Schuster-Amft
- Research Department, Reha Rheinfelden, Rheinfelden, Switzerland
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
- School of Engineering and Computer Science, Bern University of Applied Sciences, Biel, Switzerland
| | - Jasmin Wandel
- Institute for Optimization and Data Analysis, Bern University of Applied Sciences, Biel, Switzerland
| | - Leo H Bonati
- Research Department, Reha Rheinfelden, Rheinfelden, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Katrin Parmar
- Research Department, Reha Rheinfelden, Rheinfelden, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Hans Ulrich Gerth
- Research Department, Reha Rheinfelden, Rheinfelden, Switzerland
- Department of Medicine, University Hospital Münster, Münster, Germany
| | - Frank Behrendt
- Research Department, Reha Rheinfelden, Rheinfelden, Switzerland.
- School of Engineering and Computer Science, Bern University of Applied Sciences, Biel, Switzerland.
| |
Collapse
|
4
|
Meek AW, Greenwell DR, Nishio H, Poston B, Riley ZA. Anodal M1 tDCS enhances online learning of rhythmic timing videogame skill. PLoS One 2024; 19:e0295373. [PMID: 38870202 PMCID: PMC11175489 DOI: 10.1371/journal.pone.0295373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) has been shown to modify excitability of the primary motor cortex (M1) and influence online motor learning. However, research on the effects of tDCS on motor learning has focused predominantly on simplified motor tasks. The purpose of the present study was to investigate whether anodal stimulation of M1 over a single session of practice influences online learning of a relatively complex rhythmic timing video game. Fifty-eight healthy young adults were randomized to either a-tDCS or SHAM conditions and performed 2 familiarization blocks, a 20-minute 5 block practice period while receiving their assigned stimulation, and a post-test block with their non-dominant hand. To assess performance, a performance index was calculated that incorporated timing accuracy elements and incorrect key inputs. The results showed that M1 a-tDCS enhanced the learning of the video game based skill more than SHAM stimulation during practice, as well as overall learning at the post-test. These results provide evidence that M1 a-tDCS can enhance acquisition of skills where quality or success of performance depends on optimized timing between component motions of the skill, which could have implications for the application of tDCS in many real-world contexts.
Collapse
Affiliation(s)
- Anthony W. Meek
- School of Health and Human Sciences, Indiana University Indianapolis, Indianapolis, IN, United States of America
| | - Davin R. Greenwell
- School of Health and Human Sciences, Indiana University Indianapolis, Indianapolis, IN, United States of America
| | - Hayami Nishio
- Department of Human Physiology, University of Oregon, Eugene, WA, United States of America
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States of America
| | - Zachary A. Riley
- School of Health and Human Sciences, Indiana University Indianapolis, Indianapolis, IN, United States of America
| |
Collapse
|
5
|
Lowenthal-Raz J, Liebermann DG, Friedman J, Soroker N. Kinematic descriptors of arm reaching movement are sensitive to hemisphere-specific immediate neuromodulatory effects of transcranial direct current stimulation post stroke. Sci Rep 2024; 14:11971. [PMID: 38796610 PMCID: PMC11127956 DOI: 10.1038/s41598-024-62889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/22/2024] [Indexed: 05/28/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) exerts beneficial effects on motor recovery after stroke, presumably by enhancement of adaptive neural plasticity. However, patients with extensive damage may experience null or deleterious effects with the predominant application mode of anodal (excitatory) stimulation of the damaged hemisphere. In such cases, excitatory stimulation of the non-damaged hemisphere might be considered. Here we asked whether tDCS exerts a measurable effect on movement quality of the hemiparetic upper limb, following just a single treatment session. Such effect may inform on the hemisphere that should be excited. Using a single-blinded crossover experimental design, stroke patients and healthy control subjects were assessed before and after anodal, cathodal and sham tDCS, each provided during a single session of reaching training (repeated point-to-point hand movement on an electronic tablet). Group comparisons of endpoint kinematics at baseline-number of peaks in the speed profile (NoP; smoothness), hand-path deviations from the straight line (SLD; accuracy) and movement time (MT; speed)-disclosed greater NoP, larger SLD and longer MT in the stroke group. NoP and MT revealed an advantage for anodal compared to sham stimulation of the lesioned hemisphere. NoP and MT improvements under anodal stimulation of the non-lesioned hemisphere correlated positively with the severity of hemiparesis. Damage to specific cortical regions and white-matter tracts was associated with lower kinematic gains from tDCS. The study shows that simple descriptors of movement kinematics of the hemiparetic upper limb are sensitive enough to demonstrate gain from neuromodulation by tDCS, following just a single session of reaching training. Moreover, the results show that tDCS-related gain is affected by the severity of baseline motor impairment, and by lesion topography.
Collapse
Affiliation(s)
- Justine Lowenthal-Raz
- Physical Therapy Department, Loewenstein Rehabilitation Medical Center, Ra'anana, Israel
- Neurological Rehabilitation Department, Loewenstein Rehabilitation Medical Center, Ra'anana, Israel
| | - Dario G Liebermann
- Physical Therapy Department, Stanley Steyer School of Health Professions, Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Jason Friedman
- Physical Therapy Department, Stanley Steyer School of Health Professions, Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Nachum Soroker
- Neurological Rehabilitation Department, Loewenstein Rehabilitation Medical Center, Ra'anana, Israel.
- Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
6
|
Gomez-Guerrero G, Ansdell P, Howatson G, Avela J, Walker S. Contraction intensity modulates spinal excitability during transcranial magnetic stimulation-evoked silent period in rectus femoris muscle. Eur J Appl Physiol 2024; 124:1355-1366. [PMID: 38032387 PMCID: PMC11055719 DOI: 10.1007/s00421-023-05367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023]
Abstract
PURPOSE Reduced spinal excitability during the transcranial magnetic stimulation (TMS) silent period (SP) has recently been shown to last longer than previously thought in the upper limbs, as assessed via spinal electrical stimulation. Further, there is reason to expect that contraction intensity affects the duration of the reduced spinal excitability. METHODS This study investigated spinal excitability at different time delays within the TMS-evoked SP in m.rectus femoris. Fifteen participants performed non-fatiguing isometric knee extensions at 25%, 50% and 75% of maximum voluntary contraction (MVC). Lumbar stimulation (LS) induced a lumbar-evoked potential (LEP) of 50% resting M-max. TMS stimulator output induced a SP lasting ~ 200 ms. In each contraction, a LEP (unconditioned) was delivered ~ 2-3 s prior to TMS, which was followed by a second LEP (conditioned) 60, 90, 120 or 150 ms into the silent period. Five contractions were performed at each contraction intensity and for each time delay in random order. RESULTS Compared to the unconditioned LEP, the conditioned LEP amplitude was reduced (- 28 ± 34%, p = 0.007) only at 60 ms during 25% of MVC. Conditioned LEP amplitudes during 50% and 75% of MVC were reduced at 60 ms (- 37 ± 47%, p = 0.009 and - 37 ± 42%, p = 0.005, respectively) and 150 ms (- 30% ± 37%, p = 0.0083 and - 37 ± 43%, p = 0.005, respectively). LEP amplitude at 90 ms during 50% of MVC also reduced (- 25 ± 35%, p = 0.013). CONCLUSION Reduced spinal excitability is extended during 50% and 75% of MVC. In future, paired TMS-LS could be a potential method to understand changes in spinal excitability during SP (at different contraction intensities) when testing various neurophysiological phenomena.
Collapse
Affiliation(s)
- Gonzalo Gomez-Guerrero
- NeuroMuscular Research Center (NMRC), Faculty of Sport and Health Sciences, University of Jyväskylä, Viveca (VIV221), 40700, Jyväskylä, Finland.
| | - Paul Ansdell
- Faculty of Health and Life Science, Northumbria University, Newcastle Upon Tyne, UK
| | - Glyn Howatson
- Faculty of Health and Life Science, Northumbria University, Newcastle Upon Tyne, UK
- Water Research Group, North West University, Potchefstroom, South Africa
| | - Janne Avela
- NeuroMuscular Research Center (NMRC), Faculty of Sport and Health Sciences, University of Jyväskylä, Viveca (VIV221), 40700, Jyväskylä, Finland
| | - Simon Walker
- NeuroMuscular Research Center (NMRC), Faculty of Sport and Health Sciences, University of Jyväskylä, Viveca (VIV221), 40700, Jyväskylä, Finland
| |
Collapse
|
7
|
Wang X, Tian L. Transcranial direct current stimulation for global cognition in Alzheimer's disease: a systemic review and meta-analysis. Neurol Sci 2024; 45:883-895. [PMID: 37914866 DOI: 10.1007/s10072-023-07162-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
This meta-analysis was to investigate the efficacy of transcranial direct current stimulation (tDCS) for general cognitive function in Alzheimer's disease (AD) and to investigate the potential influential factors. A systematic literature retrieval until August 2023 was performed by searching the PubMed, Embase, Web of Science, and Cochrane Library. Therapeutic effects of tDCS were evaluated using standardized mean difference (SMD) and 95% confidence interval (CI). Pooled effects of tDCS on AD patients were calculated immediately after treatment and at follow-up periods. Subgroup analyses were conducted to identify the potential prognostic factors. Eleven studies with 12 trials including 451 cases were included in our systemic review, in which 9 studies with 10 trials using Mini-Mental State Examination (MMSE) scales were included in the meta-analysis. tDCS significantly improved global cognition in AD immediately after the treatment (SMD, 0.46; 95% CI, 0.25-0.66; P<0.0001), but not at the shorter or longer follow-up period. Subgroup analyses suggested significant global cognitive improvement in patients receiving stimulation on temporal lobes instead of left dorsolateral prefrontal cortex, and in cases receiving tDCS with current density ≥ 0.08 mA/cm2 rather than <0.08 mA/cm2. Compared with tDCS plus cognitive training (CT), tDCS without CT produced obvious cognitive enhancement. In addition, patients with lower education were more likely to benefit from tDCS. tDCS was effective in improving general cognition in AD after treatment. However, further randomized trials are warranted to validate its longer-term effects as well as our subgroup analyses results.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan, Shandong, China.
| | - Lu Tian
- Economic Operation Management Office, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
8
|
Song JH, Yim JE. The Synergetic Effect of Plyometric Compound Exercises and Transcranial Direct Current Stimulation on Balance and Physical Function. Healthcare (Basel) 2023; 11:2774. [PMID: 37893849 PMCID: PMC10606722 DOI: 10.3390/healthcare11202774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed to investigate the effects of plyometric compound exercises and Transcranial Direct Current Stimulation (tDCS) on balance and body function in healthy adults. Forty-five students enrolled at Noryangjin Y Academy in Seoul who met the research criteria were equally and randomly divided into the following groups: the Experimental Group I, Experimental Group II, and Control Group. Experimental Groups I and II received tDCS and sham tDCS for 20 min, respectively; both groups performed plyometric compound exercises for 30 min twice weekly for four weeks. The Control Group received sham tDCS for 20 min twice weekly for four weeks. Tests such as the static balance test (Functional Reach Test, FRT), dynamic balance test (Y-Balance Test, Y-BT), power test (vertical jump test and long jump test), and agility test (t-test and side-step test) were conducted on the day of the experiment, before and after the intervention. Experimental Groups I and II significantly improved in static balance, dynamic balance, power, and agility (p < 0.001), whereas the Control Group did not. Experimental Group I showed greater effects on static balance, dynamic balance, power, and agility than Experimental Group II and the Control Group (p < 0.001). In conclusion, plyometric compound exercises + tDCS intervention can be effective for an ordinary person who trains balance and body functions (power and agility); in particular, to improve exercise performance.
