1
|
Joshi P, Sharma V, Pandey AK, Nayak SN, Bajaj P, Sudini HK, Sharma S, Varshney RK, Pandey MK. Identification of miRNAs associated with Aspergillus flavus infection and their targets in groundnut (Arachis hypogaea L.). BMC PLANT BIOLOGY 2025; 25:345. [PMID: 40098099 PMCID: PMC11917013 DOI: 10.1186/s12870-025-06322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/28/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND The quality of groundnut produce is adversely impacted due to aflatoxin contamination by the fungus Aspergillus flavus. Although the transcriptomic control is not fully understood, the interaction between long non-coding RNAs and microRNAs in regulating A. flavus and aflatoxin contamination remains unclear. This study was carried out to identify microRNAs (miRNAs) to enhance the understanding of in vitro seed colonization (IVSC) resistance mechanism in groundnut. RESULT In this study, resistant (J 11) and susceptible (JL 24) varieties of groundnut were treated with toxigenic A. flavus (strain AF-11-4), and total RNA was extracted at 1 day after inoculation (1 DAI), 2 DAI, 3 DAI and 7 DAI. Seeds of JL 24 showed higher mycelial growth than J 11 at successive days after inoculation. A total of 208 known miRNAs belonging to 36 miRNA families, with length varying from 20-24 nucleotides, were identified, along with 27 novel miRNAs, with length varying from 20-22 nucleotides. Using psRNATarget server, 952 targets were identified for all the miRNAs. The targeted genes function as disease resistant proteins encoding, auxin responsive proteins, squamosa promoter binding like proteins, transcription factors, pentatricopeptide repeat-containing proteins and growth regulating factors. Through differential expression analysis, seven miRNAs (aly-miR156d-3p, csi-miR1515a, gma-miR396e, mtr-miR2118, novo-miR-n27, ptc-miR482d-3p and ppe-miR396a) were found common among 1 DAI, 2 DAI, 3 DAI and 7 DAI in J 11, whereas ten miRNAs (csi-miR159a-5p, csi-miR164a-3p, novo-miR-n17, novo-miR-n2, osa-miR162b, mtr-miR2118, ptc-miR482d-3p, ptc-miR167f-3p, stu-miR319-3p and zma-miR396b-3p) were found common among 1 DAI, 2 DAI, 3 DAI and 7 DAI in JL 24. Two miRNAs, ptc-miR482d-3p and mtr-miR2118, showed contrasting expression at different time intervals between J 11 and JL 24. These two miRNAs were found to target those genes with NBS-LRR function, making them potential candidates for marker development in groundnut breeding programs aimed at enhancing resistance against A. flavus infection. CONCLUSION This study enhances our understanding of the involvement of two miRNAs namely, ptc-miR482d-3p and mtr-miR2118, along with their NBS-LRR targets, in conferring resistance against A. flavus-induced aflatoxin contamination in groundnut under in vitro conditions.
Collapse
Affiliation(s)
- Pushpesh Joshi
- Center of Excellence in Genomics & Systems Biology (CEGSB), and Center for Pre-Breeding Research (CPBR), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Vinay Sharma
- Center of Excellence in Genomics & Systems Biology (CEGSB), and Center for Pre-Breeding Research (CPBR), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Arun K Pandey
- Center of Excellence in Genomics & Systems Biology (CEGSB), and Center for Pre-Breeding Research (CPBR), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Spurthi N Nayak
- Center of Excellence in Genomics & Systems Biology (CEGSB), and Center for Pre-Breeding Research (CPBR), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Prasad Bajaj
- Center of Excellence in Genomics & Systems Biology (CEGSB), and Center for Pre-Breeding Research (CPBR), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Hari K Sudini
- Center of Excellence in Genomics & Systems Biology (CEGSB), and Center for Pre-Breeding Research (CPBR), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology (CEGSB), and Center for Pre-Breeding Research (CPBR), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Murdoch University, Murdoch, Australia
| | - Manish K Pandey
- Center of Excellence in Genomics & Systems Biology (CEGSB), and Center for Pre-Breeding Research (CPBR), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
| |
Collapse
|
2
|
Vignale FA, Hernandez Garcia A, Modenutti CP, Sosa EJ, Defelipe LA, Oliveira R, Nunes GL, Acevedo RM, Burguener GF, Rossi SM, Zapata PD, Marti DA, Sansberro P, Oliveira G, Catania EM, Smith MN, Dubs NM, Nair S, Barkman TJ, Turjanski AG. Yerba mate ( Ilex paraguariensis) genome provides new insights into convergent evolution of caffeine biosynthesis. eLife 2025; 14:e104759. [PMID: 39773819 PMCID: PMC11709435 DOI: 10.7554/elife.104759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/01/2024] [Indexed: 01/11/2025] Open
Abstract
Yerba mate (YM, Ilex paraguariensis) is an economically important crop marketed for the elaboration of mate, the third-most widely consumed caffeine-containing infusion worldwide. Here, we report the first genome assembly of this species, which has a total length of 1.06 Gb and contains 53,390 protein-coding genes. Comparative analyses revealed that the large YM genome size is partly due to a whole-genome duplication (Ip-α) during the early evolutionary history of Ilex, in addition to the hexaploidization event (γ) shared by core eudicots. Characterization of the genome allowed us to clone the genes encoding methyltransferase enzymes that catalyse multiple reactions required for caffeine production. To our surprise, this species has converged upon a different biochemical pathway compared to that of coffee and tea. In order to gain insight into the structural basis for the convergent enzyme activities, we obtained a crystal structure for the terminal enzyme in the pathway that forms caffeine. The structure reveals that convergent solutions have evolved for substrate positioning because different amino acid residues facilitate a different substrate orientation such that efficient methylation occurs in the independently evolved enzymes in YM and coffee. While our results show phylogenomic constraint limits the genes coopted for convergence of caffeine biosynthesis, the X-ray diffraction data suggest structural constraints are minimal for the convergent evolution of individual reactions.
Collapse
Affiliation(s)
| | | | - Carlos P Modenutti
- IQUIBICEN-CONICET, Ciudad Universitaria, Pabellón 2Ciudad Autonoma de Buenos AiresArgentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2Ciudad Autónoma de Buenos AiresArgentina
| | - Ezequiel J Sosa
- IQUIBICEN-CONICET, Ciudad Universitaria, Pabellón 2Ciudad Autonoma de Buenos AiresArgentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2Ciudad Autónoma de Buenos AiresArgentina
| | - Lucas A Defelipe
- European Molecular Biology Laboratory - Hamburg UnitHamburgGermany
| | | | | | - Raúl M Acevedo
- Laboratorio de Biotecnología Aplicada y Genómica Funcional, Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del NordesteCorrientesArgentina
| | - German F Burguener
- Department of Plant Sciences, University of California, DavisDavisUnited States
| | - Sebastian M Rossi
- Instituto de Biotecnología de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones (INBIOMIS-FCEQyN-UNaM)MisionesArgentina
| | - Pedro D Zapata
- Instituto de Biotecnología de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones (INBIOMIS-FCEQyN-UNaM)MisionesArgentina
| | - Dardo A Marti
- Instituto de Biología Subtropical, Universidad Nacional de Misiones (IBS-UNaM-CONICET)PosadasArgentina
| | - Pedro Sansberro
- Laboratorio de Biotecnología Aplicada y Genómica Funcional, Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del NordesteCorrientesArgentina
| | | | - Emily M Catania
- Department of Biological Sciences, Western Michigan UniversityKalamazooUnited States
| | - Madeline N Smith
- Department of Biological Sciences, Western Michigan UniversityKalamazooUnited States
| | - Nicole M Dubs
- Department of Biological Sciences, Western Michigan UniversityKalamazooUnited States
| | - Satish Nair
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana ChampaignUrbanaUnited States
| | - Todd J Barkman
- Department of Biological Sciences, Western Michigan UniversityKalamazooUnited States
| | - Adrian G Turjanski
- IQUIBICEN-CONICET, Ciudad Universitaria, Pabellón 2Ciudad Autonoma de Buenos AiresArgentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2Ciudad Autónoma de Buenos AiresArgentina
| |
Collapse
|
3
|
Zou X, Zhang K, Wu D, Lu M, Wang H, Shen Q. Integrated analysis of miRNA, transcriptome, and degradome sequencing provides new insights into lipid metabolism in perilla seed. Gene 2024; 895:147953. [PMID: 37925118 DOI: 10.1016/j.gene.2023.147953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
MicroRNAs (miRNA) are small noncoding RNAs that play a crucial as molecular regulators in lipid metabolism in various oil crops. Perilla (Perilla frutescens) is a specific oil crop known for its high alpha-linolenic acid (C18:3n3, ALA) content (>65 %) in their seed oils. In view of the regulatory mechanism of miRNAs in perilla remains unclear, we conducted miRNAs and transcriptome sequencing in two cultivars with distinct lipid compositions. A total of 525 unique miRNAs, including 142 differentially expressed miRNAs was identified in perilla seeds. The 318 miRNAs targeted 7,761 genes. Furthermore, we identified 112 regulated miRNAs and their 610 target genes involved in lipid metabolism. MiR159b and miR167a as the core nodes to regulate the expression of genes in oil biosynthesis (e.g., KAS, FATB, GPAT, FAD, DGK, LPAAT) and key regulatory TFs (e.g., MYB, ARF, DOF, SPL, NAC, TCP, and bHLH). The 1,219 miRNA-mRNA regulation modules were confirmed through degradome sequencing. Notably, pf-miR159b-MYBs and pf-miR167a-ARFs regulation modules were confirmed. They exhibited significantly different expression levels in two cultivars and believed to play important roles in oil biosynthesis in perilla seeds. This provides valuable insights into the functional analysis of miRNA-regulated lipid metabolism in perilla seeds.
Collapse
Affiliation(s)
- Xiuzai Zou
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ke Zhang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Duan Wu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Minting Lu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hongbin Wang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Qi Shen
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
4
|
Fan S, Yang S, Li G, Wan S. Genome-Wide Identification and Characterization of CDPK Gene Family in Cultivated Peanut ( Arachis hypogaea L.) Reveal Their Potential Roles in Response to Ca Deficiency. Cells 2023; 12:2676. [PMID: 38067104 PMCID: PMC10705679 DOI: 10.3390/cells12232676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
This study identified 45 calcium-dependent protein kinase (CDPK) genes in cultivated peanut (Arachis hypogaea L.), which are integral in plant growth, development, and stress responses. These genes, classified into four subgroups based on phylogenetic relationships, are unevenly distributed across all twenty peanut chromosomes. The analysis of the genetic structure of AhCDPKs revealed significant similarity within subgroups, with their expansion primarily driven by whole-genome duplications. The upstream promoter sequences of AhCDPK genes contained 46 cis-acting regulatory elements, associated with various plant responses. Additionally, 13 microRNAs were identified that target 21 AhCDPK genes, suggesting potential post-transcriptional regulation. AhCDPK proteins interacted with respiratory burst oxidase homologs, suggesting their involvement in redox signaling. Gene ontology and KEGG enrichment analyses affirmed AhCDPK genes' roles in calcium ion binding, protein kinase activity, and environmental adaptation. RNA-seq data revealed diverse expression patterns under different stress conditions. Importantly, 26 AhCDPK genes were significantly induced when exposed to Ca deficiency during the pod stage. During the seedling stage, four AhCDPKs (AhCDPK2/-25/-28/-45) in roots peaked after three hours, suggesting early signaling roles in pod Ca nutrition. These findings provide insights into the roles of CDPK genes in plant development and stress responses, offering potential candidates for predicting calcium levels in peanut seeds.
Collapse
Affiliation(s)
| | | | - Guowei Li
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan 250100, China; (S.F.); (S.Y.)
| | - Shubo Wan
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan 250100, China; (S.F.); (S.Y.)
| |
Collapse
|
5
|
Kumar D, Kirti PB. The genus Arachis: an excellent resource for studies on differential gene expression for stress tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1275854. [PMID: 38023864 PMCID: PMC10646159 DOI: 10.3389/fpls.2023.1275854] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Peanut Arachis hypogaea is a segmental allotetraploid in the section Arachis of the genus Arachis along with the Section Rhizomataceae. Section Arachis has several diploid species along with Arachis hypogaea and A. monticola. The section Rhizomataceae comprises polyploid species. Several species in the genus are highly tolerant to biotic and abiotic stresses and provide excellent sets of genotypes for studies on differential gene expression. Though there were several studies in this direction, more studies are needed to identify more and more gene combinations. Next generation RNA-seq based differential gene expression study is a powerful tool to identify the genes and regulatory pathways involved in stress tolerance. Transcriptomic and proteomic study of peanut plants under biotic stresses reveals a number of differentially expressed genes such as R genes (NBS-LRR, LRR-RLK, protein kinases, MAP kinases), pathogenesis related proteins (PR1, PR2, PR5, PR10) and defense related genes (defensin, F-box, glutathione S-transferase) that are the most consistently expressed genes throughout the studies reported so far. In most of the studies on biotic stress induction, the differentially expressed genes involved in the process with enriched pathways showed plant-pathogen interactions, phenylpropanoid biosynthesis, defense and signal transduction. Differential gene expression studies in response to abiotic stresses, reported the most commonly expressed genes are transcription factors (MYB, WRKY, NAC, bZIP, bHLH, AP2/ERF), LEA proteins, chitinase, aquaporins, F-box, cytochrome p450 and ROS scavenging enzymes. These differentially expressed genes are in enriched pathways of transcription regulation, starch and sucrose metabolism, signal transduction and biosynthesis of unsaturated fatty acids. These identified differentially expressed genes provide a better understanding of the resistance/tolerance mechanism, and the genes for manipulating biotic and abiotic stress tolerance in peanut and other crop plants. There are a number of differentially expressed genes during biotic and abiotic stresses were successfully characterized in peanut or model plants (tobacco or Arabidopsis) by genetic manipulation to develop stress tolerance plants, which have been detailed out in this review and more concerted studies are needed to identify more and more gene/gene combinations.
