1
|
Di Paolo V, Masotti F, Vranych CV, Grandellis C, Garavaglia BS, Gottig N, Ottado J. Xanthomonas natriuretic peptide is recognized by the Arabidopsis natriuretic peptide receptor 1 and through this interaction triggers similar plant responses to its plant counterpart. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111494. [PMID: 36240911 DOI: 10.1016/j.plantsci.2022.111494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Plant natriuretic peptides (PNPs) are hormone peptides that participate in the regulation of ions and water homeostasis in plants. Xanthomonas citri subsp. citri (Xcc) the causal agent of citrus canker disease also possesses a PNP-like peptide (XacPNP). This peptide, similarly to AtPNP-A, the most studied PNP from Arabidopsis thaliana, causes stomatal aperture and enhances photosynthetic efficiency in plant leaves. Thus, the function that has been attributed to XacPNP is to contribute to maintain photosynthetic efficiency and water homeostasis in plant tissue during the infection process, to create favorable conditions for biotrophic pathogens survival. A PNP receptor (AtPNP-R1) for AtPNP-A has been identified and the AtPNP-A activity in regulation of water homeostasis has been observed to depend on the presence of AtPNP-R1. Here, we demonstrated that both AtPNP-A and XacPNP require the presence of AtPNP-R1 to induce plant stomatal aperture. Also, less necrotic tissue was found in infections with pathogens expressing XacPNP and this was dependent on the presence of AtPNP-R1, suggesting that XacPNP interacts with this receptor to exert its function. Finally, we confirmed that AtPNP-A and XacPNP interact with AtPNP-R1 in planta, which support the idea that XacPNP triggers similar plant responses to its plant counterpart.
Collapse
Affiliation(s)
- Valeria Di Paolo
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario 2000, Argentina
| | - Fiorella Masotti
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario 2000, Argentina
| | - Cecilia V Vranych
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario 2000, Argentina
| | - Carolina Grandellis
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario 2000, Argentina
| | - Betiana S Garavaglia
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario 2000, Argentina
| | - Natalia Gottig
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario 2000, Argentina
| | - Jorgelina Ottado
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario 2000, Argentina.
| |
Collapse
|
2
|
Patané JSL, Moreira LM, de Melo Teixeira M, Martins J, Setubal JC, Varani AM. New insights into plant natriuretic peptide evolution: From the lysogenic conversion in Xanthomonas to the lateral transfer to the whitefly Bemisia tabaci. Gene 2022; 821:146326. [PMID: 35181506 DOI: 10.1016/j.gene.2022.146326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/18/2022] [Accepted: 02/11/2022] [Indexed: 11/29/2022]
Abstract
Plant natriuretic peptide-like (PNP) are signaling molecules related to adaptive responses to stress. The Arabidopsis thaliana PNP (AtPNP-A) is capable of modulating catalase 2 (CAT2) and rubisco activase (RCA) activity in some circumstances. Interestingly, many plant-pathogens co-opted PNP-like molecules to their benefit. For instance, the citrus pathogen Xanthomonas citri carries a PNP-like (XacPNP) that can mimic and regulate plant homeostasis, and many phytopathogenic fungi carry effectors (e.g., Ave1 and AvrLm6) that are indeed PNP-like homologs. This work investigates the PNP-like evolution across the tree of life, revealing many parallel gains and duplications in plant and fungi kingdoms. All PNP-like proteins in the final dataset are structurally similar, containing the AtPNP-A active domains modulating CAT2 activity and RCA interaction. Comparative genomics evinced that XacPNP is a lysogenic conversion factor associated with a Myoviridae-like prophage identified in many Xanthomonas species. Surprisingly, a PNP-like homolog was identified in Bemisia tabaci, an important agricultural pest, being to date the second example of lateral gene transfer (LGT) from plant to the whitefly. Moreover, the Bemisia PNP-like homolog can also be considered a potential new effector of this phloem-feeding insect. Noteworthy, the whiteflies infest many plants carrying PNP-like copies and interact with some of their bacterial and fungal pathogens, strongly suggesting complex recipient/donor traits of PNP by LGT and bringing new insights into the evolution of host-pathogen arms race across the tree of life.