Collapse
Affiliation(s)
| | - Jong-Eun Yim
- Department of Physical Therapy, The Graduate School of Sahmyook University, Seoul 01795, Republic of Korea;
| |
Collapse
|
9
|
Shiba T, Mizuta N, Hasui N, Kominami Y, Nakatani T, Taguchi J, Morioka S. Effect of bihemispheric transcranial direct current stimulation on distal upper limb function and corticospinal tract excitability in a patient with subacute stroke: a case study. FRONTIERS IN REHABILITATION SCIENCES 2023; 4:1250579. [PMID: 37732289 PMCID: PMC10507690 DOI: 10.3389/fresc.2023.1250579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
Introduction Activation of the unaffected hemisphere contributes to motor function recovery post stroke in patients with severe upper limb motor paralysis. Transcranial direct current stimulation (tDCS) has been used in stroke rehabilitation to increase the excitability of motor-related areas. tDCS has been reported to improve upper limb motor function; nonetheless, its effects on corticospinal tract excitability and muscle activity patterns during upper limb exercise remain unclear. Additionally, it is unclear whether simultaneously applied bihemispheric tDCS is more effective than anodal tDCS, which stimulates only one hemisphere. This study examined the effects of bihemispheric tDCS training on corticospinal tract excitability and muscle activity patterns during upper limb movements in a patient with subacute stroke. Methods In this single-case retrospective study, the Fugl-Meyer Assessment, Box and Block Test, electromyography, and intermuscular coherence measurement were performed. Intermuscular coherence was calculated at 15-30 Hz, which reflects corticospinal tract excitability. Results The results indicated that bihemispheric tDCS improved the Fugl-Meyer Assessment, Box and Block Test, co-contraction, and intermuscular coherence results, as compared with anodal tDCS. Discussion: These results reveal that upper limb training with bihemispheric tDCS improves corticospinal tract excitability and muscle activity patterns in patients with subacute stroke.
Collapse
Affiliation(s)
- Takahiro Shiba
- Department of Therapy, Takarazuka Rehabilitation Hospital, Medical Corporation SHOWAKAI, Hyogo, Japan
| | - Naomichi Mizuta
- Department of Rehabilitation, Faculty of Health Sciences, Nihon Fukushi University, Aichi, Japan
- Neurorehabilitation Research Center, Kio University, Nara, Japan
| | - Naruhito Hasui
- Department of Therapy, Takarazuka Rehabilitation Hospital, Medical Corporation SHOWAKAI, Hyogo, Japan
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, Nara, Japan
| | - Yohei Kominami
- Department of Therapy, Takarazuka Rehabilitation Hospital, Medical Corporation SHOWAKAI, Hyogo, Japan
| | - Tomoki Nakatani
- Department of Therapy, Takarazuka Rehabilitation Hospital, Medical Corporation SHOWAKAI, Hyogo, Japan
| | - Junji Taguchi
- Department of Therapy, Takarazuka Rehabilitation Hospital, Medical Corporation SHOWAKAI, Hyogo, Japan
| | - Shu Morioka
- Neurorehabilitation Research Center, Kio University, Nara, Japan
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, Nara, Japan
| |
Collapse
|
10
|
Capozio A, Ichiyama R, Astill SL. The acute effects of motor imagery and cervical transcutaneous electrical stimulation on manual dexterity and neural excitability. Neuropsychologia 2023; 187:108613. [PMID: 37285931 DOI: 10.1016/j.neuropsychologia.2023.108613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/01/2023] [Accepted: 06/04/2023] [Indexed: 06/09/2023]
Abstract
Transcutaneous electrical stimulation (TCES) of the spinal cord induces changes in spinal excitability. Motor imagery (MI) elicits plasticity in the motor cortex. It has been suggested that plasticity occurring in both cortical and spinal circuits might underlie the improvements in performance observed when training is combined with stimulation. We investigated the acute effects of cervical TCES and MI delivered in isolation or combined on corticospinal excitability, spinal excitability and manual performance. Participants (N = 17) completed three sessions during which they engaged in 20 min of: 1) MI, listening to an audio recording instructing to complete the purdue pegboard test (PPT) of manual performance; 2) TCES at the spinal level of C5-C6; 3) MI + TCES, listening to the MI script while receiving TCES. Before and after each condition, we measured corticospinal excitability via transcranial magnetic stimulation (TMS) at 100% and 120% motor threshold (MT), spinal excitability via single-pulse TCES and manual performance with the PPT. Manual performance was not improved by MI, TCES or MI + TCES. Corticospinal excitability assessed at 100% MT intensity increased in hand and forearm muscles after MI and MI + TCES, but not after just TCES. Conversely, corticospinal excitability assessed at 120% MT intensity was not affected by any of the conditions. The effects on spinal excitability depended on the recorded muscle: it increased after all conditions in biceps brachii (BB) and flexor carpi radialis (FCR); did not change after any conditions in the abductor pollicis brevis (APB); increased after TCES and MI + TCES, but not after just MI in the extensor carpi radialis (ECR). These findings suggest that MI and TCES increase the excitability of the central nervous system through different but complementary mechanisms, inducing changes in the excitability of spinal and cortical circuits. MI and TCES can be used in combination to modulate spinal/cortical excitability, an approach particularly relevant for people with limited residual dexterity who cannot engage in motor practice.
Collapse
Affiliation(s)
- Antonio Capozio
- School of Biomedical Sciences, University of Leeds, United Kingdom.
| | - Ronaldo Ichiyama
- School of Biomedical Sciences, University of Leeds, United Kingdom
| | - Sarah L Astill
- School of Biomedical Sciences, University of Leeds, United Kingdom
| |
Collapse
|
11
|
Lee H, Lee JH, Lee TL, Ko DK, Kang N. Dual-hemisphere anodal transcranial direct current stimulation improves bilateral motor synergies. Front Psychol 2023; 14:1211034. [PMID: 37546450 PMCID: PMC10400310 DOI: 10.3389/fpsyg.2023.1211034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/15/2023] [Indexed: 08/08/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is one of the non-invasive brain stimulation techniques that can improve motor functions. As bimanual motor actions require high motor cortical activations between hemispheres, applying bilateral anodal stimulation on left and right sides of primary motor cortex (M1) can improve for improvements in bimanual motor tasks. This study investigated which bilateral tDCS protocol effectively improves bimanual hand-grip force control capabilities in healthy young adults. We used three different bilateral tDCS protocols: (a) dual-anodal stimulation on the M1 of bilateral hemispheres (Bi-AA), (b) anodal-cathodal stimulation on the M1 of dominant and nondominant hemispheres (Bi-AC), and (c) sham stimulation (Sham). The results indicated that applying the Bi-AA significantly improved bilateral motor synergies estimated by uncontrolled manifold analysis relative to Sham. However, these differences were not observed in the comparison between Bi-AA and Bi-AC as well as between Bi-AC and Sham. These findings suggest that facilitating motor cortical activations between both hemispheres may be an additional option for advancing interlimb motor coordination patterns.
Collapse
Affiliation(s)
- Hanall Lee
- Department of Human Movement Science, Incheon National University, Incheon, Republic of Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, Republic of Korea
| | - Joon Ho Lee
- Department of Human Movement Science, Incheon National University, Incheon, Republic of Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, Republic of Korea
| | - Tae Lee Lee
- Department of Human Movement Science, Incheon National University, Incheon, Republic of Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, Republic of Korea
| | - Do-Kyung Ko
- Department of Human Movement Science, Incheon National University, Incheon, Republic of Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, Republic of Korea
| | - Nyeonju Kang
- Department of Human Movement Science, Incheon National University, Incheon, Republic of Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, Republic of Korea
- Division of Sport Science, Health Promotion Center, Sport Science Institute, Incheon National University, Incheon, Republic of Korea
| |
Collapse
|
12
|
Watanabe A, Sawamura D, Nakazono H, Tokikuni Y, Miura H, Sugawara K, Fuyama K, Tohyama H, Yoshida S, Sakai S. Transcranial direct current stimulation to the left dorsolateral prefrontal cortex enhances early dexterity skills with the left non-dominant hand: a randomized controlled trial. J Transl Med 2023; 21:143. [PMID: 36823635 PMCID: PMC9951449 DOI: 10.1186/s12967-023-03989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND The left dorsolateral prefrontal cortex (DLPFC) is involved in early-phase manual dexterity skill acquisition when cognitive control processes, such as integration and complexity demands, are required. However, the effectiveness of left DLPFC transcranial direct current stimulation (tDCS) on early-phase motor learning and whether its effectiveness depends on the cognitive demand of the target task are unclear. This study aimed to investigate whether tDCS over the left DLPFC improves non-dominant hand dexterity performance and determine if its efficacy depends on the cognitive demand of the target task. METHODS In this randomized, double-blind, sham-controlled trial, 70 healthy, right-handed, young adult participants were recruited. They were randomly allocated to the active tDCS (2 mA for 20 min) or sham groups and repeatedly performed the Purdue Pegboard Test (PPT) left-handed peg task and left-handed assembly task three times: pre-tDCS, during tDCS, and post tDCS. RESULTS The final sample comprised 66 healthy young adults (mean age, 22.73 ± 1.57 years). There were significant interactions between group and time in both PPT tasks, indicating significantly higher performance of those in the active tDCS group than those in the sham group post tDCS (p < 0.001). Moreover, a greater benefit was observed in the left-handed assembly task performance than in the peg task performance (p < 0.001). No significant correlation between baseline performance and benefits from tDCS was observed in either task. CONCLUSIONS These results demonstrated that prefrontal tDCS significantly improved early-phase manual dexterity skill acquisition, and its benefits were greater for the task with high cognitive demands. These findings contribute to a deeper understanding of the underlying neurophysiological mechanisms of the left DLPFC in the modulation of early-phase dexterity skill acquisition. TRIAL REGISTRATION This study was registered in the University Hospital Medical Information Network Clinical Trial Registry in Japan (UMIN000046868), Registered February 8, 2022 https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000053467.
Collapse
Affiliation(s)
- Akihiro Watanabe
- grid.39158.360000 0001 2173 7691Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812 Japan
| | - Daisuke Sawamura
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan.
| | - Hisato Nakazono
- grid.443459.b0000 0004 0374 9105Department of Occupational Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, 814-0001 Japan
| | - Yukina Tokikuni
- grid.39158.360000 0001 2173 7691Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812 Japan
| | - Hiroshi Miura
- grid.39158.360000 0001 2173 7691Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812 Japan
| | - Kazuhiro Sugawara
- grid.263171.00000 0001 0691 0855Department of Physical Therapy, Sapporo Medical University, Sapporo, 060-8556 Japan
| | - Kanako Fuyama
- grid.412167.70000 0004 0378 6088Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, 060-8648 Japan
| | - Harukazu Tohyama
- grid.39158.360000 0001 2173 7691Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812 Japan
| | - Susumu Yoshida
- grid.412021.40000 0004 1769 5590Department of Rehabilitation Sciences, Health Sciences University of Hokkaido, Tobetsu, 061-0293 Japan
| | - Shinya Sakai
- grid.39158.360000 0001 2173 7691Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812 Japan
| |
Collapse
|
13
|
Wang Y, Wang J, Zhang QF, Xiao KW, Wang L, Yu QP, Xie Q, Poo MM, Wen Y. Neural Mechanism Underlying Task-Specific Enhancement of Motor Learning by Concurrent Transcranial Direct Current Stimulation. Neurosci Bull 2023; 39:69-82. [PMID: 35908004 PMCID: PMC9849633 DOI: 10.1007/s12264-022-00901-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/10/2022] [Indexed: 01/22/2023] Open
Abstract
The optimal protocol for neuromodulation by transcranial direct current stimulation (tDCS) remains unclear. Using the rotarod paradigm, we found that mouse motor learning was enhanced by anodal tDCS (3.2 mA/cm2) during but not before or after the performance of a task. Dual-task experiments showed that motor learning enhancement was specific to the task accompanied by anodal tDCS. Studies using a mouse model of stroke induced by middle cerebral artery occlusion showed that concurrent anodal tDCS restored motor learning capability in a task-specific manner. Transcranial in vivo Ca2+ imaging further showed that anodal tDCS elevated and cathodal tDCS suppressed neuronal activity in the primary motor cortex (M1). Anodal tDCS specifically promoted the activity of task-related M1 neurons during task performance, suggesting that elevated Hebbian synaptic potentiation in task-activated circuits accounts for the motor learning enhancement. Thus, application of tDCS concurrent with the targeted behavioral dysfunction could be an effective approach to treating brain disorders.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Lingang Laboratory, Shanghai, 201210, China
| | - Jixian Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qing-Fang Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ke-Wei Xiao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Liang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qing-Ping Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qing Xie
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mu-Ming Poo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Lingang Laboratory, Shanghai, 201210, China.
| | - Yunqing Wen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
14
|
Kaminski E, Maudrich T, Bassler P, Ordnung M, Villringer A, Ragert P. tDCS over the primary motor cortex contralateral to the trained hand enhances cross-limb transfer in older adults. Front Aging Neurosci 2022; 14:935781. [PMID: 36204550 PMCID: PMC9530461 DOI: 10.3389/fnagi.2022.935781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Transferring a unimanual motor skill to the untrained hand, a phenomenon known as cross-limb transfer, was shown to deteriorate as a function of age. While transcranial direct current stimulation (tDCS) ipsilateral to the trained hand facilitated cross-limb transfer in older adults, little is known about the contribution of the contralateral hemisphere to cross-limb transfer. In the present study, we investigated whether tDCS facilitates cross-limb transfer in older adults when applied over the motor cortex (M1) contralateral to the trained hand. Furthermore, the study aimed at investigating short-term recovery of tDCS-associated cross-limb transfer. In a randomized, double-blinded, sham-controlled setting, 30 older adults (67.0 ± 4.6 years, 15 female) performed a short grooved-pegboard training using their left hand, while anodal (a-tDCS) or sham-tDCS (s-tDCS) was applied over right M1 for 20 min. Left (LHtrained) - and right-hand (RHuntrained) performance was tested before and after training and in three recovery measures 15, 30 and 45 min after training. LHtrained performance improved during both a-tDCS and s-tDCS and improvements persisted during recovery measures for at least 45 min. RHuntrained performance improved only following a-tDCS but not after s-tDCS and outlasted the stimulation period for at least 45 min. Together, these data indicate that tDCS over the M1 contralateral to the trained limb is capable of enhancing cross-limb transfer in older adults, thus showing that cross-limb transfer is mediated not only by increased bi-hemispheric activation.