Collapse
Affiliation(s)
- Dilip Kumar
- Department of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Pulugurtha Bharadwaja Kirti
- Agri Biotech Foundation, Professor Jayashankar Telangana State (PJTS) Agricultural University, Hyderabad, Telangana, India
| |
Collapse
|
6
|
Yang L, Ping T, Lu W, Song S, Wang J, Wang Q, Chai G, Bai Y, Chen Y. Genome-wide identification of auxin-responsive microRNAs in the poplar stem. Genes Genomics 2023; 45:1073-1083. [PMID: 37336805 DOI: 10.1007/s13258-023-01385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/01/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Wood (secondary xylem) of forests is a material of great economic importance. Wood development is strictly controlled by both the phytohormone auxin and microRNAs (miRNAs). Currently, the regulatory mechanisms underlying wood formation by auxin-associated miRNAs remain unclear. OBJECTIVE This report was designed to identify auxin-responsive miRNAs during wood formation. METHODS Morphological observation of wood development in the poplar stems was performed under the treatment of different concentrations (0 mg/L, CK; 5 mg/L, Low; 10 mg/L, High) of indol-3-butyric acid (IBA). Using a small RNA sequencing strategy, the effect of IBA treatment on miRNAs expression was genome-widely analyzed. RESULTS In this study, we found that wood development of poplar was promoted by low concentration of IBA treatment but inhibited by high concentration of IBA treatment. Stringent bioinformatic analysis led to identification of 118 known and 134 novel miRNAs candidates. Sixty-nine unique developmental-related miRNAs, corresponding to 269 target genes, exhibited specific expression patterns in response to auxin, as was consistent with the influence of auxin application on wood formation. Three novel miRNAs had the most number (≥ 9) of target genes, belonging to SPL, GRF and ARF gene families. The evolutionary relationships and tissue expression patterns of 41 SPL, GRF and ARF genes in poplar were thus analyzed. Of them, four representative members and corresponding miRNAs were confirmed using RT-qPCR. CONCLUSIONS Our results may be helpful for a better understanding of auxin-induced regulation of wood formation in tree species.
Collapse
Affiliation(s)
- Lihua Yang
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Tao Ping
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenjin Lu
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Sangfa Song
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jianli Wang
- Grass and Science Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Qiao Wang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guohua Chai
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, 257000, China
| | - Yue Bai
- Forestry College, Inner Mongolia Agricultural University, Huhhot, 010018, China.
| | - Yan Chen
- Forestry College, Inner Mongolia Agricultural University, Huhhot, 010018, China.
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
7
|
Bojórquez-Orozco AM, Arce-Leal ÁP, Montes RAC, Santos-Cervantes ME, Cruz-Mendívil A, Méndez-Lozano J, Castillo AG, Rodríguez-Negrete EA, Leyva-López NE. Differential Expression of miRNAs Involved in Response to Candidatus Liberibacter asiaticus Infection in Mexican Lime at Early and Late Stages of Huanglongbing Disease. PLANTS (BASEL, SWITZERLAND) 2023; 12:1039. [PMID: 36903899 PMCID: PMC10005081 DOI: 10.3390/plants12051039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Huanglongbing (HLB) is one of the most destructive diseases threatening citriculture worldwide. This disease has been associated with α-proteobacteria species, namely Candidatus Liberibacter. Due to the unculturable nature of the causal agent, it has been difficult to mitigate the disease, and nowadays a cure is not available. MicroRNAs (miRNAs) are key regulators of gene expression, playing an essential role in abiotic and biotic stress in plants including antibacterial responses. However, knowledge derived from non-model systems including Candidatus Liberibacter asiaticus (CLas)-citrus pathosystem remains largely unknown. In this study, small RNA profiles from Mexican lime (Citrus aurantifolia) plants infected with CLas at asymptomatic and symptomatic stages were generated by sRNA-Seq, and miRNAs were obtained with ShortStack software. A total of 46 miRNAs, including 29 known miRNAs and 17 novel miRNAs, were identified in Mexican lime. Among them, six miRNAs were deregulated in the asymptomatic stage, highlighting the up regulation of two new miRNAs. Meanwhile, eight miRNAs were differentially expressed in the symptomatic stage of the disease. The target genes of miRNAs were related to protein modification, transcription factors, and enzyme-coding genes. Our results provide new insights into miRNA-mediated regulation in C. aurantifolia in response to CLas infection. This information will be useful to understand molecular mechanisms behind the defense and pathogenesis of HLB.
Collapse
Affiliation(s)
- Ana Marlenne Bojórquez-Orozco
- Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave 81101, Sinaloa, Mexico
| | - Ángela Paulina Arce-Leal
- Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave 81101, Sinaloa, Mexico
| | - Ricardo A. Chávez Montes
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| | - María Elena Santos-Cervantes
- Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave 81101, Sinaloa, Mexico
| | - Abraham Cruz-Mendívil
- CONACYT—Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave 81101, Sinaloa, Mexico
| | - Jesús Méndez-Lozano
- Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave 81101, Sinaloa, Mexico
| | - Araceli G. Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Área de Genética, Facultad de Ciencias, E-29071 Málaga, Spain
| | - Edgar A. Rodríguez-Negrete
- Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave 81101, Sinaloa, Mexico
| | - Norma Elena Leyva-López
- Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave 81101, Sinaloa, Mexico
| |
Collapse
|
8
|
Xu Y, Liu J, Ji X, Zhao G, Zhao T, Wang X, Wang L, Gao S, Hao Y, Gao Y, Gao Y, Weng X, Jia L, Chen Z. Integrative analysis of microRNAs and mRNAs reveals the regulatory networks of triterpenoid saponin metabolism in Soapberry ( Sapindus mukorossi Gaertn.). FRONTIERS IN PLANT SCIENCE 2023; 13:1037784. [PMID: 36699854 PMCID: PMC9869041 DOI: 10.3389/fpls.2022.1037784] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/19/2022] [Indexed: 06/13/2023]
Abstract
Triterpenoid saponin are important secondary metabolites and bioactive constituents of soapberry (Sapindus mukorossi Gaertn.) and are widely used in medicine and toiletry products. However, little is known about the roles of miRNAs in the regulation of triterpenoid saponin biosynthesis in soapberry. In this study, a total of 3036 miRNAs were identified, of which 1372 miRNAs were differentially expressed at different stages of pericarp development. Important KEGG pathways, such as terpenoid backbone biosynthesis, sesquiterpenoid and triterpenoid biosynthesis, and basal transcription factors were highlighted, as well the roles of some key miRNAs, such as ath-miR5021, han-miR3630-3p, and ppe-miR858, which may play important roles in regulating triterpenoid saponin biosynthesis. In addition, 58 miRNAs might participate in saponin biosynthesis pathways by predicting the targets of those miRNAs to 53 saponin biosynthesis structural genes. And 75 miRNAs were identified to potentially play vital role in saponin accumulation by targeting transcript factor genes, bHLH, bZIP, ERF, MYB, and WRKY, respectively, which are candidate regulatory genes in the pathway of saponin biosynthesis. The results of weighted gene coexpression network analysis (WGCNA) suggested that two saponin-specific miRNA modules and 10 hub miRNAs may participate in saponin biosynthesis. Furthermore, multiple miRNA-mRNA regulatory networks potentially involved in saponin biosynthesis were generated, e.g., ath-miR5021-SmIDI2/SmGPS5/SmbAS1/SmCYP71D-3/SmUGT74G-2, han-miR3630-3p-SmCYP71A-14/SmbHLH54/SmMYB135/SmWRKY32, and ppe-miR858-SmMYB5/SmMYB32. qRT-PCR analysis validated the expression patterns of nine miRNAs and 12 corresponding target genes. This study represents the first comprehensive analysis of miRNAs in soapberry and lays the foundation for further understanding of miRNA-based regulation in triterpenoid saponin biosynthesis.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
| | - Jiming Liu
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
| | - Xiangqin Ji
- Bioinformatics Analysis Department, Hangzhou KaiTai Biotechnology Co., Ltd, Hangzhou, Zhejiang, China
| | - Guochun Zhao
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
| | - Tianyun Zhao
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
| | - Xin Wang
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
| | - Lixian Wang
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
| | - Shilun Gao
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
| | - Yingying Hao
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
| | - Yuhan Gao
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
| | - Yuan Gao
- Planning and Design Institute of Forest Products Industry, National Forestry and Grassland Administration, Beijing, China
| | - Xuehuang Weng
- Research and Development Department, Yuanhua Forestry Biological Technology Co., Ltd., Sanming, Fujian, China
| | - Liming Jia
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
| | - Zhong Chen
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, China
- National Innovation Alliance of Sapindus Industry, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| |
Collapse
|
9
|
Khan QH. Identification of Conserved and Novel MicroRNAs with their Targets in Garden Pea ( Pisum Sativum L.) Leaves by High-Throughput Sequencing. Bioinform Biol Insights 2023; 17:11779322231162777. [PMID: 37020501 PMCID: PMC10068972 DOI: 10.1177/11779322231162777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/18/2023] [Indexed: 04/03/2023] Open
Abstract
MicroRNAs (miRNAs) are single-stranded, endogenous, non-coding RNAs of 20–24 nucleotides that play a significant role in post-transcriptional gene regulation. Various conserved and novel miRNAs have been characterized, especially from the plant species whose genomes were well-characterized; however, information on miRNA in economically important plants such as pea ( Pisum sativum L.) is limited. In this study, I have identified conserved and novel miRNA in garden pea plant leaves samples along with their targets by analyzing the next generation sequencing (NGS) data. The raw data obtained from NGS were processed and 1.38 million high-quality non-redundant reads were retained for analysis, this tremendous quantity of reads indicates a large and diverse small RNA population in pea leaves. After analyzing the deep sequencing data, 255 conserved and 11 novel miRNAs were identified in the garden pea leaves sample. Utilizing psRNATarget tool, the miRNA targets of conserved and novel miRNA were predicted. Further, the functional annotation of the miRNA targets were performed using blast2Go software and the target gene products were predicted. The miRNA target gene products along with GO_ID (Gene Ontology Identifier) were categorized into biological processes, cellular components, and molecular functions. The information obtained from this study will provide genomic resources that will help in understanding miRNA-mediated post-transcriptional gene regulation in garden peas.
Collapse
Affiliation(s)
- Qurshid Hasan Khan
- Qurshid Hasan Khan, Department of Plant
Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana,
India.