Collapse
Affiliation(s)
- José S L Patané
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Leandro M Moreira
- Departamento de Ciências Biológicas e Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | | | - Joaquim Martins
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - João C Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alessandro M Varani
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, SP, Brazil.
| |
Collapse
|
3
|
Martins PMM, Wood TK, de Souza AA. Persister Cells Form in the Plant Pathogen Xanthomonas citri subsp. citri under Different Stress Conditions. Microorganisms 2021; 9:microorganisms9020384. [PMID: 33672822 PMCID: PMC7918609 DOI: 10.3390/microorganisms9020384] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Citrus canker disease, caused by the bacterium Xanthomonas citri subsp. citri is a constant threat to citrus-producing areas. Since it has no cure, agricultural practices to restrain its dissemination are essential to reduce the economic damage. Hence, increased knowledge of the basic aspects of X. citri biology could lead to more efficient management practices that can eliminate dormant bacteria in the field. The dormant cells, also referred to as persisters, are phenotypic variants with lowered metabolism, which in turn leads to tolerance to antimicrobials and undermines existing control approaches. We show here that X. citri forms persisters, identifying triggers for this phenotype, including antibiotics, high temperature, and metals (copper and zinc), which increase persistence rates by 10–100 times. The antioxidant N-acetylcysteine reduced copper and zinc-induced persisters, but not those induced by tetracycline, indicating that oxidative stress may be an important inducer of X. citri persistence. In addition, we found that metabolism-independent drugs like cisplatin and mitomycin C are able to eliminate X. citri persistent cells, as well as copper, at high concentrations. Specific amino acids like proline and isoleucine interfered with the physiological balance of the dormancy in X. citri, stimulating or preventing persister resuscitation. Taken together, we discover chemicals that can induce, wake, and kill X. citri persister cells; these results provide insights that should be considered for more efficient integrated control management in the field.
Collapse
Affiliation(s)
- Paula M. M. Martins
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA;
- Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Rodovia Anhanguera Km 158, Cordeirópolis-SP 13490-000, Brazil
| | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA;
- Correspondence: (T.K.W.); (A.A.d.S.)
| | - Alessandra A. de Souza
- Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Rodovia Anhanguera Km 158, Cordeirópolis-SP 13490-000, Brazil
- Correspondence: (T.K.W.); (A.A.d.S.)
| |
Collapse
|
4
|
Turek I, Gehring C, Irving H. Arabidopsis Plant Natriuretic Peptide Is a Novel Interactor of Rubisco Activase. Life (Basel) 2020; 11:life11010021. [PMID: 33396438 PMCID: PMC7823470 DOI: 10.3390/life11010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022] Open
Abstract
Plant natriuretic peptides (PNPs) are a group of systemically acting peptidic hormones affecting solute and solvent homeostasis and responses to biotrophic pathogens. Although an increasing body of evidence suggests PNPs modulate plant responses to biotic and abiotic stress, which could lead to their potential biotechnological application by conferring increased stress tolerance to plants, the exact mode of PNPs action is still elusive. In order to gain insight into PNP-dependent signalling, we set out to identify interactors of PNP present in the model plant Arabidopsis thaliana, termed AtPNP-A. Here, we report identification of rubisco activase (RCA), a central regulator of photosynthesis converting Rubisco catalytic sites from a closed to an open conformation, as an interactor of AtPNP-A through affinity isolation followed by mass spectrometric identification. Surface plasmon resonance (SPR) analyses reveals that the full-length recombinant AtPNP-A and the biologically active fragment of AtPNP-A bind specifically to RCA, whereas a biologically inactive scrambled peptide fails to bind. These results are considered in the light of known functions of PNPs, PNP-like proteins, and RCA in biotic and abiotic stress responses.