Collapse
Affiliation(s)
- Elisabeth Kaminski
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- *Correspondence: Elisabeth Kaminski,
| | - Tom Maudrich
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Pauline Bassler
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Madeleine Ordnung
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Patrick Ragert
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
15
|
Wilson MA, Greenwell D, Meek AW, Poston B, Riley ZA. Neuroenhancement of a dexterous motor task with Anodal tDCS. Brain Res 2022; 1790:147993. [PMID: 35760153 DOI: 10.1016/j.brainres.2022.147993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022]
Abstract
Motor skill learning can cause structural and functional changes in the primary motor cortex (M1) leading to cortical plasticity that can be associated with the performance change during the motor skill that is practiced. Similarly, anodal transcranial direct current stimulation (a-tDCS) has been shown to facilitate and enhance plasticity in M1, causing even greater motor skill improvement. By using a fine motor task (O'Connor Tweezer Dexterity Task) in combination with a-tDCS we theorized that a-tDCS could increase the speed of skill acquisition. Forty subjects were recruited and randomized into either a-tDCS or SHAM groups. Subjects completed a single session performing the O'Connor Tweezer Dexterity Task with their non-dominant hand while receiving either a-tDCS stimulation or SHAM stimulation of the hand region of M1. The time it took to place 50- pins was assessed before and after 20 minutes of practice with a-tDCS or SHAM. We found that both groups had similar pre-test performance (P=0.94) and they both had a similar amount of practice pins placed (P=0.69). However, the a-tDCS group had a greater improvement than the SHAM group (p=0.028) for overall learning from pretest to posttest. These results suggest that a-tDCS improved the rate of motor learning and fine motor task performance. These results are in line with previous research and demonstrate that a-tDCS applied to M1 can increase manual precision and steadiness needed for delicate tasks and could have implications in the advancement of surgical training as well as in athletic, military, and other occupational settings.
Collapse
Affiliation(s)
- Michaela A Wilson
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Davin Greenwell
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Anthony W Meek
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Zachary A Riley
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
16
|
Ziegler DA, Anguera JA, Gallen CL, Hsu WY, Wais PE, Gazzaley A. Leveraging technology to personalize cognitive enhancement methods in aging. NATURE AGING 2022; 2:475-483. [PMID: 35873177 PMCID: PMC9302894 DOI: 10.1038/s43587-022-00237-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
As population aging advances at an increasing rate, efforts to help people maintain or improve cognitive function late in life are critical. Although some studies have shown promise, the question of whether cognitive training is an effective tool for improving general cognitive ability remains incompletely explored, and study results to date have been inconsistent. Most approaches to cognitive enhancement in older adults have taken a 'one size fits all' tack, as opposed to tailoring interventions to the specific needs of individuals. In this Perspective, we argue that modern technology has the potential to enable large-scale trials of public health interventions to enhance cognition in older adults in a personalized manner. Technology-based cognitive interventions that rely on closed-loop systems can be tailored to individuals in real time and have the potential for global testing, extending their reach to large and diverse populations of older adults. We propose that the future of cognitive enhancement in older adults will rely on harnessing new technologies in scientifically informed ways.
Collapse
Affiliation(s)
- David A. Ziegler
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Neuroscape, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Correspondence should be addressed to David A. Ziegler or Adam Gazzaley. ;
| | - Joaquin A. Anguera
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Neuroscape, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Courtney L. Gallen
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Neuroscape, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Wan-Yu Hsu
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Peter E. Wais
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Neuroscape, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Adam Gazzaley
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Neuroscape, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Correspondence should be addressed to David A. Ziegler or Adam Gazzaley. ;
| |
Collapse
|
17
|
Le B, Alonzo A, Bull M, Kabourakis M, Martin D, Loo C. A Clinical Case Series of Acute and Maintenance Home Administered Transcranial Direct Current Stimulation in Treatment-Resistant Depression. J ECT 2022; 38:e11-e19. [PMID: 35613011 DOI: 10.1097/yct.0000000000000813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Transcranial direct current stimulation (tDCS) is a noninvasive neurostimulation technique being translated clinically for the treatment of depression. There is limited research documenting the longer-term effectiveness and safety of tDCS treatment. This case series is the first report of remotely supervised, home-administered tDCS (HA-tDCS) for depression in a clinical setting. METHODS We report clinical, cognitive, and safety outcomes from 16 depressed patients who received acute and/or maintenance HA-tDCS. We retrospectively examined clinical data from up to 2.5 years of treatment. Descriptive statistics are reported to document patient outcomes. RESULTS Twelve patients received acute treatment for a current depressive episode and 4 commenced tDCS maintenance therapy after responding to ECT or repetitive transcranial magnetic stimulation (rTMS). The cohort was highly treatment-resistant wherein 15 of 16 patients failed 3 trials or more of antidepressant medication in the current episode, and 6 patients failed to gain significant benefit from prior ECT or rTMS. Five of 12 patients responded to acute tDCS within 6 weeks, and 9 patients who received tDCS for more than 12 weeks maintained improvements over several months. Cognitive tests showed no evidence of impairments in cognitive outcomes after up to 2 years of treatment. Two patients were withdrawn from treatment because of blurred vision or exacerbation of tinnitus. Transcranial direct current stimulation was otherwise safe and well tolerated. CONCLUSIONS Transcranial direct current stimulation given for at least 6 weeks may be of clinical benefit even in treatment-resistant depression. Results provide support for long-term effectiveness, safety, and feasibility of remotely supervised HA-tDCS and suggest a role for maintenance tDCS after acute treatment with tDCS, rTMS, or ECT.
Collapse
Affiliation(s)
- Brandon Le
- From the School of Psychiatry, University of New South Wales/ Black Dog Institute, Randwick, NSW, Australia
| | | | | | | | | | | |
Collapse
|
18
|
Matsuo H, Kubota M, Hori Y, Izubuchi Y, Takahashi A, Watanabe S, Nakajima H, Matsumine A. Combining transcranial direct current stimulation and peripheral electrical stimulation to improve upper limb function in a patient with acute central cord syndrome: a case report. J Int Med Res 2022; 50:3000605221083248. [PMID: 35352598 PMCID: PMC8973073 DOI: 10.1177/03000605221083248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We report the immediate improvement of weakened muscles after combined treatment with transcranial direct current stimulation (tDCS) and peripheral electrical stimulation (PES) in a patient with acute central cord syndrome (CCS) who presented with severe upper limb motor dysfunction. A 70-year-old man sustained CCS with severe motor deficits in the left upper limb, which did not improve with conventional training until 6 days after injury. On the seventh day after the injury, the left upper limb was targeted with combined tDCS (1 mA for 20 minutes/day, anode on the right, cathode on the left) and PES (deltoid and wrist extensors, 20 minutes/day at the motor threshold), and his performance score immediately improved from 0 to 6 on the Box and Block test. After four sessions, the left upper limb function improved to 32 on the Box and Block test, and manual muscle test scores of the stimulated deltoid and wrist extensors improved from 1 to 2. This improvement of the left upper limb led to improved self-care activities such as eating and changing clothes. Exercise combined with tDCS and PES may be a novel treatment for upper limb movement deficits after acute CCS.
Collapse
Affiliation(s)
- Hideaki Matsuo
- Division of Physical Therapy and Rehabilitation Medicine, University of Fukui Hospital, Fukui, Japan
| | - Masafumi Kubota
- Division of Physical Therapy and Rehabilitation Medicine, University of Fukui Hospital, Fukui, Japan.,Department of Physical Therapy, Graduate Course of Rehabilitation Science, School of Health Sciences, College of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasue Hori
- Division of Physical Therapy and Rehabilitation Medicine, University of Fukui Hospital, Fukui, Japan
| | - Yuya Izubuchi
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Ai Takahashi
- Division of Physical Therapy and Rehabilitation Medicine, University of Fukui Hospital, Fukui, Japan.,Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Shuji Watanabe
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hideaki Nakajima
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Akihiko Matsumine
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
19
|
Temporal Interference (TI) Stimulation Boosts Functional Connectivity in Human Motor Cortex: A Comparison Study with Transcranial Direct Current Stimulation (tDCS). Neural Plast 2022; 2022:7605046. [PMID: 35140781 PMCID: PMC8820942 DOI: 10.1155/2022/7605046] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/30/2021] [Accepted: 12/14/2021] [Indexed: 01/10/2023] Open
Abstract
Temporal interference (TI) could stimulate deep motor cortex and induce movement without affecting the overlying cortex in previous mouse studies. However, there is still lack of evidence on potential TI effects in human studies. To fill this gap, we collected resting-state functional magnetic resonance imaging data on 40 healthy young participants both before and during TI stimulation on the left primary motor cortex (M1). We also chose a widely used simulation approach (tDCS) as a baseline condition. In the stimulation session, participants were randomly allocated to 2 mA TI or tDCS for 20 minutes. We used a seed-based whole brain correlation analysis method to quantify the strength of functional connectivity among different brain regions. Our results showed that both TI and tDCS significantly boosted functional connection strength between M1 and secondary motor cortex (premotor cortex and supplementary motor cortex). This is the first time to demonstrate substantial stimulation effect of TI in the human brain.
Collapse
|
20
|
Giuffre A, Zewdie E, Wrightson JG, Cole L, Carlson HL, Kuo HC, Babwani A, Kirton A. Effects of Transcranial Direct Current Stimulation and High-Definition Transcranial Direct Current Stimulation Enhanced Motor Learning on Robotic Transcranial Magnetic Stimulation Motor Maps in Children. Front Hum Neurosci 2021; 15:747840. [PMID: 34690726 PMCID: PMC8526891 DOI: 10.3389/fnhum.2021.747840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Conventional transcranial direct current stimulation (tDCS) and high-definition tDCS (HD-tDCS) may improve motor learning in children. Mechanisms are not understood. Neuronavigated robotic transcranial magnetic stimulation (TMS) can produce individualised maps of primary motor cortex (M1) topography. We aimed to determine the effects of tDCS- and HD-tDCS-enhanced motor learning on motor maps. Methods: Typically developing children aged 12-18 years were randomised to right M1 anodal tDCS, HD-tDCS, or Sham during training of their left-hand on the Purdue Pegboard Task (PPT) over 5 days. Bilateral motor mapping was performed at baseline (pre), day 5 (post), and 6-weeks retention time (RT). Primary muscle was the first dorsal interosseous (FDI) with secondary muscles of abductor pollicis brevis (APB) and adductor digiti minimi (ADM). Primary mapping outcomes were volume (mm2/mV) and area (mm2). Secondary outcomes were centre of gravity (COG, mm) and hotspot magnitude (mV). Linear mixed-effects modelling was employed to investigate effects of time and stimulation type (tDCS, HD-tDCS, Sham) on motor map characteristics. Results: Twenty-four right-handed participants (median age 15.5 years, 52% female) completed the study with no serious adverse events or dropouts. Quality maps could not be obtained in two participants. No effect of time or group were observed on map area or volume. LFDI COG (mm) differed in the medial-lateral plane (x-axis) between tDCS and Sham (p = 0.038) from pre-to-post mapping sessions. Shifts in map COG were also observed for secondary left-hand muscles. Map metrics did not correlate with behavioural changes. Conclusion: Robotic TMS mapping can safely assess motor cortex neurophysiology in children undergoing motor learning and neuromodulation interventions. Large effects on map area and volume were not observed while changes in COG may occur. Larger controlled studies are required to understand the role of motor maps in interventional neuroplasticity in children.