| |
Collapse
|
10
|
Song JJ, Li H, Wang N, Zhou XY, Liu Y, Zhang Z, Feng Q, Chen YL, Liu D, Liang J, Ma XY, Wen XR, Fu YY. Gastrodin ameliorates the lipopolysaccharide-induced neuroinflammation in mice by downregulating miR-107-3p. Front Pharmacol 2022; 13:1044375. [PMID: 36569291 PMCID: PMC9773390 DOI: 10.3389/fphar.2022.1044375] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Neuroinflammation plays a pivotal role in the pathogenesis of Central Nervous System (CNS) diseases. The phenolic glucoside gastrodin (GAS), has been known to treat CNS disorders by exerting anti-inflammatory activities. Our aim was to investigate the potential neuroprotective mechanisms of GAS on lipopolysaccharide (LPS)-induced mice. Methods: Male C57BL/6J mice were treated by LPS, before which GAS was adminisrated. The behavior tests such as forced swim test, tail suspension test, and elevated plus maze were performed to evaluate depressive-anxiety-like behaviors. A high-throughput sequencing (HTS) analysis was performed to screen out distinctive miRNAs which were validated using quantitative real-time PCR. Then, miRNA agomir or NC was injected stereotaxically into hippocampus of mice to explore the role of miRNA on GAS in response to LPS. Furthermore, Immunofluorescence and the hematoxylin and eosin (H&E) staining were employed to observe the cellular morphology. The protein levels of pro-inflammatory factors were evaluated by western blot. Finally, the target mRNA of miRNA was predicted using bioinformatics analysis. GO and KEGG enrichment analyses were conducted to clarify the potential function of target protein, which were visualized by bubble charts. Results: The behavioral data showed that mice in the LPS group had obvious depressive-anxiety-like behaviors, and 100 mg/kg GAS could improve these behavioral changes and alleviate the levels of pro-inflammatory cytokines in the hippocampus when mice were exposed to LPS for 6 h. Meanwhile, LPS-induced microglia and astrocyte activation in the CA1, CA2, CA3, and DG regions of the hippocampus were also reversed by GAS. Furthermore, miR-107-3p were screened out and verified for GAS in response to LPS. Importantly, miR-107-3p overexpression negatively abrogated the neuroprotective effects of GAS. Moreover, KPNA1 might be the target molecular of miR-107-3p. KPNA1 might regulate 12 neuroinflammation-related genes, which were mainly involved in cytokine-mediated signaling pathway. Conclusion: These results suggested that GAS might alleviate the LPS-induced neuroinflammation and depressive-anxiety-like behaviors in mice by downregulating miR-107-3p and upregulating the downstream target KPNA1. The indicates miR-107-3p may provide a new strategy for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Jin-Jin Song
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China,Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Hui Li
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Nan Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Yan Zhou
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China,Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Yan Liu
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China,Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Zhen Zhang
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qian Feng
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China,Clinical Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu-Ling Chen
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dan Liu
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jia Liang
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiang-Yu Ma
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiang-Ru Wen
- College of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China,*Correspondence: Xiang-Ru Wen, ; Yan-Yan Fu,
| | - Yan-Yan Fu
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China,*Correspondence: Xiang-Ru Wen, ; Yan-Yan Fu,
| |
Collapse
|
11
|
Luo J, Zhao S, Ren Q, Wang Q, Chen Z, Cui J, Jing Y, Liu P, Yan R, Song X, Liu G, Li X. Dynamic Analysis of microRNAs from Different Life Stages of Rhipicephalus microplus (Acari: Ixodidae) by High-Throughput Sequencing. Pathogens 2022; 11:pathogens11101148. [PMID: 36297205 PMCID: PMC9611014 DOI: 10.3390/pathogens11101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
MicroRNAs (miRNAs), which are small, noncoding RNA molecules, play an important regulatory role in gene expression at the posttranscriptional level. Relatively limited knowledge exists on miRNAs in Rhipicephalus microplus ticks in China; however, understanding the physiology of miRNA functions and expression at different developmental stages is important. In this study, three small RNA libraries were constructed for R. microplus eggs, larvae, and female adults; miRNAs were detected during these developmental stages by high-throughput sequencing, with 18,162,337, 8,090,736, and 11,807,326 clean reads, respectively. A total of 5132 known miRNAs and 31 novel miRNAs were identified. A total of 1736 differentially expressed miRNAs were significantly different at a p-value of <0.01; in female adults, 467 microRNAs were upregulated and 376 miRNAs downregulated compared to larval tick controls. Using larvae as controls, 218 upregulated and 203 downregulated miRNAs were detected in eggs; in eggs, 108 miRNAs were upregulated and 364 downregulated compared to female adults controls. To verify the reliability of the sequencing data, RT−qPCR was applied to compare expression levels of novel miRNAs. Some differentially expressed miRNAs are involved in developmental physiology, signal transduction, and cell-extracellular communications based on GO annotation and KEGG pathway analyses. Here, we provide a dynamic analysis of miRNAs in R. microplus and their potential targets, which has significance for understanding the biology of ticks and lays the foundation for improved understanding of miRNA functioning in the regulation of R. microplus development. These results can assist future miRNA studies in other tick species that have great significance for human and animal health.
Collapse
Affiliation(s)
- Jin Luo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China
| | - Shuaiyang Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China
| | - Qiaoyun Ren
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China
| | - Qilin Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China
| | - Zeyu Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China
| | - Jingjing Cui
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China
| | - Yujiao Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China
| | - Peiwen Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China
- Correspondence: (G.L.); (X.L.)
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (G.L.); (X.L.)
| |
Collapse
|
12
|
Raza A, Sharif Y, Chen K, Wang L, Fu H, Zhuang Y, Chitikineni A, Chen H, Zhang C, Varshney RK, Zhuang W. Genome-Wide Characterization of Ascorbate Peroxidase Gene Family in Peanut ( Arachis hypogea L.) Revealed Their Crucial Role in Growth and Multiple Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:962182. [PMID: 36186077 PMCID: PMC9524023 DOI: 10.3389/fpls.2022.962182] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/23/2022] [Indexed: 06/16/2023]
Abstract
Ascorbate peroxidase (APX), an important antioxidant enzyme, plays a significant role in ROS scavenging by catalyzing the decrease of hydrogen peroxide under various environmental stresses. Nevertheless, information about the APX gene family and their evolutionary and functional attributes in peanut (Arachis hypogea L.) was not reported. Therefore, a comprehensive genome-wide study was performed to discover the APX genes in cultivated peanut genome. This study identified 166 AhAPX genes in the peanut genome, classified into 11 main groups. The gene duplication analysis showed that AhAPX genes had experienced segmental duplications and purifying selection pressure. Gene structure and motif investigation indicated that most of the AhAPX genes exhibited a comparatively well-preserved exon-intron pattern and motif configuration contained by the identical group. We discovered five phytohormones-, six abiotic stress-, and five growth and development-related cis-elements in the promoter regions of AhAPX. Fourteen putative ah-miRNAs from 12 families were identified, targeting 33 AhAPX genes. Furthermore, we identified 3,257 transcription factors from 38 families (including AP2, ARF, B3, bHLH, bZIP, ERF, MYB, NAC, WRKY, etc.) in 162 AhAPX genes. Gene ontology and KEGG enrichment analysis confirm the role of AhAPX genes in oxidoreductase activity, catalytic activity, cell junction, cellular response to stimulus and detoxification, biosynthesis of metabolites, and phenylpropanoid metabolism. Based on transcriptome datasets, some genes such as AhAPX4/7/17/77/82/86/130/133 and AhAPX160 showed significantly higher expression in diverse tissues/organs, i.e., flower, leaf, stem, roots, peg, testa, and cotyledon. Likewise, only a few genes, including AhAPX4/17/19/55/59/82/101/102/137 and AhAPX140, were significantly upregulated under abiotic (drought and cold), and phytohormones (ethylene, abscisic acid, paclobutrazol, brassinolide, and salicylic acid) treatments. qRT-PCR-based expression profiling presented the parallel expression trends as generated from transcriptome datasets. Our discoveries gave new visions into the evolution of APX genes and provided a base for further functional examinations of the AhAPX genes in peanut breeding programs.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Plant Genetics and Systems Biology, College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Yasir Sharif
- College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Kun Chen
- College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Lihui Wang
- College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Huiwen Fu
- College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Yuhui Zhuang
- College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Annapurna Chitikineni
- Murdoch’s Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Plant Genetics and Systems Biology, College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Plant Genetics and Systems Biology, College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Rajeev K. Varshney
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Plant Genetics and Systems Biology, College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- Murdoch’s Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Plant Genetics and Systems Biology, College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| |
Collapse
|
13
|
Fan B, Sun F, Yu Z, Zhang X, Yu X, Wu J, Yan X, Zhao Y, Nie L, Fang Y, Ma Y. Integrated analysis of small RNAs, transcriptome and degradome sequencing reveal the drought stress network in Agropyron mongolicum Keng. FRONTIERS IN PLANT SCIENCE 2022; 13:976684. [PMID: 36061788 PMCID: PMC9433978 DOI: 10.3389/fpls.2022.976684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Agropyron mongolicum (A. mongolicum) is an excellent gramineous forage with extreme drought tolerance, which lives in arid and semiarid desert areas. However, the mechanism that underlies the response of microRNAs (miRNAs) and their targets in A. mongolicum to drought stress is not well understood. In this study, we analyzed the transcriptome, small RNAome (specifically the miRNAome) and degradome to generate a comprehensive resource that focused on identifying key regulatory miRNA-target circuits under drought stress. The most extended transcript in each collection is known as the UniGene, and a total of 41,792 UniGenes and 1,104 miRNAs were identified, and 99 differentially expressed miRNAs negatively regulated 1,474 differentially expressed target genes. Among them, eight miRNAs were unique to A. mongolicum, and there were 36 target genes. A weighted gene co-expression network analysis identified five hub genes. The miRNAs of five hub genes were screened with an integration analysis of the degradome and sRNAs, such as osa-miR444a-3p.2-MADS47, bdi-miR408-5p_1ss19TA-CCX1, tae-miR9774_L-2R-1_1ss11GT-carC, ata-miR169a-3p-PAO2, and bdi-miR528-p3_2ss15TG20CA-HOX24. The functional annotations revealed that they were involved in mediating the brassinosteroid signal pathway, transporting and exchanging sodium and potassium ions and regulating the oxidation-reduction process, hydrolase activity, plant response to water deprivation, abscisic acid (ABA) and the ABA-activated signaling pathway to regulate drought stress. Five hub genes were discovered, which could play central roles in the regulation of drought-responsive genes. These results show that the combined analysis of miRNA, the transcriptome and degradation group provides a useful platform to investigate the molecular mechanism of drought resistance in A. mongolicum and could provide new insights into the genetic engineering of Poaceae crops in the future.
Collapse
Affiliation(s)
- Bobo Fan
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
| | - Fengcheng Sun
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
| | - Zhuo Yu
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
| | - Xuefeng Zhang
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaoxia Yu
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
| | - Jing Wu
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiuxiu Yan
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
| | - Yan Zhao
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Lizhen Nie
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
| | - Yongyu Fang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
| | - Yanhong Ma
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
14
|
Xing H, Li Y, Ren Y, Zhao Y, Wu X, Li HL. Genome-wide investigation of microRNAs and expression profiles during rhizome development in ginger (Zingiber officinale Roscoe). BMC Genomics 2022; 23:49. [PMID: 35021996 PMCID: PMC8756691 DOI: 10.1186/s12864-021-08273-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are endogenous, non-coding small functional RNAs that govern the post-transcriptional regulatory system of gene expression and control the growth and development of plants. Ginger is an herb that is well-known for its flavor and medicinal properties. The genes involved in ginger rhizome development and secondary metabolism have been discovered, but the genome-wide identification of miRNAs and their overall expression profiles and targets during ginger rhizome development are largely unknown. In this study, we used BGISEQ-500 technology to perform genome-wide identification of miRNAs from the leaf, stem, root, flower, and rhizome of ginger during three development stages. RESULTS In total, 104 novel miRNAs and 160 conserved miRNAs in 28 miRNA families were identified. A total of 181 putative target genes for novel miRNAs and 2772 putative target genes for conserved miRNAs were predicted. Transcriptional factors were the most abundant target genes of miRNAs, and 17, 9, 8, 4, 13, 8, 3 conserved miRNAs and 5, 7, 4, 5, 5, 15, 9 novel miRNAs showed significant tissue-specific expression patterns in leaf, stem, root, flower, and rhizome. Additionally, 53 miRNAs were regarded as rhizome development-associated miRNAs, which mostly participate in metabolism, signal transduction, transport, and catabolism, suggesting that these miRNAs and their target genes play important roles in the rhizome development of ginger. Twelve candidate miRNA target genes were selected, and then, their credibility was confirmed using qRT-PCR. As the result of qRT-PCR analysis, the expression of 12 candidate target genes showed an opposite pattern after comparison with their miRNAs. The rhizome development system of ginger was observed to be governed by miR156, miR319, miR171a_2, miR164, and miR529, which modulated the expression of the SPL, MYB, GRF, SCL, and NAC genes, respectively. CONCLUSION This is a deep genome-wide investigation of miRNA and identification of miRNAs involved in rhizome development in ginger. We identified 52 rhizome-related miRNAs and 392 target genes, and this provides an important basis for understanding the molecular mechanisms of the miRNA target genes that mediate rhizome development in ginger.
Collapse
Affiliation(s)
- Haitao Xing
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402168, China
| | - Yuan Li
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China.
| | - Yun Ren
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402168, China
| | - Ying Zhao
- Research Center for Terrestrial Biodiversity of the South China Sea, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, Hainan, China
| | - Xiaoli Wu
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China
| | - Hong-Lei Li
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China.
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402168, China.
| |
Collapse
|
15
|
Integration of Small RNA and Degradome Sequencing Reveals the Regulatory Network of Al-Induced Programmed Cell Death in Peanut. Int J Mol Sci 2021; 23:ijms23010246. [PMID: 35008672 PMCID: PMC8745729 DOI: 10.3390/ijms23010246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022] Open
Abstract
Peanut is one of the most important oil crops in the world. In China, the peanut is highly produced in its southern part, in which the arable land is dominated by acid soil. At present, miRNAs have been identified in stress response, but their roles and mechanisms are not clear, and no miRNA studies have been found related to aluminum (Al)-induced programmed cell death (PCD). In the present study, transcriptomics, sRNAs, and degradome analysis in the root tips of two peanut cultivars ZH2 (Al-sensitive, S) and 99-1507 (Al-tolerant, T) were carried out. Here, we generated a comprehensive resource focused on identifying key regulatory miRNA-target circuits that regulate PCD under Al stress. Through deep sequencing, 2284 miRNAs were identified and 147 miRNAs were differentially expressed under Al stress. Furthermore, 19237 target genes of 749 miRNAs were validated by degradome sequencing. GO and KEGG analyses of differential miRNA targets showed that the pathways of synthesis and degradation of ketone bodies, citrate cycle (TCA cycle), and peroxisome were responded to Al stress. The combined analysis of the degradome data sets revealed 89 miRNA-mRNA interactions that may regulate PCD under Al stress. Ubiquitination may be involved in Al-induced PCD in peanut. The regulatory networks were constructed based on the differentially expressed miRNAs and their targets related to PCD. Our results will provide a useful platform to research on PCD induced by Al and new insights into the genetic engineering for plant stress response.