Collapse
Affiliation(s)
- Ilona Turek
- Biomolecular Laboratory, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3552, Australia
| | - Chris Gehring
- Biomolecular Laboratory, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06121 Perugia, Italy
| | - Helen Irving
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3552, Australia
| |
Collapse
|
5
|
Kirino H, Yoshimoto K, Shinya R. Thaumatin-like proteins and a cysteine protease inhibitor secreted by the pine wood nematode Bursaphelenchus xylophilus induce cell death in Nicotiana benthamiana. PLoS One 2020; 15:e0241613. [PMID: 33125444 PMCID: PMC7598465 DOI: 10.1371/journal.pone.0241613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 10/19/2020] [Indexed: 12/29/2022] Open
Abstract
Pine wilt disease (PWD) is an infectious disease of pines that typically kills affected trees. The causal pathogen of PWD is the pine wood nematode (PWN), Bursaphelenchus xylophilus. Understanding of the disease has advanced in recent years through the use of a highly sensitive proteomics procedure and whole genome sequence analysis; in combination, these approaches have enabled identification of proteins secreted by PWNs. However, the roles of these proteins during the onset of parasitism have not yet been elucidated. In this study, we used a leaf-disk assay based on transient overexpression in Nicotiana benthamiana to allow functional screening of 10 candidate pathogenic proteins secreted by PWNs. These proteins were selected based on previous secretome and RNA-seq analyses. We found that five molecules induced significant cell death in tobacco plants relative to a GFP-only control. Three of these proteins (Bx-TH1, Bx-TH2, and Bx-CPI) may have a role in molecular mimicry and likely make important contributions to inducing hypersensitive responses in host plants.
Collapse
Affiliation(s)
- Haru Kirino
- School of Agriculture, Meiji University, Kawasaki-shi, Kanagawa, Japan
| | - Kohki Yoshimoto
- School of Agriculture, Meiji University, Kawasaki-shi, Kanagawa, Japan
| | - Ryoji Shinya
- School of Agriculture, Meiji University, Kawasaki-shi, Kanagawa, Japan
- JST PRESTO, Kanagawa, Japan
| |
Collapse
|
6
|
Tugume JK, Tusiime G, Sekamate AM, Buruchara R, Mukankusi CM. Diversity and interaction of common bacterial blight disease-causing bacteria (Xanthomonas spp.) with Phaseolus vulgaris L. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cj.2018.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Ficarra FA, Grandellis C, Garavaglia BS, Gottig N, Ottado J. Bacterial and plant natriuretic peptides improve plant defence responses against pathogens. MOLECULAR PLANT PATHOLOGY 2018; 19:801-811. [PMID: 28401640 PMCID: PMC6638127 DOI: 10.1111/mpp.12560] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/08/2017] [Accepted: 04/05/2017] [Indexed: 05/23/2023]
Abstract
Plant natriuretic peptides (PNPs) have been implicated in the regulation of ions and water homeostasis, and their participation in the plant immune response has also been proposed. Xanthomonas citri ssp. citri contains a gene encoding a PNP-like protein (XacPNP) which has no homologues in other bacteria. XacPNP mimics its Arabidopsis thaliana homologue AtPNP-A by modifying host responses to create favourable conditions for pathogen survival. However, the ability of XacPNP to induce plant defence responses has not been investigated. In order to study further the role of XacPNP in vivo, A. thaliana lines over-expressing XacPNP, lines over-expressing AtPNP-A and AtPNP-A-deficient plants were generated. Plants over-expressing XacPNP or AtPNP-A showed larger stomatal aperture and were more resistant to saline or oxidative stress than were PNP-deficient lines. In order to study further the role of PNP in biotic stress responses, A. thaliana leaves were infiltrated with pure recombinant XacPNP, and showed enhanced expression of genes related to the defence response and a higher resistance to pathogen infections. Moreover, AtPNP-A expression increased in A. thaliana on Pseudomonas syringae pv. tomato (Pst) infection. This evidence led us to analyse the responses of the transgenic plants to pathogens. Plants over-expressing XacPNP or AtPNP-A were more resistant to Pst infection than control plants, whereas PNP-deficient plants were more susceptible and showed a stronger hypersensitive response when challenged with non-host bacteria. Therefore, XacPNP, acquired by horizontal gene transfer, is able to mimic PNP functions, even with an increase in plant defence responses.