Collapse
Affiliation(s)
- Adrianna Giuffre
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ephrem Zewdie
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - James G Wrightson
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lauran Cole
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada
| | - Helen L Carlson
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Hsing-Ching Kuo
- Department of Physical Medicine & Rehabilitation, University of California, Davis, Sacramento, CA, United States
| | - Ali Babwani
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada
| | - Adam Kirton
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
21
|
Simultaneous transcranial and transcutaneous spinal direct current stimulation to enhance athletic performance outcome in experienced boxers. Sci Rep 2021; 11:19722. [PMID: 34611236 PMCID: PMC8492629 DOI: 10.1038/s41598-021-99285-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/16/2021] [Indexed: 11/08/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is among the rapidly growing experimental approaches to enhance athletic performance. Likewise, novel investigations have recently addressed the effects of transcutaneous spinal Direct Current Stimulation (tsDCS) on motor functions such as reduced reaction time. The impact of tDCS, and tsDCS might be attributed to altered spontaneous neural activity and membrane potentials of cortical and corticomotoneuronal cells, respectively. Given the paucity of empirical research in non-invasive brain stimulation in sports neuroscience, especially in boxing, the present investigation studied the effects of neuromodulation on motor and cognitive functions of professional boxers. The study sample comprised 14 experienced male boxers who received random sequential real or sham direct current stimulation over the primary motor cortex (M1) and paraspinal region (corresponding to the hand area) in two sessions with a 72-h interval. Unlike sham stimulation, real stimulation improved selective attention and reaction time of the experienced boxers [enhanced selective attention (p < 0.0003), diminished right hand (p < 0.0001) and left hand reaction time (p < 0.0006)]. Meanwhile, the intervention left no impact on the participants' cognitive functions (p > 0.05). We demonstrated that simultaneous stimulation of the spinal cord and M1 can improve the performance of experienced boxers through neuromodulation. The present study design may be extended to examine the role of neurostimulation in other sport fields.
Collapse
|
22
|
Flix-Díez L, Delicado-Miralles M, Gurdiel-Álvarez F, Velasco E, Galán-Calle M, Lerma Lara S. Reversed Polarity bi-tDCS over M1 during a Five Days Motor Task Training Did Not Influence Motor Learning. A Triple-Blind Clinical Trial. Brain Sci 2021; 11:brainsci11060691. [PMID: 34070256 PMCID: PMC8225177 DOI: 10.3390/brainsci11060691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 12/04/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been investigated as a way of improving motor learning. Our purpose was to explore the reversal bilateral tDCS effects on manual dexterity training, during five days, with the retention component measured after 5 days to determine whether somatosensory effects were produced. In this randomized, triple-blind clinical trial, 28 healthy subjects (14 women) were recruited and randomized into tDCS and placebo groups, although only 23 participants (13 women) finished the complete protocol. Participants received the real or placebo treatment during five consecutive days, while performing a motor dexterity training program of 20 min. The motor dexterity and the sensitivity of the hand were assessed pre- and post-day 1, post 5 days of training, and 5 days after training concluded. Training improved motor dexterity, but tDCS only produced a tendency to improve retention. The intervention did not produce changes in the somatosensory variables assessed. Thus, reversal bi-tDCS had no effects during motor learning on healthy subjects, but it could favor the retention of the motor skills acquired. These results do not support the cooperative inter-hemispheric model.
Collapse
Affiliation(s)
- Laura Flix-Díez
- Department of Physical Therapy, University of Valencia (UV), 46003 Valencia, Spain;
| | - Miguel Delicado-Miralles
- Instituto de Neurociencias de Alicante (UMH-CSIC), 03550 Sant Joant d’Alacant, Spain; (M.D.-M.); (E.V.)
| | - Francisco Gurdiel-Álvarez
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine University of Rey Juan Carlos, 28922 Alcorcón, Spain;
| | - Enrique Velasco
- Instituto de Neurociencias de Alicante (UMH-CSIC), 03550 Sant Joant d’Alacant, Spain; (M.D.-M.); (E.V.)
| | - María Galán-Calle
- Health Sciences Faculty, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain;
| | - Sergio Lerma Lara
- Health Sciences Faculty, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain;
- Motion in Brains Research Group, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain
- Correspondence: ; Tel.: +34-91-5035900 (ext. 255)
| |
Collapse
|
23
|
Pellegrini M, Zoghi M, Jaberzadeh S. Can genetic polymorphisms predict response variability to anodal transcranial direct current stimulation of the primary motor cortex? Eur J Neurosci 2020; 53:1569-1591. [PMID: 33048398 DOI: 10.1111/ejn.15002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 09/17/2020] [Accepted: 10/02/2020] [Indexed: 11/28/2022]
Abstract
Genetic mediation of cortical plasticity and the role genetic variants play in previously observed response variability to transcranial direct current stimulation (tDCS) have become important issues in the tDCS literature in recent years. This study investigated whether inter-individual variability to tDCS was in-part genetically mediated. In 61 healthy males, anodal-tDCS (a-tDCS) and sham-tDCS were administered to the primary motor cortex at 1 mA for 10-min via 6 × 4 cm active and 7 × 5 cm return electrodes. Twenty-five single-pulse transcranial magnetic stimulation (TMS) motor evoked potentials (MEP) were recorded to represent corticospinal excitability (CSE). Twenty-five paired-pulse MEPs were recorded with 3 ms inter-stimulus interval (ISI) to assess intracortical inhibition (ICI) via short-interval intracranial inhibition (SICI) and 10 ms ISI for intracortical facilitation (ICF). Saliva samples were tested for specific genetic polymorphisms in genes encoding for excitatory and inhibitory neuroreceptors. Individuals were sub-grouped based on a pre-determined threshold and via statistical cluster analysis. Two distinct subgroups were identified, increases in CSE following a-tDCS (i.e. Responders) and no increase or even reductions in CSE (i.e. Non-responders). No changes in ICI or ICF were reported. No relationships were reported between genetic polymorphisms in excitatory receptor genes and a-tDCS responders. An association was reported between a-tDCS responders and GABRA3 gene polymorphisms encoding for GABA-A receptors suggesting potential relationships between GABA-A receptor variations and capacity to undergo tDCS-induced cortical plasticity. In the largest tDCS study of its kind, this study presents an important step forward in determining the contribution genetic factors play in previously observed inter-individual variability to tDCS.
Collapse
Affiliation(s)
- Michael Pellegrini
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Maryam Zoghi
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, Discipline of Physiotherapy, La Trobe University, Melbourne, Australia
| | - Shapour Jaberzadeh
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| |
Collapse
|
24
|
Chiou SY, Morris L, Gou W, Alexander E, Gay E. Motor cortical circuits contribute to crossed facilitation of trunk muscles induced by rhythmic arm movement. Sci Rep 2020; 10:17067. [PMID: 33051482 PMCID: PMC7555543 DOI: 10.1038/s41598-020-74005-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
Training of one limb improves performance of the contralateral, untrained limb, a phenomenon known as cross transfer. It has been used for rehabilitation interventions, i.e. mirror therapy, in people with neurologic disorders. However, it remains unknown whether training of the upper limb can induce the cross-transfer effect to the trunk muscles. Using transcranial magnetic stimulation over the primary motor cortex (M1) we examined motor evoked potentials (MEPs) in the contralateral erector spinae (ES) muscle before and after 30 min of unilateral arm cycling in healthy volunteers. ES MEPs were increased after the arm cycling. To understand the origin of this facilitatory effect, we examined short-interval intracrotical inhibition (SICI) and cervicomedullary MEPs (CMEPs) in neural populations controlling in the ES muscle. Notably, SICI reduced after the arm cycling, while CMEPs remained the same. Using bilateral transcranial direct current stimulation (tDCS) in conjunction with 20 min of the arm cycling, the amplitude of ES MEPs increased to a similar extent as with 30 min of the arm cycling alone. These findings demonstrate that a single session of unilateral arm cycling induces short-term plasticity in corticospinal projections to the trunk muscle in healthy humans. The changes are likely driven by cortical mechanisms.
Collapse
Affiliation(s)
- Shin-Yi Chiou
- School of Sport, Exercise, Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. .,Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| | - Laura Morris
- School of Sport, Exercise, Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Weidong Gou
- School of Sport, Exercise, Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Emma Alexander
- School of Sport, Exercise, Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Eliot Gay
- School of Sport, Exercise, Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
25
|
Bashir S, Ahmad S, Alatefi M, Hamza A, Sharaf M, Fecteau S, Yoo WK. Effects of anodal transcranial direct current stimulation on motor evoked potentials variability in humans. Physiol Rep 2020; 7:e14087. [PMID: 31301123 PMCID: PMC6640590 DOI: 10.14814/phy2.14087] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/24/2022] Open
Abstract
Motor evoked potentials (MEPs) obtained from transcranial magnetic stimulation (TMS) allow corticospinal excitability (CSE) to be measured in the human primary motor cortex (M1). CSE responses to transcranial direct current stimulation (tDCS) protocols are highly variable. Here, we tested the reproducibility and reliability of individual MEPs following a common anodal tDCS protocol. In this study, 32 healthy subjects received anodal tDCS stimulation over the left M1 for three durations (tDCS‐T5, tDCS‐T10, and tDCS‐T20 min) on separate days in a crossover‐randomized order. After the resting motor threshold (RMT) was determined for the contralateral first dorsal interosseous muscle, 15 single pulses 4–8 sec apart at an intensity of 120% RMT were delivered to the left M1 to determine the baseline MEP amplitude at T0, T5, T10, T20, T30, T40, T50, and T60 min after stimulation for each durations. During TMS delivery, 3D images of the participant's cortex and hot spot were visualized for obtaining MEPs from same position. Our findings revealed that there was a significant MEPs improvement at T0 (P = 0.01) after 10 min of anodal stimulation. After the 20‐min stimulation duration, MEPs differed specifically at T0, T5, T30 min (P < 0.05). This indicates that tDCS is a promising tool to improve MEPs. Our observed variability in response to the tDCS protocol is consistent with other noninvasive brain stimulation studies.
Collapse
Affiliation(s)
- Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Shafiq Ahmad
- Department of Industrial Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Moath Alatefi
- Department of Industrial Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Ali Hamza
- Department of Electrical Engineering, National University of Computer and Emerging Sciences, Lahore, Pakistan
| | - Mohamed Sharaf
- Department of Industrial Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | | | - Woo Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Anyang, South Korea.,Hallym Institute for Translational Genomics & Bioinformatics, Hallym University Sacred Heart Hospital, Anyang, South Korea
| |
Collapse
|
26
|
Kuo IJ, Tang CW, Tsai YA, Tang SC, Lin CJ, Hsu SP, Liang WK, Juan CH, Zich C, Stagg CJ, Lee IH. Neurophysiological signatures of hand motor response to dual-transcranial direct current stimulation in subacute stroke: a TMS and MEG study. J Neuroeng Rehabil 2020; 17:72. [PMID: 32527268 PMCID: PMC7291576 DOI: 10.1186/s12984-020-00706-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/01/2020] [Indexed: 11/11/2022] Open
Abstract
Background Dual transcranial direct current stimulation (tDCS) to the bilateral primary motor cortices (M1s) has potential benefits in chronic stroke, but its effects in subacute stroke, when behavioural effects might be expected to be greater, have been relatively unexplored. Here, we examined the neurophysiological effects and the factors influencing responsiveness of dual-tDCS in subacute stroke survivors. Methods We conducted a randomized sham-controlled crossover study in 18 survivors with first-ever, unilateral subcortical ischaemic stroke 2–4 weeks after stroke onset and 14 matched healthy controls. Participants had real dual-tDCS (with an ipsilesional [right for controls] M1 anode and a contralesional M1 [left for controls] cathode; 2 mA for 20mins) and sham dual-tDCS on separate days, with concurrent paretic [left for controls] hand exercise. Using transcranial magnetic stimulation (TMS) and magnetoencephalography (MEG), we recorded motor evoked potentials (MEPs), the ipsilateral silent period (iSP), short-interval intracortical inhibition, and finger movement-related cortical oscillations before and immediately after tDCS. Results Stroke survivors had decreased excitability in ipsilesional M1 with a relatively excessive transcallosal inhibition from the contralesional to ipsilesional hemisphere at baseline compared with controls, as quantified by decreased MEPs and increased iSP duration. Dual-tDCS led to increased MEPs and decreased iSP duration in ipsilesional M1. The magnitude of the tDCS-induced MEP increase in stroke survivors was predicted by baseline contralesional-to-ipsilesional transcallosal inhibition (iSP) ratio. Baseline post-movement synchronization in α-band activity in ipsilesional M1 was decreased after stroke compared with controls, and its tDCS-induced increase correlated with upper limb score in stroke survivors. No significant adverse effects were observed during or after dual-tDCS. Conclusions Task-concurrent dual-tDCS in subacute stroke can safely and effectively modulate bilateral M1 excitability and inter-hemispheric imbalance and also movement-related α-activity.