Collapse
|
16
|
Talesh Sasani S, M Soltani B, Mehrabi R, Fereidoun Padasht-Dehkaei HS. Expression Alteration of Candidate Rice MiRNAs in Response to Sheath Blight Disease. IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 18:e2451. [PMID: 34056017 PMCID: PMC8148646 DOI: 10.30498/ijb.2020.2451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Background: MicroRNAs, as small non-coding RNAs, are recently reported to be involved in plant defense system against pathogens including fungi. Objective: In this research, it was intended to investigate candidate susceptible rice (Oryza Sativa) Osa-miRNA expression alteration following the infection by Rhizoctonia solani. Materials and Methods: To this aim, literature review suggested eight conserved plant miRNAs that are involved in other plant-pathogen interactions. Then, sixty days old rice plants (Hashemi, susceptible cultivar) were inoculated with R. solani and candidate miRNA expression alterations were investigated 2 hpi (hours post inoculation), 2 dpi (days post inoculation) and 6 dpi. Results: RT-qPCR analysis suggested four subgroups of candidate miRNAs based on the time of their responses to the pathogenesis of R. solani.
While Osa-miR-156 was early-responsive, Osa-miR159 was the last-responsive and Osa-miR167, Osa-miR171, Osa-miR408, and Osa-miR444 were late responsive to R. solani infection.
Osa-miR166 and Osa-miR393 were non-responsive to this infection, compared to the mock-inoculated control group.
Consistently, Os-SPL3 and Os-MADS known target genes were expressed in reverse correlation to Osa-miR156 and Osa-miR444, respectively. Conclusions: From these data, it is suggested that both early (Osa-miR-156) and late (Osa-miR167, Osa-miR171, Osa- miR408, Osa-miR444) responsive miRNAs might be involved in R. solani infection in rice plants.
Collapse
Affiliation(s)
- Soheila Talesh Sasani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Department of Biology, University of Guilan, Rasht, Iran
| | - Bahram M Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Rahim Mehrabi
- Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | |
Collapse
|
17
|
Small RNA profiling reveal regulation of microRNAs in field peanut pod rot pathogen infection. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00485-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Analysis of small RNA populations generated in peanut leaves after exogenous application of dsRNA and dsDNA targeting aflatoxin synthesis genes. Sci Rep 2020; 10:13820. [PMID: 32796886 PMCID: PMC7427784 DOI: 10.1038/s41598-020-70618-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 07/27/2020] [Indexed: 11/08/2022] Open
Abstract
Previously, we have shown that RNA interference (RNAi) can prevent aflatoxin accumulation in transformed peanuts. To explore aflatoxin control by exogenous delivery of double-strand RNA (dsRNA) it is necessary to understand the generation of small RNA (sRNA) populations. We sequenced 12 duplicate sRNA libraries of in-vitro-grown peanut plants, 24 and 48 h after exogenous application of five gene fragments (RNAi-5x) related to aflatoxin biosynthesis in Aspergillus flavus. RNAi-5x was applied either as double-stranded RNA (dsRNA) or RNAi plasmid DNA (dsDNA). Small interfering RNAs (siRNAs) derived from RNAi-5x were significantly more abundant at 48 h than at 24 h, and the majority mapped to the fragment of aflatoxin efflux-pump gene. RNAi-5x-specific siRNAs were significantly, three to fivefold, more abundant in dsDNA than dsRNA treatments. Further examination of known micro RNAs related to disease-resistance, showed significant down-regulation of miR399 and up-regulation of miR482 in leaves treated with dsDNA compared to the control. These results show that sRNA sequencing is useful to compare exogenous RNAi delivery methods on peanut plants, and to analyze the efficacy of molecular constructs to generate siRNAs against specific gene targets. This work lays the foundation for non-transgenic delivery of RNAi in controlling aflatoxins in peanut.
Collapse
|
19
|
Zhao C, Li T, Zhao Y, Zhang B, Li A, Zhao S, Hou L, Xia H, Fan S, Qiu J, Li P, Zhang Y, Guo B, Wang X. Integrated small RNA and mRNA expression profiles reveal miRNAs and their target genes in response to Aspergillus flavus growth in peanut seeds. BMC PLANT BIOLOGY 2020; 20:215. [PMID: 32404101 PMCID: PMC7222326 DOI: 10.1186/s12870-020-02426-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 04/30/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND MicroRNAs are important gene expression regulators in plants immune system. Aspergillus flavus is the most common causal agents of aflatoxin contamination in peanuts, but information on the function of miRNA in peanut-A. flavus interaction is lacking. In this study, the resistant cultivar (GT-C20) and susceptible cultivar (Tifrunner) were used to investigate regulatory roles of miRNAs in response to A. flavus growth. RESULTS A total of 30 miRNAs, 447 genes and 21 potential miRNA/mRNA pairs were differentially expressed significantly when treated with A. flavus. A total of 62 miRNAs, 451 genes and 44 potential miRNA/mRNA pairs exhibited differential expression profiles between two peanut varieties. Gene Ontology (GO) analysis showed that metabolic-process related GO terms were enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses further supported the GO results, in which many enriched pathways were related with biosynthesis and metabolism, such as biosynthesis of secondary metabolites and metabolic pathways. Correlation analysis of small RNA, transcriptome and degradome indicated that miR156/SPL pairs might regulate the accumulation of flavonoids in resistant and susceptible genotypes. The miR482/2118 family might regulate NBS-LRR gene which had the higher expression level in resistant genotype. These results provided useful information for further understanding the roles of miR156/157/SPL and miR482/2118/NBS-LRR pairs. CONCLUSIONS Integration analysis of the transcriptome, miRNAome and degradome of resistant and susceptible peanut varieties were performed in this study. The knowledge gained will help to understand the roles of miRNAs of peanut in response to A. flavus.
Collapse
Affiliation(s)
- Chuanzhi Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
- College of Life Sciences, Shandong Normal University, Jinan, 250014 PR China
| | - Tingting Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
- Rizhao Experimental High School od Shandong, Rizhao, 276826 PR China
| | - Yuhan Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
- College of Life Sciences, Shandong Normal University, Jinan, 250014 PR China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC USA
| | - Aiqin Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
| | - Shuzhen Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
| | - Lei Hou
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
| | - Han Xia
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
| | - Shoujin Fan
- College of Life Sciences, Shandong Normal University, Jinan, 250014 PR China
| | - Jingjing Qiu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
- College of Life Sciences, Shandong Normal University, Jinan, 250014 PR China
| | - Pengcheng Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
| | - Ye Zhang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
| | - Baozhu Guo
- Crop Protection and Management Research Unit, USDA-Agricultural Research Service, Tifton, GA 31793 USA
- Department of Plant Pathology, University of Georgia, Tifton, GA USA
| | - Xingjun Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100 PR China
- College of Life Sciences, Shandong Normal University, Jinan, 250014 PR China
| |
Collapse
|
20
|
Figueredo MS, Formey D, Rodríguez J, Ibáñez F, Hernández G, Fabra A. Identification of miRNAs linked to peanut nodule functional processes. J Biosci 2020. [DOI: 10.1007/s12038-020-00034-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Parmar S, Gharat SA, Tagirasa R, Chandra T, Behera L, Dash SK, Shaw BP. Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity. PLoS One 2020; 15:e0230958. [PMID: 32294092 PMCID: PMC7159242 DOI: 10.1371/journal.pone.0230958] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/12/2020] [Indexed: 12/31/2022] Open
Abstract
Soil salinization is a serious problem for cultivation of rice, as among cereals rice is the most salt sensitive crop, and more than 40% of the total agricultural land amounting to approximately 80 million ha the world over is salt affected. Salinity affects a plant in a varieties of ways, including ion toxicity, osmotic stress and oxidative damage. Since miRNAs occupy the top place in biochemical events determining a trait, understanding their role in salt tolerance is highly desirable, which may allow introduction of the trait in the rice cultivars of choice through biotechnological interventions. High throughput sequencing of sRNAs in the root and shoot tissues of the seedlings of the control and NaCl treated Pokkali, a salt-tolerant rice variety, identified 75 conserved miRNAs and mapped 200 sRNAs to the rice genome as novel miRNAs. Expression of nine novel miRNAs and two conserved miRNAs were confirmed by Northern blotting. Several of both conserved and novel miRNAs that expressed differentially in root and/or shoot tissues targeted transcription factors like AP2/EREBP domain protein, ARF, NAC, MYB, NF-YA, HD-Zip III, TCP and SBP reported to be involved in salt tolerance or in abiotic stress tolerance in general. Most of the novel miRNAs expressed in the salt tolerant wild rice Oryza coarctata, suggesting conservation of miRNAs in taxonomically related species. One of the novel miRNAs, osa-miR12477, also targeted L-ascorbate oxidase (LAO), indicating build-up of oxidative stress in the plant upon salt treatment, which was confirmed by DAB staining. Thus, salt tolerance might involve miRNA-mediated regulation of 1) cellular abundance of the hormone signaling components like EREBP and ARF, 2) synthesis of abiotic stress related transcription factors, and 3) antioxidative component like LAO for mitigation of oxidative damage. The study clearly indicated importance of osa-miR12477 regulated expression of LAO in salt tolerance in the plant.
Collapse
Affiliation(s)
- Shaifaly Parmar
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Sachin Ashruba Gharat
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Ravichandra Tagirasa
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Tilak Chandra
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Lambodar Behera
- Crop Improvement Division, ICAR-National Rice Research Institute (Formerly Central Rice Research Institute), Cuttack, Odisha, India
| | - Sushant Kumar Dash
- Crop Improvement Division, ICAR-National Rice Research Institute (Formerly Central Rice Research Institute), Cuttack, Odisha, India
| | - Birendra Prasad Shaw
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
22
|
Identification and profiling of microRNAs and differentially expressed genes during anther development between a genetic male-sterile mutant and its wildtype cotton via high-throughput RNA sequencing. Mol Genet Genomics 2020; 295:645-660. [PMID: 32172356 PMCID: PMC7203095 DOI: 10.1007/s00438-020-01656-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/19/2020] [Indexed: 11/10/2022]
Abstract
Genetic male sterility (GMS) facilitates hybrid seed production in crops including cotton (Gossypium hirsutum). However, the genetic and molecular mechanisms specifically involved in this developmental process are poorly understood. In this study, small RNA sequencing, degradome sequencing, and transcriptome sequencing were performed to analyze miRNAs and their target genes during anther development in a GMS mutant (‘Dong A’) and its fertile wildtype (WT). A total of 80 known and 220 novel miRNAs were identified, 71 of which showed differential expressions during anther development. A further degradome sequencing revealed a total of 117 candidate target genes cleaved by 16 known and 36 novel miRNAs. Based on RNA-seq, 24, 11, and 21 predicted target genes showed expression correlations with the corresponding miRNAs at the meiosis, tetrad and uninucleate stages, respectively. In addition, a large number of differentially expressed genes were identified, most of which were involved in sucrose and starch metabolism, carbohydrate metabolism, and plant hormone signal transduction based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The results of our study provide valuable information for further functional investigations of the important miRNAs and target genes involved in genetic male sterility and advance our understanding of miRNA regulatory functions during cotton anther development.
Collapse
|
23
|
Li J, Lei L, Ye F, Zhou Y, Chang H, Zhao G. Nutritive implications of dietary microRNAs: facts, controversies, and perspectives. Food Funct 2019; 10:3044-3056. [PMID: 31066412 DOI: 10.1039/c9fo00216b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As a group of non-coding RNA molecules, microRNAs have recently become more well-known due to their pivotal role in gene regulation. A large number of endogenous microRNAs naturally occur in the human body, and some of them act as regulatory targets of diet and its components. The wide presence of microRNAs in various food materials has inspired food scientists and nutritionists to explore their nutritive and bioactive significance. This article comprehensively reports updated insights into the accessibility, stability, absorbability, and bioactivity of dietary microRNAs by combining the current knowledge into figures and tables for reader's convenience. As one frontier in food science and nutrition, the research platform on dietary microRNAs is imperfect and even defective as indicated by the inconsistent and even contradictory results concluded by different investigations. The pros and cons as well as the limitations of current investigations have been critically discussed with attention chiefly paid to experimental designs and protocols. Moreover, future research directions have been recommended. Thus, this paper may not only provide a quick glance at the state-of-the-art of dietary microRNAs but also guide further research to clarify the present controversies and make the results more credible and persuasive.
Collapse
Affiliation(s)
- Jianting Li
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
24
|
Identification of miRNA, their targets and miPEPs in peanut (Arachis hypogaea L.). Comput Biol Chem 2019; 83:107100. [DOI: 10.1016/j.compbiolchem.2019.107100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 07/04/2019] [Accepted: 08/06/2019] [Indexed: 01/28/2023]
|
25
|
Kumar R, Pandey MK, Roychoudhry S, Nayyar H, Kepinski S, Varshney RK. Peg Biology: Deciphering the Molecular Regulations Involved During Peanut Peg Development. FRONTIERS IN PLANT SCIENCE 2019; 10:1289. [PMID: 31681383 PMCID: PMC6813228 DOI: 10.3389/fpls.2019.01289] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/17/2019] [Indexed: 05/07/2023]
Abstract
Peanut or groundnut is one of the most important legume crops with high protein and oil content. The high nutritional qualities of peanut and its multiple usage have made it an indispensable component of our daily life, in both confectionary and therapeutic food industries. Given the socio-economic significance of peanut, understanding its developmental biology is important in providing a molecular framework to support breeding activities. In peanut, the formation and directional growth of a specialized reproductive organ called a peg, or gynophore, is especially relevant in genetic improvement. Several studies have indicated that peanut yield can be improved by improving reproductive traits including peg development. Therefore, we aim to identify unifying principles for the genetic control, underpinning molecular and physiological basis of peg development for devising appropriate strategy for peg improvement. This review discusses the current understanding of the molecular aspects of peanut peg development citing several studies explaining the key mechanisms. Deciphering and integrating recent transcriptomic, proteomic, and miRNA-regulomic studies provide a new perspective for understanding the regulatory events of peg development that participate in pod formation and thus control yield.