Collapse
Affiliation(s)
- Florencia A. Ficarra
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR‐CONICET) and Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR), Ocampo y Esmeralda2000, RosarioArgentina
| | - Carolina Grandellis
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR‐CONICET) and Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR), Ocampo y Esmeralda2000, RosarioArgentina
| | - Betiana S. Garavaglia
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR‐CONICET) and Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR), Ocampo y Esmeralda2000, RosarioArgentina
| | - Natalia Gottig
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR‐CONICET) and Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR), Ocampo y Esmeralda2000, RosarioArgentina
| | - Jorgelina Ottado
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR‐CONICET) and Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR), Ocampo y Esmeralda2000, RosarioArgentina
| |
Collapse
|
8
|
Song Y, Liu L, Wang Y, Valkenburg D, Zhang X, Zhu L, Thomma BPHJ. Transfer of tomato immune receptor Ve1 confers Ave1-dependent Verticillium resistance in tobacco and cotton. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:638-648. [PMID: 28796297 PMCID: PMC5787823 DOI: 10.1111/pbi.12804] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/14/2017] [Accepted: 08/02/2017] [Indexed: 05/24/2023]
Abstract
Verticillium wilts caused by soilborne fungal species of the Verticillium genus are economically important plant diseases that affect a wide range of host plants and are notoriously difficult to combat. Perception of pathogen(-induced) ligands by plant immune receptors is a key component of plant innate immunity. In tomato, race-specific resistance to Verticillium wilt is governed by the cell surface-localized immune receptor Ve1 through recognition of the effector protein Ave1 that is secreted by race 1 strains of Verticillium spp. It was previously demonstrated that transgenic expression of tomato Ve1 in the model plant Arabidopsis thaliana leads to Verticillium wilt resistance. Here, we investigated whether tomato Ve1 can confer Verticillium resistance when expressed in the crop species tobacco (Nicotiana tabcum) and cotton (Gossypium hirsutum). We show that transgenic tobacco and cotton plants constitutively expressing tomato Ve1 exhibit enhanced resistance against Verticillium wilt in an Ave1-dependent manner. Thus, we demonstrate that the functionality of tomato Ve1 in Verticillium wilt resistance through recognition of the Verticillium effector Ave1 is retained after transfer to tobacco and cotton, implying that the Ve1-mediated immune signalling pathway is evolutionary conserved across these plant species. Moreover, our results suggest that transfer of tomato Ve1 across sexually incompatible plant species can be exploited in breeding programmes to engineer Verticillium wilt resistance.