Collapse
Affiliation(s)
- I-Ju Kuo
- Institute of Brain Science, Brain Research Center, National Yang-Ming University, No.155, Sec. 2, Linong St., Beitou Dist, Taipei City, 112, Taiwan.,Department of Neurosurgery, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou Dist, Taipei City, 112, Taiwan
| | - Chih-Wei Tang
- Institute of Brain Science, Brain Research Center, National Yang-Ming University, No.155, Sec. 2, Linong St., Beitou Dist, Taipei City, 112, Taiwan.,Department of Neurology, Far Eastern Memorial Hospital, No.21, Sec. 2, Nanya S. Rd., Banqiao Dist, New Taipei City, 220, Taiwan
| | - Yun-An Tsai
- Department of Neurosurgery, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou Dist, Taipei City, 112, Taiwan
| | - Shuen-Chang Tang
- Department of Neurosurgery, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou Dist, Taipei City, 112, Taiwan
| | - Chun-Jen Lin
- Institute of Brain Science, Brain Research Center, National Yang-Ming University, No.155, Sec. 2, Linong St., Beitou Dist, Taipei City, 112, Taiwan.,Division of Cerebrovascular Diseases, Neurological Institute, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou Dist, Taipei City, 112, Taiwan
| | - Shih-Pin Hsu
- Institute of Brain Science, Brain Research Center, National Yang-Ming University, No.155, Sec. 2, Linong St., Beitou Dist, Taipei City, 112, Taiwan
| | - Wei-Kuang Liang
- Institute of Cognitive Neuroscience, National Central University, No.300, Zhongda Rd., Zhongli Dist, Taoyuan City, 320, Taiwan
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, No.300, Zhongda Rd., Zhongli Dist, Taoyuan City, 320, Taiwan
| | - Catharina Zich
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK.,Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK.,MRC Brain Network Dynamics Unit, University of Oxford, Oxford, OX1 3TH, UK
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK.,Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK.,MRC Brain Network Dynamics Unit, University of Oxford, Oxford, OX1 3TH, UK
| | - I-Hui Lee
- Institute of Brain Science, Brain Research Center, National Yang-Ming University, No.155, Sec. 2, Linong St., Beitou Dist, Taipei City, 112, Taiwan. .,Division of Cerebrovascular Diseases, Neurological Institute, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou Dist, Taipei City, 112, Taiwan.
| |
Collapse
|
27
|
Rostami M, Mosallanezhad Z, Ansari S, Kidgell D, Rezaeian T, Bakhshi E, Ghodrati M, Jaberzadeh S. The effects of consecutive sessions of anodal transcranial direct current stimulation over the primary motor cortex on hand function in healthy older adults. Arch Gerontol Geriatr 2020; 89:104063. [PMID: 32334332 DOI: 10.1016/j.archger.2020.104063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/14/2020] [Accepted: 03/31/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND With advancing age, changes in the central nervous system may lead to motor functional deficits. Non-invasive brain stimulation techniques are suggested to help modifying brain function. OBJECTIVES The aim of the current study was to investigate the effect of using multi session anodal transcranial Direct Current Stimulation (a-tDCS) over the primary motor cortex (M1) on the hand function in healthy older adults. METHOD In this randomized, double-blinded, sham-controlled study 32 participants received active or sham a-tDCS (1 mA, 20 min, for five consecutive days) and performed the Purdue Pegboard Test (PPT) on the first day before tDCS application, immediately (T1), 30 min (T2), and one week after the last session (5th day) (T3) of the stimulation. RESULTS There was a significant improvement for PPT (p < 0.05) in a-tDCS group at all post-test values except for PPT for left hand (PPTL) at T1. Compared to the sham group, the results indicated significant improvement in all PPT subtests (P < 0.05), except for PPTL at T1, PPT for both hands at T2 and PPT assembly at T3 in a-tDCS group. CONCLUSION The current findings suggest a-tDCS can be considered as a promising stand-alone technique in the intervention of the age-related decline of manual dexterity for improving hand function.
Collapse
Affiliation(s)
- Mohamad Rostami
- Research Center on Aging, Department of Physiotherapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Zahra Mosallanezhad
- Research Center on Aging, Department of Physiotherapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | - Sepideh Ansari
- Musculoskeletal Rehabilitation Research Center, Speech Therapy Department, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Dawson Kidgell
- Department of Physiotherapy, School of Primary Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Tahere Rezaeian
- Research Center on Aging, Department of Physiotherapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Enayatollah Bakhshi
- Department of Biostatistics, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Ghodrati
- Health and Rehabilitation Sciences Program, University of Western Ontario, London, Canada
| | - Shapour Jaberzadeh
- Department of Physiotherapy, School of Primary Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
28
|
Halakoo S, Ehsani F, Hosnian M, Zoghi M, Jaberzadeh S. The comparative effects of unilateral and bilateral transcranial direct current stimulation on motor learning and motor performance: A systematic review of literature and meta-analysis. J Clin Neurosci 2020; 72:8-14. [PMID: 31973922 DOI: 10.1016/j.jocn.2019.12.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/01/2019] [Indexed: 11/17/2022]
Abstract
Application of unilateral tDCS (Uni-tDCS) vs. bilateral tDCS (Bi-tDCS) is another important factor that can affect the physiological results of tDCS intervention on motor learning and motor performance. According to the evidence, some studies indicated that motor performance or motor learning are facilitated in healthy individuals by application of the Bi-tDCS more than the Uni-tDCS. On the other hand, some studies showed that there was no significant differences between Uni-tDCS and Bi-tDCS; and both techniques were more effective than sham stimulation. In contrast, the other studies have shown more significant effectiveness of Uni-tDCS than Bi-tDCS on motor performance and motor learning. The aim of this study was to systematically review the studies which investigated the effectiveness of Uni-tDCS and Bi-tDCS intervention on the motor learning and motor performance. The search was performed from databases in the Google Scholar, PubMed, Elsevier, Medline, Ovid and Science Direct with the keywords of motor behavior, motor performance, motor learning, Bi-tDCS or bilateral tDCS, dual tDCS, Uni-tDCS or unilateral tDCS, anodal tDCS and cathodal tDCS from 2000 to 2019. The results indicated that the study population was a key factor in determining study's findings. Data meta-analysis showed that Uni-tDCS was more effective than Bi-tDCS in patients with stroke, while, Bi-tDCS was more effective than Uni-tDCS to improve motor learning and motor performance in healthy individuals.
Collapse
Affiliation(s)
- Sara Halakoo
- Neuromuscular Rehabilitation Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Ehsani
- Neuromuscular Rehabilitation Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| | - Motahareh Hosnian
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Zoghi
- Discipline of Physiotherapy, Department of Rehabilitation, Nutrition and Sport, School of Allied Health, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Shapour Jaberzadeh
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
29
|
Wang X, Mao Z, Yu X. The role of noninvasive brain stimulation for behavioral and psychological symptoms of dementia: a systematic review and meta-analysis. Neurol Sci 2020; 41:1063-1074. [PMID: 31925612 DOI: 10.1007/s10072-020-04245-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE This meta-analysis aimed at evaluating and comparing the efficacy of noninvasive brain stimulation (NIBS) techniques on the behavioral and psychological symptoms of dementia (BPSD). METHODS An exhaustive literature retrieval was performed on PubMed, Embase, Cochrane Library, and Web of Science until October 2019. The primary outcome was the relative changes in BPSD severity scores immediately after NIBS and at the last follow-up visit. Subgroup analyses were conducted to compare the efficacy of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS). Changes in the severity scores after NIBS were also analyzed with restriction to patients with Alzheimer's disease (AD). RESULTS Ten studies with 324 patients were included, out of which 7 studies involved patients with AD. The analysis results indicated that NIBS significantly improved the BPSD outcome immediately after stimulation (SMD, 0.31; 95% CI, 0.10-0.52; P = 0.005), but not at the last follow-up visit (0.15; - 0.11-0.41; 0.25). Our subgroup analyses suggested that the favorable effects of rTMS remained significant at the last follow-up visit (0.57; 0.18-0.96; 0.004). This discrepancy maybe caused by the continuously insignificant outcomes of tDCS on the whole data. The results for AD patients immediately after stimulation (0.37; 0.12-0.61; 0.003) and at the last follow-up visit (0.29; - 0.19-0.76; 0.24) were both largely similar to those in the whole patient group with dementia. CONCLUSIONS rTMS, rather than tDCS, was capable of persistently improving the BPSD at an early stage after treatment. More trials are warranted to confirm our results before the establishment of final conclusions.
Collapse
Affiliation(s)
- Xin Wang
- School of Medicine, Nankai University, Tianjin, China
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Zhiqi Mao
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Xinguang Yu
- School of Medicine, Nankai University, Tianjin, China.
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
30
|
Lee J, Jin Y, Yoon B. Bilateral Transcranial Direct Stimulation Over the Primary Motor Cortex Alters Motor Modularity of Multiple Muscles. J Mot Behav 2019; 52:474-488. [PMID: 31795875 DOI: 10.1080/00222895.2019.1646206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) has been demonstrated to modulate the motor performance of both healthy individuals and patients with neuromuscular disorders. However, the effect of tDCS on motor control of multiple muscles, which is a prerequisite to change in motor performance, is currently unknown. Using dimensionality reduction analysis, we investigated whether bilateral tDCS over M1 modulates the coordinated activity of 12 muscles. Fifteen healthy men participated in this randomized, double-blind crossover study. Each participant received a 20-min sham and 2-mA stimulation bilaterally over M1 (anode on the right M1 and cathode on the left M1), with a minimum washout period of 4 days. Muscle activation and end-point kinematics were evaluated during a task where participants reached out to a marked target with non-dominant hand as fast as possible, before and immediately after tDCS application. We found decreased similarity in motor modularity and significant changes in muscle activation in a specific motor module, particularly when reaching out to a target placed within arm's length and improved smoothness index of movement only following 2-mA stimulation. These findings indicate that clinicians and researchers need to consider the simultaneous effect of bilateral tDCS over M1 on multiple muscles when they establish tDCS protocol to change in motor performance of patients with neuromuscular deficits.