Collapse
Affiliation(s)
- Rakesh Kumar
- Center of Excellence in Genomics and Systems Biology, International Crops Research, Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Manish K. Pandey
- Center of Excellence in Genomics and Systems Biology, International Crops Research, Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| | - Stefan Kepinski
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | - Rajeev K. Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research, Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| |
Collapse
|
26
|
Jin Y, Liu L, Hao X, Harry DE, Zheng Y, Huang T, Huang J. Unravelling the MicroRNA-Mediated Gene Regulation in Developing Pongamia Seeds by High-Throughput Small RNA Profiling. Int J Mol Sci 2019; 20:ijms20143509. [PMID: 31319494 PMCID: PMC6678122 DOI: 10.3390/ijms20143509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 01/07/2023] Open
Abstract
Pongamia (Millettia pinnata syn. Pongamia pinnata) is a multipurpose biofuel tree which can withstand a variety of abiotic stresses. Commercial applications of Pongamia trees may substantially benefit from improvements in their oil-seed productivity, which is governed by complex regulatory mechanisms underlying seed development. MicroRNAs (miRNAs) are important molecular regulators of plant development, while relatively little is known about their roles in seed development, especially for woody plants. In this study, we identified 236 conserved miRNAs within 49 families and 143 novel miRNAs via deep sequencing of Pongamia seeds sampled at three developmental phases. For these miRNAs, 1327 target genes were computationally predicted. Furthermore, 115 differentially expressed miRNAs (DEmiRs) between successive developmental phases were sorted out. The DEmiR-targeted genes were preferentially enriched in the functional categories associated with DNA damage repair and photosynthesis. The combined analyses of expression profiles for DEmiRs and functional annotations for their target genes revealed the involvements of both conserved and novel miRNA-target modules in Pongamia seed development. Quantitative Real-Time PCR validated the expression changes of 15 DEmiRs as well as the opposite expression changes of six targets. These results provide valuable miRNA candidates for further functional characterization and breeding practice in Pongamia and other oilseed plants.
Collapse
Affiliation(s)
- Ye Jin
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Lin Liu
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xuehong Hao
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | | | - Yizhi Zheng
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Tengbo Huang
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jianzi Huang
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
27
|
Fourounjian P, Tang J, Tanyolac B, Feng Y, Gelfand B, Kakrana A, Tu M, Wakim C, Meyers BC, Ma J, Messing J. Post-transcriptional adaptation of the aquatic plant Spirodela polyrhiza under stress and hormonal stimuli. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:1120-1133. [PMID: 30801806 DOI: 10.1111/tpj.14294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
The Lemnaceae family comprises aquatic plants of angiosperms gaining attention due to their utility in wastewater treatment, and rapid production of biomass that can be used as feed, fuel, or food. Moreover, it can serve as a model species for neotenous growth and environmental adaptation. The latter properties are subject to post-transcriptional regulation of gene expression, meriting investigation of how miRNAs in Spirodela polyrhiza, the most basal and most thoroughly sequenced member of the family, are expressed under different growth conditions. To further scientific understanding of its capacity to adapt to environmental cues, we measured miRNA expression and processing of their target sequences under different temperatures, and in the presence of abscisic acid, copper, kinetin, nitrate, and sucrose. Using two small RNA sequencing experiments and one degradome sequencing experiment, we provide evidence for 108 miRNAs. Sequencing cleaved mRNAs validated 42 conserved miRNAs with 83 targets and 24 novel miRNAs regulating 66 targets and created a list of 575 predicted and verified targets. These analyses revealed condition-induced changes in miRNA expression and cleavage activity, and resulted in the addition of stringently reviewed miRNAs to miRBase. This combination of small RNA and degradome sequencing provided not only high confidence predictions of conserved and novel miRNAs and targets, but also a view of the post-transcriptional regulation of adaptations. A unique aspect is the role of miR156 and miR172 expression and activity in its clonal propagation and neoteny. Additionally, low levels of 24 nt sRNAs were observed, despite the lack of recent retrotransposition.
Collapse
Affiliation(s)
- Paul Fourounjian
- Waksman Institute of Microbiology, Rutgers University, New Brunswick, NJ, 08854, USA
| | - Jie Tang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Bahattin Tanyolac
- Waksman Institute of Microbiology, Rutgers University, New Brunswick, NJ, 08854, USA
| | - Yaping Feng
- Waksman Institute of Microbiology, Rutgers University, New Brunswick, NJ, 08854, USA
| | - Brian Gelfand
- Waksman Institute of Microbiology, Rutgers University, New Brunswick, NJ, 08854, USA
| | - Atul Kakrana
- Donald Danforth Plant Science Center, Saint Louis, MO, 63132, USA
| | - Min Tu
- Waksman Institute of Microbiology, Rutgers University, New Brunswick, NJ, 08854, USA
| | - Chris Wakim
- Waksman Institute of Microbiology, Rutgers University, New Brunswick, NJ, 08854, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, Saint Louis, MO, 63132, USA
| | - Jiong Ma
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Joachim Messing
- Waksman Institute of Microbiology, Rutgers University, New Brunswick, NJ, 08854, USA
| |
Collapse
|
28
|
Chen H, Yang Q, Chen K, Zhao S, Zhang C, Pan R, Cai T, Deng Y, Wang X, Chen Y, Chu W, Xie W, Zhuang W. Integrated microRNA and transcriptome profiling reveals a miRNA-mediated regulatory network of embryo abortion under calcium deficiency in peanut (Arachis hypogaea L.). BMC Genomics 2019; 20:392. [PMID: 31113378 PMCID: PMC6528327 DOI: 10.1186/s12864-019-5770-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 05/03/2019] [Indexed: 12/14/2022] Open
Abstract
Background Peanut embryo development is a complex process involving a series of gene regulatory pathways and is easily affected by various elements in the soil. Calcium deficiency in the soil induces early embryo abortion in peanut, which provides an opportunity to determine the mechanism underlying this important event. MicroRNA (miRNA)-guided target gene regulation is vital to a wide variety of biological processes. However, whether miRNAs participate in peanut embryo abortion under calcium deficiency has yet to be explored. Results In this study, with the assistance of a recently established platform for genome sequences of wild peanut species, we analyzed small RNAs (sRNAs) in early peanut embryos. A total of 29 known and 132 potential novel miRNAs were discovered in 12 peanut-specific miRNA families. Among the identified miRNAs, 87 were differentially expressed during early embryo development under calcium deficiency and sufficiency conditions, and 117 target genes of the differentially expressed miRNAs were identified. Integrated analysis of miRNAs and transcriptome expression revealed 52 differentially expressed target genes of 20 miRNAs. The expression profiles for some differentially expressed targets by gene chip analysis were consistent with the transcriptome sequencing results. Together, our results demonstrate that seed/embryo development-related genes such as TCP3, AP2, EMB2750, and GRFs; cell division and proliferation-related genes such as HsfB4 and DIVARICATA; plant hormone signaling pathway-related genes such as CYP707A1 and CYP707A3, with which abscisic acid (ABA) is involved; and BR1, with which brassinosteroids (BRs) are involved, were actively modulated by miRNAs during early embryo development. Conclusions Both a number of miRNAs and corresponding target genes likely playing key roles in the regulation of peanut embryo abortion under calcium deficiency were identified. These findings provide for the first time new insights into miRNA-mediated regulatory pathways involved in peanut embryo abortion under calcium deficiency. Electronic supplementary material The online version of this article (10.1186/s12864-019-5770-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hua Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Qiang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Kun Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Shanshan Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Chong Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Ronglong Pan
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsin Chu, 30013, Taiwan
| | - Tiecheng Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Ye Deng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Xingjun Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Yuting Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Wenting Chu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Wenping Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Weijian Zhuang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China. .,Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China. .,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.
| |
Collapse
|
29
|
Dudink E, Florijn B, Weijs B, Duijs J, Luermans J, Peeters F, Schurgers L, Wildberger J, Schotten U, Bijkerk R, Crijns HJ, van Zonneveld AJ. Vascular Calcification and not Arrhythmia in Idiopathic Atrial Fibrillation Associates with Sex Differences in Diabetic Microvascular Injury miRNA Profiles. Microrna 2019; 8:127-134. [PMID: 30465521 DOI: 10.2174/2211536608666181122125208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/17/2018] [Accepted: 11/16/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Atrial Fibrillation (AF) in patients without concomitant cardiovascular pathophysiological disease, is called idiopathic Atrial Fibrillation (iAF). Nonetheless, iAF patients have often times subclinical coronary (micro) vascular dysfunction and, particularly in women, a higher prevalence of subsequent cardiovascular comorbidities. Previously, we identified a plasma miRNA association with diabetes and microvascular injury in Diabetic Nephropathy (DN) patients. Therefore, in this study we assessed whether plasma levels of these diabetic, microvascular injury associated miRNAs reflect microvascular integrity in iAF patients, associated with the presence of paroxysmal arrhythmia or instead are determined by concealed coronary artery disease. METHODS Circulating levels of a pre-selected set of diabetic, (micro) vascular injury associated miRNAs, were measured in 59 iAF patients compared to 176 Sinus Rhythm (SR) controls. Furthermore, the presence of coronary artery and aortic calcification in each patient was assessed using Cardiac Computed Tomography Angiography (CCTA). RESULTS Paroxysmal arrhythmia in iAF patients did not result in significant miRNA expression profile differences in iAF patients compared to SR controls. Nonetheless, coronary artery calcification (CAC) was associated with higher levels of miRNAs-103, -125a-5p, -221 and -223 in men. In women, CAC was associated with higher plasma levels of miRNA-27a and miRNA-126 and correlated with Agatston scores. Within the total population, ascending Aortic Calcification (AsAC) patients displayed increased plasma levels of miRNA-221, while women, in particular, demonstrated a Descending Aorta Calcification (DAC) associated increase in miRNA-212 levels. CONCLUSIONS Diabetic microvascular injury associated miRNAs in iAF are associated with subclinical coronary artery disease in a sex-specific way and confirm the notion that biological sex identifies iAF subgroups that may require dedicated clinical care.
Collapse
Affiliation(s)
- Elton Dudink
- Department of Cardiology, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht, P. Debyelaan 25, 6229 HX, Maastricht, Netherlands
| | - Barend Florijn
- Department of Internal Medicine (Nephrology), Leiden University Medical Center and Einthoven Laboratory for Vascular and Regenerative Medicine, Albinusdreef 2, 2333 ZA, Leiden, Netherlands
| | - Bob Weijs
- Department of Cardiology, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht, P. Debyelaan 25, 6229 HX, Maastricht, Netherlands
| | - Jacques Duijs
- Department of Internal Medicine (Nephrology), Leiden University Medical Center and Einthoven Laboratory for Vascular and Regenerative Medicine, Albinusdreef 2, 2333 ZA, Leiden, Netherlands
| | - Justin Luermans
- Department of Cardiology, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht, P. Debyelaan 25, 6229 HX, Maastricht, Netherlands
| | - Frederique Peeters
- Department of Cardiology, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht, P. Debyelaan 25, 6229 HX, Maastricht, Netherlands
| | - Leon Schurgers
- Department of Biochemistry,Maastricht University and Cardiovascular Research Institute Maastricht, Universiteitssingel 50, 6229 ER, Maastricht, Netherlands
| | - Joachim Wildberger
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht, P. Debyelaan 25, 6229 HX, Maastricht, Netherlands
| | - Ulrich Schotten
- Department of Physiology, Maastricht University and Cardiovascular Research Institute Maastricht, Universiteitssingel 50, 6229 ER, Maastricht, Netherlands
| | - Roel Bijkerk
- Department of Internal Medicine (Nephrology), Leiden University Medical Center and Einthoven Laboratory for Vascular and Regenerative Medicine, Albinusdreef 2, 2333 ZA, Leiden, Netherlands
| | - Harry J Crijns
- Department of Cardiology, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht, P. Debyelaan 25, 6229 HX, Maastricht, Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology), Leiden University Medical Center and Einthoven Laboratory for Vascular and Regenerative Medicine, Albinusdreef 2, 2333 ZA, Leiden, Netherlands
| |
Collapse
|
30
|
Luo J, Ren Q, Chen Z, Liu W, Qu Z, Xiao R, Chen R, Lin H, Wu Z, Luo J, Yin H, Wang H, Liu G. Comparative analysis of microRNA profiles between wild and cultured Haemaphysalis longicornis (Acari, Ixodidae) ticks. ACTA ACUST UNITED AC 2019; 26:18. [PMID: 30916642 PMCID: PMC6436478 DOI: 10.1051/parasite/2019018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/11/2019] [Indexed: 12/25/2022]
Abstract
The miRNA profiles of a Haemaphysalis longicornis wild-type (HLWS) and of a Haemaphysalis longicornis cultured population (HLCS) were sequenced using the Illumina Hiseq 4000 platform combined with bioinformatics analysis and real-time polymerase chain reaction (RT-PCR). A total of 15.63 and 15.48 million raw reads were acquired for HLWS and HLCS, respectively. The data identified 1517 and 1327 known conserved miRNAs, respectively, of which 342 were differentially expressed between the two libraries. Thirty-six novel candidate miRNAs were predicted. To explain the functions of these novel miRNAs, Gene Ontology (GO) analysis was performed. Target gene function prediction identified a significant set of genes related to salivary gland development, pathogen-host interaction and regulation of the defence response to pathogens expressed by wild H. longicornis ticks. Cellular component biogenesis, the immune system process, and responses to stimuli were represented at high percentages in the two tick libraries. GO enrichment analysis showed that the percentages of most predicted functions of the target genes of miRNA were similar, as were certain specific categories of functional enhancements, and that these genes had different numbers and specific functions (e.g., auxiliary transport protein and electron carrier functions). This study provides novel findings showing that miRNA regulation affects the expression of immune genes, indicating a considerable influence of environment-induced stressful stimulation on immune homeostasis. Differences in the living environments of ticks can lead to differences in miRNAs between ticks and provide a basis and a convenient means to screen for genes encoding immune factors in ticks.