Collapse
Affiliation(s)
- Yin Song
- Laboratory of PhytopathologyWageningen UniversityWageningenThe Netherlands
| | - Linlin Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yidong Wang
- Laboratory of PhytopathologyWageningen UniversityWageningenThe Netherlands
| | | | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | | |
Collapse
|
9
|
Schatschneider S, Schneider J, Blom J, Létisse F, Niehaus K, Goesmann A, Vorhölter FJ. Systems and synthetic biology perspective of the versatile plant-pathogenic and polysaccharide-producing bacterium Xanthomonas campestris. Microbiology (Reading) 2017; 163:1117-1144. [DOI: 10.1099/mic.0.000473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Sarah Schatschneider
- Abteilung für Proteom und Metabolomforschung, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
- Present address: Evonik Nutrition and Care GmbH, Kantstr. 2, 33790 Halle-Künsebeck, Germany
| | - Jessica Schneider
- Bioinformatics Resource Facility, Centrum für Biotechnologie, Universität Bielefeld, Germany
- Present address: Evonik Nutrition and Care GmbH, Kantstr. 2, 33790 Halle-Künsebeck, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Gießen, Germany
| | - Fabien Létisse
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Karsten Niehaus
- Abteilung für Proteom und Metabolomforschung, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-University Gießen, Germany
| | - Frank-Jörg Vorhölter
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
- Present address: MVZ Dr. Eberhard & Partner Dortmund, Dortmund, Germany
| |
Collapse
|
10
|
Kumaravel M, Uma S, Backiyarani S, Saraswathi MS, Vaganan MM, Muthusamy M, Sajith KP. Differential proteome analysis during early somatic embryogenesis in Musa spp. AAA cv. Grand Naine. PLANT CELL REPORTS 2017; 36:163-178. [PMID: 27807644 DOI: 10.1007/s00299-016-2067-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/20/2016] [Indexed: 05/22/2023]
Abstract
Endogenous hormone secretion proteins along with stress and defense proteins play predominant role in banana embryogenesis. This study reveals the underlying molecular mechanism during transition from vegetative to embryogenic state. Banana (Musa spp.) is well known globally as a food fruit crop for millions. The requirement of quality planting material of banana is enormous. Although mass multiplication through tissue culture is in vogue, high-throughput techniques like somatic embryogenesis (SE) as a mass multiplication tool needs to be improved. Apart from clonal propagation, SE has extensive applications in genetic improvement and mutation. SE in banana is completely genome-dependent and most of the commercial cultivars exhibit recalcitrance. Thus, understanding the molecular basis of embryogenesis in Musa will help to develop strategies for mass production of quality planting material. In this study, differentially expressed proteins between embryogenic calli (EC) and non-embryogenic calli (NEC) with respect to the explant, immature male flower buds (IMFB), of cv. Grand Naine (AAA) were determined using two-dimensional gel electrophoresis (2DE). The 2DE results were validated through qRT-PCR. In total, 65 proteins were identified: 42 were highly expressed and 23 were less expressed in EC compared to NEC and IMFB. qRT-PCR analysis of five candidate proteins, upregulated in EC, were well correlated with expression at transcript level. Further analysis of proteins showed that embryogenesis in banana is associated with the control of oxidative stress. The regulation of ROS scavenging system and protection of protein structure occurred in the presence of heat shock proteins. Alongside, high accumulation of stress-related cationic peroxidase and plant growth hormone-related proteins like indole-3-pyruvate monooxygenase and adenylate isopentenyltransferase in EC revealed the association with the induction of SE.
Collapse
Affiliation(s)
- Marimuthu Kumaravel
- Crop Improvement Division, ICAR, National Research Centre for Banana, Thogamalai Main Road, Thayanoor Post, Tiruchirappalli, 102, Tamil Nadu, India
| | - Subbaraya Uma
- Crop Improvement Division, ICAR, National Research Centre for Banana, Thogamalai Main Road, Thayanoor Post, Tiruchirappalli, 102, Tamil Nadu, India.