Collapse
Affiliation(s)
- JaeHyuk Lee
- Major in Rehabilitation Science, Graduate School, Korea University, Seoul, Korea
| | - Yan Jin
- Major in Rehabilitation Science, Graduate School, Korea University, Seoul, Korea
| | - BumChul Yoon
- Major in Rehabilitation Science, Graduate School, Korea University, Seoul, Korea.,Department of Physical Therapy, College of Health Science, Korea University, Seoul, Korea
| |
Collapse
|
31
|
Broeder S, Nackaerts E, Cuypers K, Meesen R, Verheyden G, Nieuwboer A. tDCS-Enhanced Consolidation of Writing Skills and Its Associations With Cortical Excitability in Parkinson Disease: A Pilot Study. Neurorehabil Neural Repair 2019; 33:1050-1060. [DOI: 10.1177/1545968319887684] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Background. Learning processes of writing skills involve the re-engagement of previously established motor programs affected by Parkinson disease (PD). To counteract the known problems with consolidation in PD, transcranial direct current stimulation (tDCS) could be imperative to achieve a lasting regeneration of habitual motor skills. Objective. To examine tDCS-enhanced learning of writing and explore alterations in cortical excitability after stimulation in PD compared with healthy controls (HCs). Methods. Ten patients and 10 HCs received 2 training sessions combined with 20 minutes of 1-mA anodal tDCS or sham on the left primary motor cortex in a randomized crossover design. Writing skills on a tablet and paper were assessed at baseline, after training, and after 1 week of follow-up. Before and immediately after the intervention, cortical excitability and inhibition were measured during rest and activity. Results. Writing amplitude and velocity improved when practice was tDCS supplemented compared with sham in PD. Benefits were sustained at retention for trained and untrained tasks on the tablet as well as for writing on paper. No improvements were found for HCs. Reduced resting motor thresholds after tDCS indicated tDCS-enhanced cortical excitability. Additionally, increments in motor-evoked potential amplitudes correlated with improved writing in PD, whereas HCs showed the opposite pattern. Conclusion. Our results endorse the usefulness of tDCS-boosted learning in PD, at least when applied to improving writing capacity. Although further confirmatory studies are needed, these novel findings are striking because tDCS-mediated consolidation was found for learning a motor task directly affected by PD.
Collapse
Affiliation(s)
| | | | - Koen Cuypers
- KU Leuven, Leuven, Belgium
- Hasselt University, Diepenbeek, Belgium
| | - Raf Meesen
- KU Leuven, Leuven, Belgium
- Hasselt University, Diepenbeek, Belgium
| | | | | |
Collapse
|
32
|
Patel R, Ashcroft J, Patel A, Ashrafian H, Woods AJ, Singh H, Darzi A, Leff DR. The Impact of Transcranial Direct Current Stimulation on Upper-Limb Motor Performance in Healthy Adults: A Systematic Review and Meta-Analysis. Front Neurosci 2019; 13:1213. [PMID: 31803003 PMCID: PMC6873898 DOI: 10.3389/fnins.2019.01213] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/28/2019] [Indexed: 11/25/2022] Open
Abstract
Background: Transcranial direct current stimulation (tDCS) has previously been reported to improve facets of upper limb motor performance such as accuracy and strength. However, the magnitude of motor performance improvement has not been reviewed by contemporaneous systematic review or meta-analysis of sham vs. active tDCS. Objective: To systematically review and meta-analyse the existing evidence regarding the benefits of tDCS on upper limb motor performance in healthy adults. Methods: A systematic search was conducted to obtain relevant articles from three databases (MEDLINE, EMBASE, and PsycINFO) yielding 3,200 abstracts. Following independent assessment by two reviewers, a total of 86 articles were included for review, of which 37 were deemed suitable for meta-analysis. Results: Meta-analyses were performed for four outcome measures, namely: reaction time (RT), execution time (ET), time to task failure (TTF), and force. Further qualitative review was performed for accuracy and error. Statistically significant improvements in RT (effect size −0.01; 95% CI −0.02 to 0.001, p = 0.03) and ET (effect size −0.03; 95% CI −0.05 to −0.01, p = 0.017) were demonstrated compared to sham. In exercise tasks, increased force (effect size 0.10; 95% CI 0.08 to 0.13, p < 0.001) and a trend towards improved TTF was also observed. Conclusions: This meta-analysis provides evidence attesting to the impact of tDCS on upper limb motor performance in healthy adults. Improved performance is demonstrable in reaction time, task completion time, elbow flexion tasks and accuracy. Considerable heterogeneity exists amongst the literature, further confirming the need for a standardised approach to reporting tDCS studies.
Collapse
Affiliation(s)
- Ronak Patel
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - James Ashcroft
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Ashish Patel
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Hutan Ashrafian
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Adam J Woods
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Harsimrat Singh
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Ara Darzi
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Daniel Richard Leff
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
33
|
Frazer AK, Howatson G, Ahtiainen JP, Avela J, Rantalainen T, Kidgell DJ. Priming the Motor Cortex With Anodal Transcranial Direct Current Stimulation Affects the Acute Inhibitory Corticospinal Responses to Strength Training. J Strength Cond Res 2019; 33:307-317. [PMID: 30688872 DOI: 10.1519/jsc.0000000000002959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Frazer, AK, Howatson, G, Ahtiainen, JP, Avela, J, Rantalainen, T, and Kidgell, DJ. Priming the motor cortex with anodal transcranial direct current stimulation affects the acute inhibitory corticospinal responses to strength training. J Strength Cond Res 33(2): 307-317, 2019-Synaptic plasticity in the motor cortex (M1) is associated with strength training (ST) and can be modified by transcranial direct current stimulation (tDCS). The M1 responses to ST increase when anodal tDCS is applied during training due to gating. An additional approach to improve the M1 responses to ST, which has not been explored, is to use anodal tDCS to prime the M1 before a bout of ST. We examined the priming effects of anodal tDCS of M1 on the acute corticospinal responses to ST. In a randomized double-blinded cross-over design, changes in isometric strength, corticospinal excitability, and inhibition (assessed as area under the recruitment curve [AURC] using transcranial magnetic stimulation) were analyzed in 13 adults exposed to 20 minutes of anodal tDCS and sham tDCS followed by a ST session of the right elbow flexors. We observed a significant decrease in isometric elbow-flexor strength immediately after training (11-12%; p < 0.05), which was not different between anodal tDCS and sham tDCS. Transcranial magnetic stimulation revealed a 24% increase in AURC for corticospinal excitability after anodal tDCS and ST; this increase was not different between conditions. However, there was a 14% reduction in AURC for corticospinal inhibition when anodal tDCS was applied before ST when compared with sham tDCS and ST (all p < 0.05). Priming anodal tDCS had a limited effect in facilitating corticospinal excitability after an acute bout of ST. Interestingly, the interaction of anodal tDCS and ST seems to affect the excitability of intracortical inhibitory circuits of the M1 through nonhomeostatic mechanisms.
Collapse
Affiliation(s)
- Ashlyn K Frazer
- Department of Physiotherapy, School of Primary Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom.,Water Research Group, School of Biological Sciences, North West University, Potchefstroom, South Africa
| | - Juha P Ahtiainen
- Department of Biology and Physical Activity, Neuromuscular Research Center, Biology and Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Janne Avela
- Department of Biology and Physical Activity, Neuromuscular Research Center, Biology and Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Timo Rantalainen
- Department of Biology and Physical Activity, Neuromuscular Research Center, Biology and Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,Department of Biology and Physical Activity, Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Dawson J Kidgell
- Department of Physiotherapy, School of Primary Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
34
|
The effect of transcranial random noise stimulation on corticospinal excitability and motor performance. Neurosci Lett 2019; 705:138-142. [DOI: 10.1016/j.neulet.2019.04.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/03/2019] [Accepted: 04/23/2019] [Indexed: 11/18/2022]
|
35
|
Steinberg F, Pixa NH, Fregni F. A Review of Acute Aerobic Exercise and Transcranial Direct Current Stimulation Effects on Cognitive Functions and Their Potential Synergies. Front Hum Neurosci 2019; 12:534. [PMID: 30687048 PMCID: PMC6336823 DOI: 10.3389/fnhum.2018.00534] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/18/2018] [Indexed: 01/18/2023] Open
Abstract
Today, several pharmaceutic and non-pharmaceutic approaches exist to treat psychiatric and neurological diseases. Because of the lack of treatment procedures that are medication free and without severe side effects, transcranial direct current stimulation (tDCS) and aerobic exercise (AE) have been tested to explore the potential for initiating and modulating neuroplasticity in the human brain. Both tDCS and AE could support cognition and behavior in the clinical and non-clinical context to improve the recovery process within neurological or psychiatric conditions or to increase performance. As these techniques still lack meaningful effects, although they provide multiple beneficial opportunities within disease and health applications, there is emerging interest to find improved tDCS and AE protocols. Since multimodal approaches could provoke synergetic effects, a few recent studies have begun to combine tDCS and AE within different settings such as in cognitive training in health or for treatment purposes within clinical settings, all of which show superior effects compared to single technique applications. The beneficial outcomes of both techniques depend on several parameters and the understanding of neural mechanisms that are not yet fully understood. Recent studies have begun to directly combine tDCS and AE within one session, although their interactions on the behavioral, neurophysiological and neurochemical levels are entirely unclear. Therefore, this review: (a) provides an overview of acute behavioral, neurophysiological, and neurochemical effects that both techniques provoke within only one single application in isolation; (b) gives an overview regarding the mechanistic pathways; and (c) discusses potential interactions and synergies between tDCS and AE that might be provoked when directly combining both techniques. From this literature review focusing primarily on the cognitive domain in term of specific executive functions (EFs; inhibition, updating, and switching), it is concluded that a direct combination of tDCS and AE provides multiple beneficial opportunities for synergistic effects. A combination could be useful within non-clinical settings in health and for treating several psychiatric and neurologic conditions. However, there is a lack of research and there are several possibly interacting moderating parameters that must be considered and more importantly must be systematically investigated in the future.
Collapse
Affiliation(s)
- Fabian Steinberg
- Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nils Henrik Pixa
- Sport Psychology, Institute of Human Movement Science and Health, Faculty of Behavioral and Social Sciences, Chemnitz University of Technology, Chemnitz, Germany
| | - Felipe Fregni
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
36
|
Sobierajewicz J, Jaśkowski W, Van der Lubbe RHJ. Does Transcranial Direct Current Stimulation Affect the Learning of a Fine Sequential Hand Motor Skill with Motor Imagery? J Mot Behav 2018; 51:451-465. [PMID: 30240335 DOI: 10.1080/00222895.2018.1513395] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Learning a fine sequential hand motor skill, like playing the piano or learning to type, improves not only due to physical practice, but also due to motor imagery. Previous studies revealed that transcranial direct current stimulation (tDCS) and motor imagery independently affect motor learning. In the present study, we investigated whether tDCS combined with motor imagery above the primary motor cortex influences sequence-specific learning. Four groups of participants were involved: an anodal, cathodal, sham stimulation, and a control group (without stimulation). A modified discrete sequence production (DSP) task was employed: the Go/NoGo DSP task. After a sequence of spatial cues, a response sequence had to be either executed, imagined, or withheld. This task allows to estimate both non-specific learning and sequence-specific learning effects by comparing the execution of unfamiliar sequences, familiar imagined, familiar withheld, and familiar executed sequences in a test phase. Results showed that the effects of anodal tDCS were already developing during the practice phase, while no effects of tDCS on sequence-specific learning were visible during the test phase. Results clearly showed that motor imagery itself influences sequence learning, but we also revealed that tDCS does not increase the influence of motor imagery on sequence learning.
Collapse
Affiliation(s)
- Jagna Sobierajewicz
- a Laboratory of Vision Science and Optometry, Faculty of Physics , Adam Mickiewicz University , Poznan , Poland .,b Vision and Neuroscience Laboratory , NanoBioMedical Centre, Adam Mickiewicz University , Poznan , Poland
| | - Wojciech Jaśkowski
- c Institute of Computing Science, Poznan University of Technology , Poznan , Poland
| | - Rob H J Van der Lubbe
- a Laboratory of Vision Science and Optometry, Faculty of Physics , Adam Mickiewicz University , Poznan , Poland .,d Cognitive Psychology and Ergonomics , University of Twente , Enschede , The Netherlands
| |
Collapse
|
37
|
Pixa NH, Berger A, Steinberg F, Doppelmayr M. Parietal, but Not Motor Cortex, HD-atDCS Deteriorates Learning Transfer of a Complex Bimanual Coordination Task. JOURNAL OF COGNITIVE ENHANCEMENT 2018. [DOI: 10.1007/s41465-018-0088-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
38
|
Frazer AK, Pearce AJ, Howatson G, Thomas K, Goodall S, Kidgell DJ. Determining the potential sites of neural adaptation to cross-education: implications for the cross-education of muscle strength. Eur J Appl Physiol 2018; 118:1751-1772. [PMID: 29995227 DOI: 10.1007/s00421-018-3937-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022]
Abstract
Cross-education describes the strength gain in the opposite, untrained limb following a unilateral strength training program. Since its discovery in 1894, several studies now confirm the existence of cross-education in contexts that involve voluntary dynamic contractions, eccentric contraction, electrical stimulation, whole-body vibration and, more recently, following mirror feedback training. Although many aspects of cross-education have been established, the mediating neural mechanisms remain unclear. Overall, the findings of this review show that the neural adaptations to cross-education of muscle strength most likely represent a continuum of change within the central nervous system that involves both structural and functional changes within cortical motor and non-motor regions. Such changes are likely to be the result of more subtle changes along the entire neuroaxis which include, increased corticospinal excitability, reduced cortical inhibition, reduced interhemispheric inhibition, changes in voluntary activation and new regions of cortical activation. However, there is a need to widen the breadth of research by employing several neurophysiological techniques (together) to better understand the potential mechanisms mediating cross-education. This fundamental step is required in order to better prescribe targeted and effective guidelines for the clinical practice of cross-education. There is a need to determine whether similar cortical responses also occur in clinical populations where, perhaps, the benefits of cross-education could be best observed.