Collapse
Affiliation(s)
- Jin Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Qiaoyun Ren
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Ze Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Wenge Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Zhiqiang Qu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Ronghai Xiao
- Inspection and Comprehensive Technology Center of Ruili Entry Exit Inspection and Quarantine Bureau, Yunnan 678600, PR China
| | - Ronggui Chen
- Ili Center of Animal Disease Control and Diagnosis, Ili 835000, PR China
| | - Hanliang Lin
- Xinjiang Animal Health Supervision Station, Urumqi, Xinjiang 830063, PR China
| | - Zegong Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China - Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Hui Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China - Centre for Ecology and Hydrology, Natural Environment Research Council (NERC), Wallingford, Oxon OX10 8BB, UK - Department of Engineering, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| |
Collapse
|
31
|
Jiu S, Leng X, Haider MS, Dong T, Guan L, Xie Z, Li X, Shangguan L, Fang J. Identification of copper (Cu) stress-responsive grapevine microRNAs and their target genes by high-throughput sequencing. ROYAL SOCIETY OPEN SCIENCE 2019; 6:180735. [PMID: 30800341 PMCID: PMC6366190 DOI: 10.1098/rsos.180735] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/24/2018] [Indexed: 05/21/2023]
Abstract
MicroRNAs (miRNAs) are a class of single-stranded non-coding small RNAs (sRNAs) that are 20-24 nucleotides (nt) in length. Extensive studies have indicated that miRNAs play important roles in plant growth, development and stress responses. With more copper (Cu) and copper containing compounds used as bactericides and fungicides in plants, Cu stress has become one of the serious environmental problems that affect plant growth and development. In order to uncover the hidden response mechanisms of Cu stress, two small RNA libraries were constructed from Cu-treated and water-treated (Control) leaves of 'Summer Black' grapevine. Following high-throughput sequencing and filtering, a total of 158 known and 98 putative novel miRNAs were identified in the two libraries. Among these, 100 known and 47 novel miRNAs were identified as differentially expressed under Cu stress. Subsequently, the expression patterns of nine Cu-responsive miRNAs were validated by quantitative real-time PCR (qRT-PCR). There existed some consistency in expression levels of Cu-responsive miRNAs between high throughput sequencing and qRT-PCR assays. The targets prediction of miRNAs indicates that miRNA may regulate some transcription factors, including AP2, SBP, NAC, MYB and ARF during Cu stress. The target genes for two known and two novel miRNAs showed specific cleavage sites at the 10th and/or 11th nucleotide from the 5'-end of the miRNA corresponding to their miRNA complementary sequences. The findings will lay the foundation for exploring the role of the regulation of miRNAs in response to Cu stress and provide valuable gene information for breeding some Cu-tolerant grapevine cultivars.
Collapse
Affiliation(s)
- Songtao Jiu
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiangpeng Leng
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Muhammad Salman Haider
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | - Tianyu Dong
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | - Le Guan
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | - Zhenqiang Xie
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | - Xiaopeng Li
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | - Lingfei Shangguan
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | - Jinggui Fang
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
32
|
Nadiya F, Anjali N, Thomas J, Gangaprasad A, Sabu KK. Deep sequencing identified potential miRNAs involved in defence response, stress and plant growth characteristics of wild genotypes of cardamom. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:3-14. [PMID: 30098091 DOI: 10.1111/plb.12888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Cardamom has long been used as a food flavouring agent and in ayurvedic medicines for mouth ulcers, digestive problems and even depression. Extensive occurrence of pests and diseases adversely affect its cultivation and result in substantial reductions in total production and productivity. Numerous studies revealed the significant role of miRNAs in plant biotic stress responses. In the current study, miRNA profiling of cultivar and wild cardamom genotypes was performed using an Ion Proton sequencer. We identified 161 potential miRNAs representing 42 families, including monocot/tissue-specific and 14 novel miRNAs in both genotypes. Significant differences in miRNA family abundance between the libraries were observed in read frequencies. A total of 19 miRNAs (from known miRNAs) displayed a twofold difference in expression between wild and cultivar genotypes. We found 1168 unique potential targets for 40 known miRNA families in wild and 1025 potential targets for 42 known miRNA families in cultivar genotypes. The differential expression analysis revealed that most miRNAs identified were highly expressed in cultivars and, furthermore, lower expression of miR169 and higher expression of miR529 in wild cardamom proved evidence that wild genotypes have stronger drought stress tolerance and floral development than cultivars. Potential targets predicted for the newly identified miRNAs from the miRNA libraries of wild and cultivar cardamom genotypes involved in metabolic and developmental processes and in response to various stimuli. qRT-PCR confirmed miRNAs were differentially expressed between wild and cultivar genotypes. Furthermore, four target genes were validated experimentally to confirm miRNA-mRNA target pairing using RNA ligase-mediated 5' Rapid Amplification of cDNA Ends (5'RLM-RACE) PCR.
Collapse
Affiliation(s)
- F Nadiya
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI), Palode, Thiruvananthapuram, India
| | - N Anjali
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI), Palode, Thiruvananthapuram, India
| | - J Thomas
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI), Palode, Thiruvananthapuram, India
| | - A Gangaprasad
- Department of Botany, University of Kerala, Thiruvananthapuram, India
| | - K K Sabu
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI), Palode, Thiruvananthapuram, India
| |
Collapse
|
33
|
Siddiqui ZH, Abbas ZK, Ansari MW, Khan MN. The role of miRNA in somatic embryogenesis. Genomics 2018; 111:1026-1033. [PMID: 30476555 DOI: 10.1016/j.ygeno.2018.11.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 02/04/2023]
Abstract
Somatic embryogenesis (SEG) is one of the best techniques for mass production of economically important plants. It is also used for the study of morphology, anatomy, physiology, genetics and molecular mechanism of embryo development. Somatic Embryos (SE) are bipolar structures that develop from a cell other than a gamete or zygote. SEG reflects the unique developmental potential of plant somatic cells, resulting in the transition of the differentiated somatic cells to embryogenic cells to follow the zygotic embryo stages. There are several biochemical and physiological processes that transformed a single somatic cell to a whole plant. SE studies provide insight into cell mechanisms governing the totipotency process in plants. Previously, in vitro studies have suggested the role of various regulatory genes in embryogenic transition that are triggered by plant hormones in response to stress. The omic studies identify the specific genes, transcripts, and proteins required for somatic embryogenesis development. MicroRNAs (miRNAs) are small, 19-24 nucleotides (nt), non-coding small RNA regulatory molecules controlling a large number of biological processes. In addition to their role in SEG, miRNAs play vital role in plant development, secondary metabolite synthesis and metabolism of macromolecules, hormone signal transduction, and tolerance of plants to biotic and abiotic stresses. During last decade several types of miRNAs involved in SEG have been reported. Among these miRNAs, miR156, miR162, miR166a, miR167, miR168, miR171a/b, miR171c, miR393, miR397 and miR398 played very active role during various stages of SEG. In this review, we highlighted the role of these as well as other miRNAs in some economically important plants.
Collapse
Affiliation(s)
- Zahid Hameed Siddiqui
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia.
| | - Zahid Khorshid Abbas
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohammad Wahid Ansari
- Department of Botany, Zakir Husain Delhi College, University of Delhi, JLN Marg, New Delhi 110002, India
| | - Mohammad Nasir Khan
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
34
|
Combined small RNA and gene expression analysis revealed roles of miRNAs in maize response to rice black-streaked dwarf virus infection. Sci Rep 2018; 8:13502. [PMID: 30201997 PMCID: PMC6131507 DOI: 10.1038/s41598-018-31919-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/28/2018] [Indexed: 01/01/2023] Open
Abstract
Maize rough dwarf disease, caused by rice black-streaked dwarf virus (RBSDV), is a devastating disease in maize (Zea mays L.). MicroRNAs (miRNAs) are known to play critical roles in regulation of plant growth, development, and adaptation to abiotic and biotic stresses. To elucidate the roles of miRNAs in the regulation of maize in response to RBSDV, we employed high-throughput sequencing technology to analyze the miRNAome and transcriptome following RBSDV infection. A total of 76 known miRNAs, 226 potential novel miRNAs and 351 target genes were identified. Our dataset showed that the expression patterns of 81 miRNAs changed dramatically in response to RBSDV infection. Transcriptome analysis showed that 453 genes were differentially expressed after RBSDV infection. GO, COG and KEGG analysis results demonstrated that genes involved with photosynthesis and metabolism were significantly enriched. In addition, twelve miRNA-mRNA interaction pairs were identified, and six of them were likely to play significant roles in maize response to RBSDV. This study provided valuable information for understanding the molecular mechanism of maize disease resistance, and could be useful in method development to protect maize against RBSDV.
Collapse
|
35
|
Characterization of Conserved and Novel microRNAs in Lilium lancifolium Thunb. by High-Throughput Sequencing. Sci Rep 2018; 8:2880. [PMID: 29440670 PMCID: PMC5811567 DOI: 10.1038/s41598-018-21193-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 01/31/2018] [Indexed: 01/16/2023] Open
Abstract
MicroRNAs (miRNAs) are among the class of noncoding small RNA molecules and play a crucial role in post-transcriptional regulation in plants. Although Lilium is one of the most popular ornamental flowers worldwide, however, there is no report on miRNAs identification. In the present study, therefore, miRNAs and their targets were identified from flower, leaf, bulblet and bulb of Lilium lancifolium Thunb. by high-throughput sequencing and bioinformatics analysis. In this study, a total of 38 conserved miRNAs belonging to 17 miRNA families and 44 novel miRNAs were identified. In total, 366 target genes for conserved miRNAs and 415 target genes for novel miRNAs were predicted. The majority of the target genes for conserved miRNAs were transcriptional factors and novel miRNAs targeted mainly protein coding genes. A total of 53 cleavage sites belonging to 6 conserved miRNAs families and 14 novel miRNAs were identified using degradome sequencing. Twenty-three miRNAs were randomly selected, then, their credibility was confirmed using northern blot or stem-loop qRT-PCR. The results from qRT-PCR analysis showed the expression pattern of 4 LL-miRNAs was opposite to their targets. Therefore, our finding provides an important basis to understand the biological functions of miRNAs in Lilium.
Collapse
|
36
|
Ma X, Zhang X, Zhao K, Li F, Li K, Ning L, He J, Xin Z, Yin D. Small RNA and Degradome Deep Sequencing Reveals the Roles of microRNAs in Seed Expansion in Peanut ( Arachis hypogaea L.). FRONTIERS IN PLANT SCIENCE 2018; 9:349. [PMID: 29662498 PMCID: PMC5890158 DOI: 10.3389/fpls.2018.00349] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/02/2018] [Indexed: 05/22/2023]
Abstract
Seed expansion in peanut is a complex biological process involving many gene regulatory pathways. MicroRNAs (miRNAs) play important regulatory roles in plant growth and development, but little is known about their functions during seed expansion, or how they contribute to seed expansion in different peanut lines. We examined seed miRNA expression patterns at 15 and 35 days after flowering (DAF) in two peanut eighth-generation recombinant inbred lines (RIL8); 8106, a medium-pod variety, and 8107, a super-pod variety. Using high-throughput sequencing, we identified 1,082 miRNAs in developing peanut seeds including 434 novel miRNAs. We identified 316 differentially expressed miRNAs by comparing expression levels between the two peanut lines. Interestingly, 24 miRNAs showed contrasting patterns of expression in the two RILs, and 149 miRNAs were expressed predominantly in only one RIL at 35 DAF. Also, potential target genes for some conserved and novel miRNAs were identified by degradome sequencing; target genes were predicted to be involved in auxin mediated signaling pathways and cell division. We validated the expression patterns of some representative miRNAs and 12 target genes by qPCR, and found negative correlations between the expression level of miRNAs and their targets. miR156e, miR159b, miR160a, miR164a, miR166b, miR168a, miR171n, miR172c-5p, and miR319d and their corresponding target genes may play key roles in seed expansion in peanut. The results of our study also provide novel insights into the dynamic changes in miRNAs that occur during peanut seed development, and increase our understanding of miRNA function in seed expansion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zeyu Xin
- *Correspondence: Dongmei Yin, Zeyu Xin,
| | | |
Collapse
|
37
|
Wang CM, Yang XL, Liu MH, Cheng BH, Chen J, Bai B. High-throughput sequencing analysis of differentially expressed miRNAs and target genes in ischemia/reperfusion injury and apelin-13 neuroprotection. Neural Regen Res 2018; 13:265-271. [PMID: 29557376 PMCID: PMC5879898 DOI: 10.4103/1673-5374.226397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
miRNAs regulate a variety of biological processes through pairing-based regulation of gene expression at the 3′ end of the noncoding region of the target miRNA. miRNAs were found to be abnormally expressed in ischemia/reperfusion injury models. High-throughput sequencing is a recently developed method for sequencing miRNAs and has been widely used in the analysis of miRNAs. In this study, ischemia/reperfusion injury models were intracerebroventricularly injected with 50 μg/kg apelin-13. High-throughput sequencing showed that 357 known miRNAs were differentially expressed among rat models, among which 78 changed to > 2-fold or < 0.5-fold. Quantitative real-time polymerase chain reaction was selected to confirm the expression levels of four miRNAs that were differentially expressed, the results of which were consistent with the results of high-throughput sequencing. Gene Ontology analysis revealed that the predicted targets of the different miRNAs are particularly associated with cellular process, metabolic process, single-organism process, cell, and binding. Kyoto Encyclopedia of Gene and Genome analysis showed that the target genes are involved in metabolic pathways, mitogen-activated protein kinase signaling pathway, calcium signaling pathway, and nuclear factor-κB signaling pathway. Our findings suggest that differentially expressed miRNAs and their target genes play an important role in ischemia/reperfusion injury and neuroprotection by apelin-13.