Collapse
Affiliation(s)
- Ashlyn K Frazer
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, School of Primary and Allied Health Care, Monash University, PO Box 527, Frankston, Melbourne, VIC, 3199, Australia.
| | - Alan J Pearce
- Discipline of Exercise Science, School of Allied Health, La Trobe University, Melbourne, Australia
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, UK.,Water Research Group, School of Biological Sciences, North West University, Potchefstroom, South Africa
| | - Kevin Thomas
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, UK
| | - Stuart Goodall
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, UK
| | - Dawson J Kidgell
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, School of Primary and Allied Health Care, Monash University, PO Box 527, Frankston, Melbourne, VIC, 3199, Australia
| |
Collapse
|
39
|
Turkakin E, Akbıyık S, Akyol B, Gürdere C, Çakmak YÖ, Balcı F. Differential Bilateral Primary Motor Cortex tDCS Fails to Modulate Choice Bias and Readiness in Perceptual Decision Making. Front Neurosci 2018; 12:410. [PMID: 29967575 PMCID: PMC6015917 DOI: 10.3389/fnins.2018.00410] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/28/2018] [Indexed: 01/09/2023] Open
Abstract
One of the critical factors that guide choice behavior is the prior bias of the decision-maker with respect to different options, namely, the relative readiness by which the decision-maker opts for a specific choice. Although previous neuroimaging work has shown decision bias related activity in the orbitofrontal cortex, intraparietal sulcus (IPS) and dorsolateral prefrontal cortex, in a recent work by Javadi et al. (2015), primary motor cortex was also implicated. By applying transcranial direct current stimulation (tDCS), they have revealed a causal role of the primary motor cortex excitability in the induction of response time (RT) differences and decision bias in the form of choice probability. The current study aimed to replicate these recent findings with an experimental design that contained a sham group to increase experimental control and an additional testing phase to investigate the possible after-effects of tDCS. The conventional decision outputs such as choice proportion and RT were analyzed along with the theory-driven estimates of choice bias and non-decision related components of RTs (e.g., motor implementation speed of choices made). None of the statistical comparisons favored the alternative hypotheses over the null hypotheses. Consequently, previous findings regarding the effect of primary motor cortex excitability on choice bias and response times could not be replicated with a more controlled experimental design that is recommended for tDCS studies (Horvath et al., 2015). This empirical discrepancy between the two studies adds to the evidence demonstrating inconsistent effects of tDCS in establishing causal relationships between cortical excitability and motor behavior.
Collapse
Affiliation(s)
- Esin Turkakin
- Timing and Decision Making Lab, Department of Psychology, Koç University, Istanbul, Turkey
| | - Seda Akbıyık
- Timing and Decision Making Lab, Department of Psychology, Koç University, Istanbul, Turkey
| | - Bihter Akyol
- Timing and Decision Making Lab, Department of Psychology, Koç University, Istanbul, Turkey
| | - Ceren Gürdere
- Timing and Decision Making Lab, Department of Psychology, Koç University, Istanbul, Turkey
| | - Yusuf Ö Çakmak
- Cakmak Lab, Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, Dunedin, New Zealand.,Medical Technologies Centre of Research Excellence, Auckland, New Zealand
| | - Fuat Balcı
- Timing and Decision Making Lab, Department of Psychology, Koç University, Istanbul, Turkey.,Koç University Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
40
|
The physiological effects of transcranial electrical stimulation do not apply to parameters commonly used in studies of cognitive neuromodulation. Neuropsychologia 2018; 128:332-339. [PMID: 29630916 DOI: 10.1016/j.neuropsychologia.2018.03.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 02/21/2018] [Accepted: 03/22/2018] [Indexed: 01/20/2023]
Abstract
Transcranial direct current stimulation (tDCS) and transcranial random noise stimulation (tRNS) have been claimed to produce many remarkable enhancements in perception, cognition, learning and numerous clinical conditions. The physiological basis of the claims for tDCS rests on the finding that 1 mA of unilateral anodal stimulation increases cortical excitation and 1 mA of cathodal produces inhibition. Here we show that these classic excitatory and inhibitory effects do not hold for the bilateral stimulation or 2 mA intensity conditions favoured in cognitive enhancement experiments. This is important because many, including some of the most salient claims are based on experiments using 2 mA bilateral stimulation. The claims for tRNS are also based on unilateral stimulation. Here we show that, again the classic excitatory effects of unilateral tRNS do not extend to the bilateral stimulation preferred in enhancement experiments. Further, we show that the effects of unilateral tRNS do not hold when one merely doubles the stimulation duration. We are forced to two conclusions: (i) that even if all the data on TES enhancements are true, the physiological explanations on which the claims are based are at best not established but at worst false, and (ii) that we cannot explain, scientifically at least, how so many experiments can have obtained data consistent with physiological effects that may not exist.
Collapse
|
41
|
Mooney RA, Cirillo J, Byblow WD. Adaptive threshold hunting for the effects of transcranial direct current stimulation on primary motor cortex inhibition. Exp Brain Res 2018; 236:1651-1663. [DOI: 10.1007/s00221-018-5250-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/30/2018] [Indexed: 11/25/2022]
|
42
|
Cortes M, Medeiros AH, Gandhi A, Lee P, Krebs HI, Thickbroom G, Edwards D. Improved grasp function with transcranial direct current stimulation in chronic spinal cord injury. NeuroRehabilitation 2018; 41:51-59. [PMID: 28505987 DOI: 10.3233/nre-171456] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Recovering hand function has important implications for improving independence of patients with tetraplegia after traumatic spinal cord injury (SCI). Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulation technique that has potential to improve motor function. OBJECTIVE To investigate the effects of one session of 1 mA, 2 mA, and sham anodal tDCS (a-tDCS) in the upper extremity (hand) motor performance (grasp and lease) in patients with chronic cervical SCI. METHODS Eleven participants with incomplete SCI were randomized to receive 20 minutes of 1 mA, 2 mA, or sham stimulation over the targeted motor cortex over three separated sessions. Hand motor performance was measured by a hand robotic evaluation (kinematics) and the Box and Blocks (BB) test before and after the stimulation period. RESULTS A significant improvement on the grasp mean to peak speed ratio (GMP) was observed in the 2 mA group (pre: 0.38±0.02; post: 0.43±0.03; mean±SEM; p = 0.031). There was no statistically significant difference in BB test results, however the 2 mA intervention showed a positive trend for improvement. CONCLUSIONS A single session of 2 mA of a-tDCS showed gains in hand motor function in patients with chronic SCI that were not observed in functional clinical scales. The use of robotic kinematics showed promising results in assessing small changes in motor performance. Further studies are necessary to determine whether tDCS can be an effective long-term rehabilitation strategy for individuals with SCI.
Collapse
Affiliation(s)
- Mar Cortes
- Burke Medical Research Institute, White Plains, NY, USA.,Department of Rehabilitation Medicine, Weill Cornell Medicine, New York, NY, USA.,Universitat de Barcelona, Barcelona, Spain
| | - Ana Heloisa Medeiros
- Nervous System Electric Stimulation Laboratory, Rio de Janeiro State University, Brazil
| | - Aasta Gandhi
- Burke Medical Research Institute, White Plains, NY, USA
| | - Peter Lee
- Burke Medical Research Institute, White Plains, NY, USA
| | - Hermano Igo Krebs
- Newman Laboratory for Biomechanics and Human Rehabilitation, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Gary Thickbroom
- Burke Medical Research Institute, White Plains, NY, USA.,Department of Rehabilitation Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Dylan Edwards
- Burke Medical Research Institute, White Plains, NY, USA.,Department of Neurology, Weill Cornell Medicine, New York, NY, USA.,School of Medical and Health sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
43
|
Kwon TG, Park E, Kang C, Chang WH, Kim YH. The effects of combined repetitive transcranial magnetic stimulation and transcranial direct current stimulation on motor function in patients with stroke. Restor Neurol Neurosci 2018; 34:915-923. [PMID: 27689549 DOI: 10.3233/rnn-160654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Both transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), when provided to stroke patients in combination with motor training, enhance therapeutic efficacy and motor function. However, the majority of previous studies have only examined a single treatment modality. OBJECTIVE The authors investigated the modulating influence of combination dual-mode brain stimulation upon bihemispheric stimulation with motor training in stroke patients. METHODS Twenty stroke patients with hemiparesis underwent five randomly arranged sessions of diverse combinations of rTMS and tDCS. We applied cathodal or anodal tDCS over the contralesional primary motor cortex (cM1) and 10 Hz rTMS over the ipsilesional primary motor cortex (iM1) in a simultaneous or preconditioning method including sham stimulation. Immediately after dual-mode stimulation, sequential hand motor training was performed for 5 minutes. The total pulses of rTMS and the duration of tDCS and motor training were the same for all sessions. Cortical excitability and sequential motor performance were evaluated before and after each session. RESULTS Motor function and corticomotor excitability following simultaneous stimulation via cathodal tDCS over the cM1 combined with 10 Hz rTMS over the iM1 were significantly increased after the intervention, with significantly greater motor improvement than seen with other treatment conditions (P < 0.05). CONCLUSION For the combination of bihemispheric rTMS and tDCS, simultaneous stimulation of cathodal tDCS and 10 Hz rTMS results in better motor performance in stroke patients than other combination methods. This result seemed to be related to effective modulation of interhemispheric imbalance of cortical excitability by dual-mode stimulation.
Collapse
Affiliation(s)
- Tae Gun Kwon
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Republic of Korea
| | - Eunhee Park
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Republic of Korea
| | - Chung Kang
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Republic of Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Republic of Korea
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Republic of Korea.,Department of Health Sciences and Technology, Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
44
|
Marangolo P, Fiori V, Shofany J, Gili T, Caltagirone C, Cucuzza G, Priori A. Moving Beyond the Brain: Transcutaneous Spinal Direct Current Stimulation in Post-Stroke Aphasia. Front Neurol 2017; 8:400. [PMID: 28848492 PMCID: PMC5550684 DOI: 10.3389/fneur.2017.00400] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/25/2017] [Indexed: 12/13/2022] Open
Abstract
Over the last 20 years, major advances in cognitive neuroscience have clearly shown that the language function is not restricted into the classical language areas but it involves brain regions, which had never previously considered. Indeed, recent lines of evidence have suggested that the processing of words associated to motor schemata, such as action verbs, modulates the activity of the sensorimotor cortex, which, in turn, facilitates its retrieval. To date, no studies have investigated whether the spinal cord, which is functionally connected to the sensorimotor system, might also work as an auxiliary support for language processing. We explored the combined effect of transcutaneous spinal direct current stimulation (tsDCS) and language treatment in a randomized double-blind design for the recovery of verbs and nouns in 14 chronic aphasics. During each treatment, each subject received tsDCS (20 min, 2 mA) over the thoracic vertebrae (10th vertebra) in three different conditions: (1) anodic, (2) cathodic and (3) sham, while performing a verb and noun naming tasks. Each experimental condition was run in five consecutive daily sessions over 3 weeks. Overall, a significant greater improvement in verb naming was found during the anodic condition with respect to the other two conditions, which persisted at 1 week after the end of the treatment. No significant differences were present for noun naming among the three conditions. The hypothesis is advanced that anodic tsDCS might have influenced activity along the ascending somatosensory pathways, ultimately eliciting neurophysiological changes into the sensorimotor areas which, in turn, supported the retrieval of verbs. These results further support the evidence that action words, due to their sensorimotor semantic properties, are partly represented into the sensorimotor cortex. Moreover, they also document, for the first time, that tsDCS enhances verb recovery in chronic aphasia and it may represent a promising new tool for language treatment.
Collapse
Affiliation(s)
- Paola Marangolo
- Dipartimento di Studi Umanistici, Università degli Studi di Napoli Federico II, Napoli, Italy
- IRCCS Fondazione Santa Lucia, Roma, Italy
| | | | | | - Tommaso Gili
- IRCCS Fondazione Santa Lucia, Roma, Italy
- Centro Fermi - Museo storico della fisica e Centro studi e ricerche Enrico Fermi, Rome, Italy
| | - Carlo Caltagirone
- IRCCS Fondazione Santa Lucia, Roma, Italy
- Università degli Studi di Roma Tor Vergata, Roma, Italy
| | | | - Alberto Priori
- Clinica Neurologica III, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
45
|
Pixa NH, Steinberg F, Doppelmayr M. Effects of High-Definition Anodal Transcranial Direct Current Stimulation Applied Simultaneously to Both Primary Motor Cortices on Bimanual Sensorimotor Performance. Front Behav Neurosci 2017; 11:130. [PMID: 28747875 PMCID: PMC5506094 DOI: 10.3389/fnbeh.2017.00130] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/28/2017] [Indexed: 12/12/2022] Open
Abstract
Many daily activities, such as tying one’s shoe laces, opening a jar of jam or performing a free throw in basketball, require the skillful coordinated use of both hands. Even though the non-invasive method of transcranial direct current stimulation (tDCS) has been repeatedly shown to improve unimanual motor performance, little is known about its effects on bimanual motor performance. More knowledge about how tDCS may improve bimanual behavior would be relevant to motor recovery, e.g., in persons with bilateral impairment of hand function. We therefore examined the impact of high-definition anodal tDCS (HD-atDCS) on the performance of a bimanual sequential sensorimotor task. Thirty-two volunteers (age M = 24.25; SD = 2.75; 14 females) participated in this double-blind study and performed sport stacking in six experimental sessions. In sport stacking, 12 specially designed cups must be stacked (stacked up) and dismantled (stacked down) in predefined patterns as fast as possible. During a pretest, posttest and follow-up test, two sport stacking formations (3-6-3 stack and 1-10-1 stack) were performed. Between the pretest and posttest, all participants were trained in sport stacking with concurrent brain stimulation for three consecutive days. The experimental group (STIM-M1) received HD-atDCS over both primary motor cortices (M1), while the control group received a sham stimulation (SHAM). Three-way analysis of variance (ANOVA) revealed a significant main effect of TIME and a significant interaction of TIME × GROUP. No significant effects were found for GROUP, nor for the three-way interaction of TIME × GROUP × FORMATION. Further two-way ANOVAs showed a significant main effect of TIME and a non-significant main effect for GROUP in both sport stacking formations. A significant interaction between TIME × GROUP was found only for the 3-6-3 formation, indicating superior performance gains for the experimental group (STIM-M1). To account and control for baseline influences on the outcome measurements, ANCOVAs treating pretest scores as covariates revealed a significant effect of the stimulation. From this, we conclude that bilateral HD-atDCS over both M1 improves motor performance in a bimanual sequential sensorimotor task. These results may indicate a beneficial use of tDCS for learning and recovery of bimanual motor skills.
Collapse
Affiliation(s)
- Nils H Pixa
- Institute of Sport Science, Johannes Gutenberg-UniversityMainz, Germany
| | - Fabian Steinberg
- Institute of Sport Science, Johannes Gutenberg-UniversityMainz, Germany
| | - Michael Doppelmayr
- Institute of Sport Science, Johannes Gutenberg-UniversityMainz, Germany.,Centre for Cognitive Neuroscience, Paris Lodron-UniversitySalzburg, Austria
| |
Collapse
|
46
|
Sasaki R, Nakagawa M, Tsuiki S, Miyaguchi S, Kojima S, Saito K, Inukai Y, Masaki M, Otsuru N, Onishi H. Regulation of primary motor cortex excitability by repetitive passive finger movement frequency. Neuroscience 2017. [PMID: 28627417 DOI: 10.1016/j.neuroscience.2017.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Somatosensory input induced by passive movement activates primary motor cortex (M1). We applied repetitive passive movement (RPM) of different frequencies to test if modulation of M1 excitability depends on RPM frequency. Twenty-seven healthy subjects participated in this study. Motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) to left M1 were recorded from the right first dorsal interosseous muscle (FDI) to assess corticospinal excitability (experiment 1: n=15), and F-waves were measured from the right FDI as an index of spinal motoneuron excitability (experiment 2: n=15). Passive abduction/adduction of the right index finger was applied for 10min at 0.5, 1.0, 3.0, and 5.0Hz. Both 0.5Hz-RPM and 1.0Hz-RPM decreased MEPs for 2min (p<0.05), and 5.0Hz-RPM decreased MEPs for 15min compared with baseline (p<0.05); however, there was no difference in MEPs after 3.0Hz-RPM. No F-wave changes were observed following any RPM intervention. Based on the results of experiments 1 and 2, we investigated whether RPM modulates cortical inhibitory circuit using the paired-pulse TMS technique (experiment 3: n=12). Short-interval intracortical inhibition (SICI) was measured using paired-pulse TMS (inter-stimulus interval of 3ms) before and after 1.0, 3.0, and 5.0Hz-RPM. Both 1.0 and 5.0Hz-RPM increased SICI compared with baseline (p<0.05). These experiments suggest that M1 excitability decreases after RPM depending on movement frequency, possibly through frequency-dependent enhancement of cortical inhibitory circuit in M1.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata 950-3198, Japan.
| | - Masaki Nakagawa
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata 950-3198, Japan
| | - Shota Tsuiki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata 950-3198, Japan
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata 950-3198, Japan
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata 950-3198, Japan
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata 950-3198, Japan
| | - Yasuto Inukai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata 950-3198, Japan
| | - Mitsuhiro Masaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata 950-3198, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata 950-3198, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata 950-3198, Japan
| |
Collapse
|
47
|
The effect of transcranial direct current stimulation on motor sequence learning and upper limb function after stroke. Clin Neurophysiol 2017; 128:1389-1398. [PMID: 28410884 DOI: 10.1016/j.clinph.2017.03.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 03/19/2017] [Accepted: 03/24/2017] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To assess the impact of electrode arrangement on the efficacy of tDCS in stroke survivors and determine whether changes in transcallosal inhibition (TCI) underlie improvements. METHODS 24 stroke survivors (3-124months post-stroke) with upper limb impairment participated. They received blinded tDCS during a motor sequence learning task, requiring the paretic arm to direct a cursor to illuminating targets on a monitor. Four tDCS conditions were studied (crossover); anodal to ipsilesional M1, cathodal to contralesional M1, bihemispheric, sham. The Jebsen Taylor hand function test (JTT) was assessed pre- and post-stimulation and TCI assessed as the ipsilateral silent period (iSP) duration using transcranial magnetic stimulation. RESULTS The time to react to target illumination reduced with learning of the movement sequence, irrespective of tDCS condition (p>0.1). JTT performance improved after unilateral tDCS (anodal or cathodal) compared with sham (p<0.05), but not after bihemispheric (p>0.1). There was no effect of tDCS on change in iSP duration (p>0.1). CONCLUSIONS Unilateral tDCS is effective for improving JTT performance, but not motor sequence learning. SIGNIFICANCE This has implications for the design of future clinical trials.
Collapse
|
48
|
Jelić MB, Filipović SR, Milanović SD, Stevanović VB, Konstantinović L. Bilateral sequential motor cortex stimulation and skilled task performance with non-dominant hand. Clin Neurophysiol 2017; 128:814-822. [PMID: 28340430 DOI: 10.1016/j.clinph.2017.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 02/06/2017] [Accepted: 02/19/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To check whether bilateral sequential stimulation (BSS) of M1 with theta burst stimulation (TBS), using facilitatory protocol over non-dominant M1 followed by inhibitory one over dominant M1, can improve skilled task performance with non-dominant hand more than either of the unilateral stimulations do. Both, direct motor cortex (M1) facilitatory non-invasive brain stimulation (NIBS) and contralateral M1 inhibitory NIBS were shown to improve motor learning. METHODS Forty right-handed healthy subjects were divided into 4 matched groups which received either ipsilateral facilitatory (intermittent TBS [iTBS] over non-dominant M1), contralateral inhibitory (continuous TBS [cTBS] over dominant M1), bilateral sequential (contralateral cTBS followed by ipsilateral iTBS), or placebo stimulation. Performance was evaluated by Purdue peg-board test (PPT), before (T0), immediately after (T1), and 30min after (T2) an intervention. RESULTS In all groups and for both hands, the PPT scores increased at T1 and T2 in comparison to T0, showing clear learning effect. However, for the target non-dominant hand only, immediately after BSS (at T1) the PPT scores improved significantly more than after either of unilateral interventions or placebo. CONCLUSION M1 BSS TBS is an effective intervention for improving motor performance. SIGNIFICANCE M1 BSS TBS seems as a promising tool for motor learning improvement with potential uses in neurorehabilitation.
Collapse
Affiliation(s)
- Milan B Jelić
- University of Belgrade, Institute for Medical Research, Department of Neurophysiology, ul. Dr Subotića 4, Belgrade, Serbia
| | - Saša R Filipović
- University of Belgrade, Institute for Medical Research, Department of Neurophysiology, ul. Dr Subotića 4, Belgrade, Serbia.
| | - Sladjan D Milanović
- University of Belgrade, Institute for Medical Research, Department of Neurophysiology, ul. Dr Subotića 4, Belgrade, Serbia
| | - Vuk B Stevanović
- University of Belgrade, Institute for Medical Research, Department of Neurophysiology, ul. Dr Subotića 4, Belgrade, Serbia
| | - Ljubica Konstantinović
- University of Belgrade, Faculty of Medicine, Department of Rehabilitation, ul. Dr. Subotića 8, Belgrade, Serbia; Klinika za Rehabilitaciju "Dr Miroslav Zotović", ul. Sokobanjska 13, Belgrade, Serbia
| |
Collapse
|
49
|
Frazer AK, Williams J, Spittle M, Kidgell DJ. Cross-education of muscular strength is facilitated by homeostatic plasticity. Eur J Appl Physiol 2017; 117:665-677. [DOI: 10.1007/s00421-017-3538-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
|
50
|
Neuroplasticity Changes on Human Motor Cortex Induced by Acupuncture Therapy: A Preliminary Study. Neural Plast 2017; 2017:4716792. [PMID: 28293438 PMCID: PMC5331279 DOI: 10.1155/2017/4716792] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/03/2017] [Accepted: 01/19/2017] [Indexed: 11/17/2022] Open
Abstract
While neuroplasticity changes measured by transcranial magnetic stimulation have been proved to be highly correlated to motor recovery and have been tested in various forms of interventions, it has not been applied to investigate the neurophysiologic mechanism of acupuncture therapy. The aim of this study is to investigate neuroplasticity changes induced by a single session of acupuncture therapy in healthy adults, regarding the excitability change on bilateral primary motor cortex and interhemispheric inhibition. Ten subjects took a 30-minute acupuncture therapy and the same length relaxing phase in separate days. Transcranial magnetic stimulation measures, including resting motor threshold, amplitudes of motor-evoked potential, and interhemispheric inhibition, were assessed before and 10 minutes after intervention. Acupuncture treatment showed significant changes on potential amplitude from both ipsilateral and contralateral hemispheres to acupuncture compared to baseline. Also, interhemispheric inhibition from the contralateral motor cortex to the opposite showed a significant decline. The results indicated that corticomotoneuronal excitability and interhemispheric competition could be modulated by acupuncture therapy on healthy subjects. The following question about whether these changes will be observed in the same way on stroke patients and whether they correlate with the therapeutic effect on movement need to be answered by following studies. This trial is registered with ISRCTN13074245.
Collapse
|