Collapse
Affiliation(s)
- Chun-Mei Wang
- Neurobiology Institute, Jining Medical University, Jining, Shandong Province, China
| | - Xue-Lu Yang
- Neurobiology Institute, Jining Medical University, Jining, Shandong Province, China
| | - Ming-Hui Liu
- Neurobiology Institute, Jining Medical University, Jining, Shandong Province, China
| | - Bao-Hua Cheng
- Neurobiology Institute, Jining Medical University, Jining, Shandong Province, China
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining, Shandong Province, China
| | - Bo Bai
- Neurobiology Institute, Jining Medical University, Jining, Shandong Province, China
| |
Collapse
|
38
|
Guo Y, Zhao S, Zhu C, Chang X, Yue C, Wang Z, Lin Y, Lai Z. Identification of drought-responsive miRNAs and physiological characterization of tea plant (Camellia sinensis L.) under drought stress. BMC PLANT BIOLOGY 2017; 17:211. [PMID: 29157225 PMCID: PMC5696764 DOI: 10.1186/s12870-017-1172-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/10/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND Drought stress is one of the major natural challenges in the main tea-producing regions of China. The tea plant (Camellia sinensis) is a traditional beverage plant whose growth status directly affects tea quality. Recent studies have revealed that microRNAs (miRNAs) play key functions in plant growth and development. Although some miRNAs have been identified in C. sinensis, little is known about their roles in the drought stress response of tea plants. RESULTS Physiological characterization of Camellia sinensis 'Tieguanyin' under drought stress showed that the malondialdehyde concentration and electrical conductivity of leaves of drought-stressed plants increased when the chlorophyll concentration decreased under severe drought stress. We sequenced four small-RNA (sRNA) libraries constructed from leaves of plants subjected to four different treatments, normal water supply (CK); mild drought stress (T1); moderate drought stress (T2) and severe drought stress (T3). A total of 299 known mature miRNA sequences and 46 novel miRNAs were identified. Gene Ontology enrichment analysis revealed that most of the differentially expressed-miRNA target genes were related to regulation of transcription. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the most highly enriched pathways under drought stress were D-alanine metabolism, sulfur metabolism, and mineral absorption pathways. Real-time quantitative PCR (qPCR) was used to validate the expression patterns of 21 miRNAs (2 up-regulated and 19 down-regulated under drought stress). The observed co-regulation of the miR166 family and their targets ATHB-14-like and ATHB-15-like indicate the presence of negative feedback regulation in miRNA pathways. CONCLUSIONS Analyses of drought-responsive miRNAs in tea plants showed that most of differentially expressed-miRNA target genes were related to regulation of transcription. The results of study revealed that the expressions of phase-specific miRNAs vary with morphological, physiological, and biochemical changes. These findings will be useful for research on drought resistance and provide insights into the mechanisms of drought adaptation and resistance in C. sinensis.
Collapse
Affiliation(s)
- Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shanshan Zhao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chen Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaojun Chang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chuan Yue
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhong Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
39
|
Park SY, Grabau E. Bypassing miRNA-mediated gene regulation under drought stress: alternative splicing affects CSD1 gene expression. PLANT MOLECULAR BIOLOGY 2017; 95:243-252. [PMID: 28776286 DOI: 10.1007/s11103-017-0642-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/21/2017] [Indexed: 05/24/2023]
Abstract
The binding site for miR398 in an isoform of Cu/Zn superoxide dismutase (CSD1) is eliminated by alternative splicing to bypass miR398-mediated gene down-regulation under drought stress. MicroRNA (miRNA) binding sites (MBSs) are frequently interrupted by introns and therefore require proper splicing to generate functional MBSs in target transcripts. MBSs can also be excluded during splicing of pre-messenger RNA, leading to different regulation among isoforms. Previous studies have shown that levels of Cu/Zn superoxide dismutase (CSD) are down-regulated by miR398. In this study, sequences and transcript levels of peanut CSD1 isoforms (AhCSD1-1, AhCSD1-2.1, and AhCSD1-2.2) were analyzed under the drought stress. Results demonstrated that a miR398 binding site is eliminated in AhCSD1-2.2 as a consequence of alternative splicing, which bypasses miRNA-mediated down-regulation under drought stress. This alternative isoform was not only identified in peanut but also in soybean and Arabidopsis. In addition, transgenic Arabidopsis plants expressing AhCSD1 were more tolerant to osmotic stress. We hypothesize that the level of AhCSD1 is increased to allow diverse plant responses to overcome environmental challenges even in the presence of increased miR398 levels. These findings suggest that studies on the role of alternatively spliced MBSs affecting transcript levels are important for understanding plant stress responses.
Collapse
Affiliation(s)
- So-Yon Park
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, 170 Drillfield Drive, Blacksburg, VA, 24061, USA.
| | - Elizabeth Grabau
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, 170 Drillfield Drive, Blacksburg, VA, 24061, USA
| |
Collapse
|
40
|
Comparative analysis of miRNAs of two rapeseed genotypes in response to acetohydroxyacid synthase-inhibiting herbicides by high-throughput sequencing. PLoS One 2017; 12:e0184917. [PMID: 28950015 PMCID: PMC5614533 DOI: 10.1371/journal.pone.0184917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 09/02/2017] [Indexed: 01/07/2023] Open
Abstract
Acetohydroxyacid synthase (AHAS), also called acetolactate synthase, is a key enzyme involved in the first step of the biosynthesis of the branched-chain amino acids valine, isoleucine and leucine. Acetohydroxyacid synthase-inhibiting herbicides (AHAS herbicides) are five chemical families of herbicides that inhibit AHAS enzymes, including imidazolinones (IMI), sulfonylureas (SU), pyrimidinylthiobenzoates, triazolinones and triazolopyrimidines. Five AHAS genes have been identified in rapeseed, but little information is available regarding the role of miRNAs in response to AHAS herbicides. In this study, an AHAS herbicides tolerant genotype and a sensitive genotype were used for miRNA comparative analysis. A total of 20 small RNA libraries were obtained of these two genotypes at three time points (0h, 24 h and 48 h) after spraying SU and IMI herbicides with two replicates. We identified 940 conserved miRNAs and 1515 novel candidate miRNAs in Brassica napus using high-throughput sequencing methods combined with computing analysis. A total of 3284 genes were predicted to be targets of these miRNAs, and their functions were shown using GO, KOG and KEGG annotations. The differentiation expression results of miRNAs showed almost twice as many differentiated miRNAs were found in tolerant genotype M342 (309 miRNAs) after SU herbicide application than in sensitive genotype N131 (164 miRNAs). In additiond 177 and 296 miRNAs defined as differentiated in sensitive genotype and tolerant genotype in response to SU herbicides. The miR398 family was observed to be associated with AHAS herbicide tolerance because their expression increased in the tolerant genotype but decreased in the sensitive genotype. Moreover, 50 novel miRNAs from 39 precursors were predicted. There were 8 conserved miRNAs, 4 novel miRNAs and 3 target genes were validated by quantitative real-time PCR experiment. This study not only provides novel insights into the miRNA content of AHAS herbicides tolerant rapeseed in response to AHAS herbicides, but also demonstrates that miRNAs may be involved in AHAS herbicides tolerance.
Collapse
|
41
|
Cheng D, Chen Y, Lu C, Qian Y, Lv Z. Preliminary profiling of microRNA in the normal and regenerating liver of Chiloscyllium plagiosum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 24:60-67. [PMID: 28822868 DOI: 10.1016/j.cbd.2017.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 05/30/2017] [Accepted: 06/16/2017] [Indexed: 12/29/2022]
Abstract
Liver is a vital organ present in animals for detoxification, protein synthesis, digestion and other functions and its powerful regenerative capacity is well known. C. plagiosum is an abundant fish that is representative of the cartilaginous class in the southeast coastal region of China and its liver accounts for >70% of the fish's visceral weight and contains many bioactive substances. MicroRNAs (microRNAs) play important roles in a wide range of biological processes in eukaryotes, including cell proliferation, differentiation, apoptosis. However, microRNAs in response to liver regeneration has not been well studied. This study aimed to identify the microRNAs that participate in liver regeneration and other liver-related diseases and to improve our understanding of the mechanisms of liver regeneration in sharks. To this end, normal and regenerating liver tissues from C. plagiosum were harvested 0, 3, 6, 12 and 24h after partial hepatectomy (pH) and were sequenced using the Illumina/Solexa platform. In total, 309 known microRNAs and 590 novel microRNAs were identified in C. plagiosum. There were many microRNAs differentially expressed in the normal and regenerating livers between time points. Using target prediction and GO analysis, most of the differentially expressed microRNAs were assigned to functional categories that may be involved in regulating liver regeneration, such as cell proliferation, differentiation and apoptosis. The microRNA expression profile of liver regeneration will pave the way for the development of effective strategies to fight against liver disease and other related disease.
Collapse
Affiliation(s)
- Dandan Cheng
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, China.
| | - Yanna Chen
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, China.
| | - Conger Lu
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, China.
| | - Yuezhong Qian
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, China.
| | - Zhengbing Lv
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, China.
| |
Collapse
|
42
|
Li Q, Deng C, Xia Y, Kong L, Zhang H, Zhang S, Wang J. Identification of novel miRNAs and miRNA expression profiling in embryogenic tissues of Picea balfouriana treated by 6-benzylaminopurine. PLoS One 2017; 12:e0176112. [PMID: 28486552 PMCID: PMC5423612 DOI: 10.1371/journal.pone.0176112] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 04/05/2017] [Indexed: 11/18/2022] Open
Abstract
Here, we compared miRNA expression profiles in embryonic cell cultures of the conifer Picea balfouriana following application of the synthetic cytokinin 6-benzylaminopurine (6-BAP). We used next-generation sequencing to analyze three libraries of small RNAs from the treated embryogenic cell cultures and generated 24,000,000 raw reads from each of the libraries. Over 70 differentially regulated micro RNA (miRNA) families (≥2 fold change in expression) were identified between pairs of treatments. A quantitative analysis showed that miR3633 and miR1026 were upregulated in tissues with the highest embryogenic ability. These two miRNAs were predicted to target genes encoding receptor-like protein kinase and GAMYB transcription factors, respectively. In one library, miR1160, miR5638, miR1315, and miR5225 were downregulated. These four miRNAs were predicted to target genes encoding APETALA2, calmodulin-binding protein, and calcium-dependent protein kinase transcription factors. The expression patterns of the miRNAs and their targets were negatively correlated. Approximately 181 potentially novel P. balfouriana miRNAs were predicted from the three libraries, and seven were validated during the quantitative analysis. This study is the first report of differential miRNA regulation in tissues treated with 6-BAP during somatic embryogenesis. The differentially expressed miRNAs will be of value for investigating the mechanisms of embryogenic processes that are responsive to 6-BAP in P. balfouriana.
Collapse
Affiliation(s)
- Qingfen Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Cheng Deng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yan Xia
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Lisheng Kong
- Department of Biology, Centre for Forest Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Hanguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Shougong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- * E-mail:
| |
Collapse
|
43
|
Gao S, Zhao W, Li X, You Q, Shen X, Guo W, Wang S, Shi G, Liu Z, Jiao Y. Identification and characterization of miRNAs in two closely related C 4 and C 3 species of Cleome by high-throughput sequencing. Sci Rep 2017; 7:46552. [PMID: 28422166 PMCID: PMC5396198 DOI: 10.1038/srep46552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/17/2017] [Indexed: 01/14/2023] Open
Abstract
Cleome gynandra and Cleome hassleriana, which are C4 and C3 plants, respectively, are two species of Cleome. The close genetic relationship between C. gynandra and C. hassleriana provides advantages for discovering the differences in leaf development and physiological processes between C3 and C4 plants. MicroRNAs (miRNAs) are a class of important regulators of various biological processes. In this study, we investigate the differences in the characteristics of miRNAs between C. gynandra and C. hassleriana using high-throughput sequencing technology. In total, 94 and 102 known miRNAs were identified in C. gynandra and C. hassleriana, respectively, of which 3 were specific for C. gynandra and 10 were specific for C. hassleriana. Ninety-one common miRNAs were identified in both species. In addition, 4 novel miRNAs were detected, including three in C. gynandra and three in C. hassleriana. Of these miRNAs, 67 were significantly differentially expressed between these two species and were involved in extensive biological processes, such as glycol-metabolism and photosynthesis. Our study not only provided resources for C. gynandra and C. hassleriana research but also provided useful clues for the understanding of the roles of miRNAs in the alterations of biological processes in leaf tissues during the evolution of the C4 pathway.
Collapse
Affiliation(s)
- Shuangcheng Gao
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan Province, 471003, P. R. China
| | - Wei Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, P. R. China
| | - Xiang Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, P. R. China
| | - Qingbo You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, P. R. China
| | - Xinjie Shen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, P. R. China
| | - Wei Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, P. R. China
| | - Shihua Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan Province, 471003, P. R. China
| | - Guoan Shi
- College of Agriculture, Henan University of Science and Technology, Luoyang, Henan Province, 471003, P. R. China
| | - Zheng Liu
- College of Life Sciences, Hebei University, Baoding, Hebei Province, 071002, P. R. China
| | - Yongqing Jiao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, P. R. China
| |
Collapse
|
44
|
Power IL, Dang PM, Sobolev VS, Orner VA, Powell JL, Lamb MC, Arias RS. Characterization of small RNA populations in non-transgenic and aflatoxin-reducing-transformed peanut. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 257:106-125. [PMID: 28224915 DOI: 10.1016/j.plantsci.2016.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/01/2016] [Accepted: 12/29/2016] [Indexed: 06/06/2023]
Abstract
Aflatoxin contamination is a major constraint in food production worldwide. In peanut (Arachis hypogaea L.), these toxic and carcinogenic aflatoxins are mainly produced by Aspergillus flavus Link and A. parasiticus Speare. The use of RNA interference (RNAi) is a promising method to reduce or prevent the accumulation of aflatoxin in peanut seed. In this study, we performed high-throughput sequencing of small RNA populations in a control line and in two transformed peanut lines that expressed an inverted repeat targeting five genes involved in the aflatoxin-biosynthesis pathway and that showed up to 100% less aflatoxin B1 than the controls. The objective was to determine the putative involvement of the small RNA populations in aflatoxin reduction. In total, 41 known microRNA (miRNA) families and many novel miRNAs were identified. Among those, 89 known and 10 novel miRNAs were differentially expressed in the transformed lines. We furthermore found two small interfering RNAs derived from the inverted repeat, and 39 sRNAs that mapped without mismatches to the genome of A. flavus and were present only in the transformed lines. This information will increase our understanding of the effectiveness of RNAi and enable the possible improvement of the RNAi technology for the control of aflatoxins.
Collapse
Affiliation(s)
- Imana L Power
- United States Department of Agriculture, Agricultural Research Service, National Peanut Research Laboratory (NPRL), 1011 Forrester Dr. S. E., Dawson, GA 39842, USA.
| | - Phat M Dang
- United States Department of Agriculture, Agricultural Research Service, National Peanut Research Laboratory (NPRL), 1011 Forrester Dr. S. E., Dawson, GA 39842, USA
| | - Victor S Sobolev
- United States Department of Agriculture, Agricultural Research Service, National Peanut Research Laboratory (NPRL), 1011 Forrester Dr. S. E., Dawson, GA 39842, USA
| | - Valerie A Orner
- United States Department of Agriculture, Agricultural Research Service, National Peanut Research Laboratory (NPRL), 1011 Forrester Dr. S. E., Dawson, GA 39842, USA
| | - Joseph L Powell
- United States Department of Agriculture, Agricultural Research Service, National Peanut Research Laboratory (NPRL), 1011 Forrester Dr. S. E., Dawson, GA 39842, USA
| | - Marshall C Lamb
- United States Department of Agriculture, Agricultural Research Service, National Peanut Research Laboratory (NPRL), 1011 Forrester Dr. S. E., Dawson, GA 39842, USA
| | - Renee S Arias
- United States Department of Agriculture, Agricultural Research Service, National Peanut Research Laboratory (NPRL), 1011 Forrester Dr. S. E., Dawson, GA 39842, USA
| |
Collapse
|
45
|
Efficacy of New Fungicides against Late Blight of Potato in Subtropical Plains of India. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.1.78] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
46
|
Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K, Dubery IA. Functional Roles of microRNAs in Agronomically Important Plants-Potential as Targets for Crop Improvement and Protection. FRONTIERS IN PLANT SCIENCE 2017; 8:378. [PMID: 28382044 PMCID: PMC5360763 DOI: 10.3389/fpls.2017.00378] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/06/2017] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that have recently emerged as important regulators of gene expression, mainly through cleavage and/or translation inhibition of the target mRNAs during or after transcription. miRNAs play important roles by regulating a multitude of biological processes in plants which include maintenance of genome integrity, development, metabolism, and adaptive responses toward environmental stresses. The increasing population of the world and their food demands requires focused efforts for the improvement of crop plants to ensure sustainable food production. Manipulation of mRNA transcript abundance via miRNA control provides a unique strategy for modulating differential plant gene expression and miRNAs are thus emerging as the next generation targets for genetic engineering for improvement of the agronomic properties of crops. However, a deeper understanding of its potential and the mechanisms involved will facilitate the design of suitable strategies to obtain the desirable traits with minimum trade-offs in the modified crops. In this regard, this review highlights the diverse roles of conserved and newly identified miRNAs in various food and industrial crops and recent advances made in the uses of miRNAs to improve plants of agronomically importance so as to significantly enhance crop yields and increase tolerance to various environmental stress agents of biotic-or abiotic origin.
Collapse
Affiliation(s)
- Arnaud T. Djami-Tchatchou
- Department of Agriculture and Animal Health, University of South Africa (Florida Campus)Pretoria, South Africa
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Khayalethu Ntushelo
- Department of Agriculture and Animal Health, University of South Africa (Florida Campus)Pretoria, South Africa
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg (Auckland Park Kingsway Campus)Johannesburg, South Africa
| |
Collapse
|
47
|
Gao C, Wang P, Zhao S, Zhao C, Xia H, Hou L, Ju Z, Zhang Y, Li C, Wang X. Small RNA profiling and degradome analysis reveal regulation of microRNA in peanut embryogenesis and early pod development. BMC Genomics 2017; 18:220. [PMID: 28253861 PMCID: PMC5335773 DOI: 10.1186/s12864-017-3587-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 02/13/2017] [Indexed: 11/23/2022] Open
Abstract
Background As a typical geocarpic plant, peanut embryogenesis and pod development are complex processes involving many gene regulatory pathways and controlled by appropriate hormone level. MicroRNAs (miRNAs) are small non-coding RNAs that play indispensable roles in post-transcriptional gene regulation. Recently, identification and characterization of peanut miRNAs has been described. However, whether miRNAs participate in the regulation of peanut embryogenesis and pod development has yet to be explored. Results In this study, small RNA and degradome libraries from peanut early pod of different developmental stages were constructed and sequenced. A total of 70 known and 24 novel miRNA families were discovered. Among them, 16 miRNA families were legume-specific and 12 families were peanut-specific. 30 known and 10 novel miRNA families were differentially expressed during pod development. In addition, 115 target genes were identified for 47 miRNA families by degradome sequencing. Several new targets that might be specific to peanut were found and further validated by RNA ligase-mediated rapid amplification of 5′ cDNA ends (RLM 5′-RACE). Furthermore, we performed profiling analysis of intact and total transcripts of several target genes, demonstrating that SPL (miR156/157), NAC (miR164), PPRP (miR167 and miR1088), AP2 (miR172) and GRF (miR396) are actively modulated during early pod development, respectively. Conclusions Large numbers of miRNAs and their related target genes were identified through deep sequencing. These findings provided new information on miRNA-mediated regulatory pathways in peanut pod, which will contribute to the comprehensive understanding of the molecular mechanisms that governing peanut embryo and early pod development. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3587-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chao Gao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Pengfei Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Shuzhen Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Chuanzhi Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Han Xia
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Lei Hou
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Zheng Ju
- Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Ye Zhang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Changsheng Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Xingjun Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China. .,College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
48
|
Ning P, Zhou Y, Gao L, Sun Y, Zhou W, Liu F, Yao Z, Xie L, Wang J, Gong C. Unraveling the microRNA of Caragana korshinskii along a precipitation gradient on the Loess Plateau, China, using high-throughput sequencing. PLoS One 2017; 12:e0172017. [PMID: 28207805 PMCID: PMC5313209 DOI: 10.1371/journal.pone.0172017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/30/2017] [Indexed: 12/02/2022] Open
Abstract
Drought remains one of the main factors that negatively affect plant growth and development. Caragana korshinskii is widely distributed on the Loess Plateau, China, where it mediates soil and water loss and helps prevent desertification. However, little is known about the stress response mechanisms of C. korshinskii in water-starved environments. MicroRNAs (miRNAs) have been implicated in the regulation of plant responses to several types of biotic and abiotic stress. Here, we describe the miRNAs of wild C. korshinskii from Huangling, Yulin, and Dalad Banner, which occur along a precipitation gradient. Using next-generation sequencing technology, we obtained a total of 13 710 681, 15 048 945, and 15 198 442 reads for each location, respectively; after filtering and BLAST analysis, 490 conserved miRNAs and 96 novel miRNAs were characterized from the sRNAome data, with key functions determined using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. We also designed stem-loop qRT-PCR to validate the expression patterns of 5 conserved miRNAs (miR390, miR398, miR530, miR2119, and miR5559) that obviously responded to water stress in plants grown both under natural and experimental water stress conditions and found that the expression levels of miR2119 and miR5559 were negatively correlated with their predicted target genes. This study is the first to identify miRNAs from wild C. korshinskii and provides a basis for future studies of miRNA-mediated gene regulation of stress responses in C. korshinskii.
Collapse
Affiliation(s)
- Pengbo Ning
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Yulu Zhou
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Lifang Gao
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Yingying Sun
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenfei Zhou
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Furong Liu
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhenye Yao
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Lifang Xie
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Junhui Wang
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Chunmei Gong
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
49
|
Zhang T, Hu S, Yan C, Li C, Zhao X, Wan S, Shan S. Mining, identification and function analysis of microRNAs and target genes in peanut (Arachis hypogaea L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 111:85-96. [PMID: 27915176 DOI: 10.1016/j.plaphy.2016.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/03/2016] [Accepted: 11/23/2016] [Indexed: 06/06/2023]
Abstract
In the present investigation, a total of 60 conserved peanut (Arachis hypogaea L.) microRNA (miRNA) sequences, belonging to 16 families, were identified using bioinformatics methods. There were 392 target gene sequences, identified from 58 miRNAs with Target-align software and BLASTx analyses. Gene Ontology (GO) functional analysis suggested that these target genes were involved in mediating peanut growth and development, signal transduction and stress resistance. There were 55 miRNA sequences, verified employing a poly (A) tailing test, with a success rate of up to 91.67%. Twenty peanut target gene sequences were randomly selected, and the 5' rapid amplification of the cDNA ends (5'-RACE) method were used to validate the cleavage sites of these target genes. Of these, 14 (70%) peanut miRNA targets were verified by means of gel electrophoresis, cloning and sequencing. Furthermore, functional analysis and homologous sequence retrieval were conducted for target gene sequences, and 26 target genes were chosen as the objects for stress resistance experimental study. Real-time fluorescence quantitative PCR (qRT-PCR) technology was applied to measure the expression level of resistance-associated miRNAs and their target genes in peanut exposed to Aspergillus flavus (A. flavus) infection and drought stress, respectively. In consequence, 5 groups of miRNAs & targets were found accorded with the mode of miRNA negatively controlling the expression of target genes. This study, preliminarily determined the biological functions of some resistance-associated miRNAs and their target genes in peanut.
Collapse
Affiliation(s)
- Tingting Zhang
- Shandong Peanut Research Institute, Qingdao, 266100, China
| | - Shuhao Hu
- Shandong Peanut Research Institute, Qingdao, 266100, China; Shandong University, Weihai, 264200, China
| | - Caixia Yan
- Shandong Peanut Research Institute, Qingdao, 266100, China
| | - Chunjuan Li
- Shandong Peanut Research Institute, Qingdao, 266100, China
| | - Xiaobo Zhao
- Shandong Peanut Research Institute, Qingdao, 266100, China
| | - Shubo Wan
- Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Shihua Shan
- Shandong Peanut Research Institute, Qingdao, 266100, China.
| |
Collapse
|
50
|
Ordóñez-Baquera PL, González-Rodríguez E, Aguado-Santacruz GA, Rascón-Cruz Q, Conesa A, Moreno-Brito V, Echavarria R, Dominguez-Viveros J. Identification of miRNA from Bouteloua gracilis, a drought tolerant grass, by deep sequencing and their in silico analysis. Comput Biol Chem 2017; 66:26-35. [DOI: 10.1016/j.compbiolchem.2016.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/04/2016] [Accepted: 11/04/2016] [Indexed: 11/26/2022]
|