| | - Suthanthiram Backiyarani
- Crop Improvement Division, ICAR, National Research Centre for Banana, Thogamalai Main Road, Thayanoor Post, Tiruchirappalli, 102, Tamil Nadu, India
| | - Marimuthu Somasundaram Saraswathi
- Crop Improvement Division, ICAR, National Research Centre for Banana, Thogamalai Main Road, Thayanoor Post, Tiruchirappalli, 102, Tamil Nadu, India
| | - Muthu Mayil Vaganan
- Crop Protection Division, ICAR, National Research Centre for Banana, Thogamalai Main Road, Thayanoor Post, Tiruchirappalli, 102, Tamil Nadu, India
| | - Muthusamy Muthusamy
- Crop Improvement Division, ICAR, National Research Centre for Banana, Thogamalai Main Road, Thayanoor Post, Tiruchirappalli, 102, Tamil Nadu, India
| | - Kallu Purayil Sajith
- Crop Improvement Division, ICAR, National Research Centre for Banana, Thogamalai Main Road, Thayanoor Post, Tiruchirappalli, 102, Tamil Nadu, India
| |
Collapse
|
11
|
Bagheri R, Bashir H, Ahmad J, Iqbal M, Qureshi MI. Spinach (Spinacia oleracea L.) modulates its proteome differentially in response to salinity, cadmium and their combination stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:235-45. [PMID: 26497449 DOI: 10.1016/j.plaphy.2015.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/06/2015] [Accepted: 10/06/2015] [Indexed: 05/20/2023]
Abstract
Cadmium (Cd) contamination and salinity are common stressors in agricultural soils all over the globe. Sensitivity and modulation of plant proteome lead to proper signal execution and adaptation to abiotic stress via molecular responses, which strengthen plant defence system. A comparative proteomic study, employing 2DE-MALDI TOF/TOF MS, of Spinacia oleracea plants exposed to cadmium (50 μg CdCl2 g(-1) soil), salinity (10 mg NaCl g(-1) soil) and their combination (NaCl + Cd) was conducted to understand the minimum common adaptation to multiple stress. Analysis of 2D gel maps showed significant increase and decrease in relative abundance of 14 and 39 proteins by Cd; 11 and 46 by salinity and 22 and 37 by combined stress of Cd and salinity, respectively. Peptide mass fingerprinting (PMF) helped in the identification of maturase K and PPD4 with increased relative abundance under all stresses; whereas salinity stress and combination stress silenced the presence of one protein (polycomb protein EZ2) and two proteins (cellulose synthase-like protein and ubiquitin conjugation factor E4), respectively. The identified proteins were functionally associated with signal transduction (15%), protein synthesis (16%), stress response and defence (33%), photosynthesis (13%), plant growth/cell division (9%), energy generation (4%), transport (4%), secondary metabolism (3%), and cell death (3%); clearly indicating the importance and necessity of keeping a higher ratio of defence and disease-responsive proteins. The results suggest that plant may increase the abundance of defence proteins and may also lower the abundance of catabolic proteins. Proteins with altered ratios of abundance belonged to different functional categories, suggesting that plants have differential mechanisms to respond to Cd, salinity, and their combined stress, but with unique sets of proteins.
Collapse
Affiliation(s)
- Rita Bagheri
- Proteomics & Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Humayra Bashir
- Proteomics & Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Javed Ahmad
- Proteomics & Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Muhammad Iqbal
- Department of Botany, Faculty of Science, Jamia Hamdard, New Delhi 110062, India
| | - M Irfan Qureshi
- Proteomics & Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
12
|
Turek I, Marondedze C, Wheeler JI, Gehring C, Irving HR. Plant natriuretic peptides induce proteins diagnostic for an adaptive response to stress. FRONTIERS IN PLANT SCIENCE 2014; 5:661. [PMID: 25505478 PMCID: PMC4244590 DOI: 10.3389/fpls.2014.00661] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 11/05/2014] [Indexed: 05/20/2023]
Abstract
In plants, structural and physiological evidence has suggested the presence of biologically active natriuretic peptides (PNPs). PNPs are secreted into the apoplast, are systemically mobile and elicit a range of responses signaling via cGMP. The PNP-dependent responses include tissue specific modifications of cation transport and changes in stomatal conductance and the photosynthetic rate. PNP also has a critical role in host defense responses. Surprisingly, PNP-homologs are produced by several plant pathogens during host colonization suppressing host defense responses. Here we show that a synthetic peptide representing the biologically active fragment of the Arabidopsis thaliana PNP (AtPNP-A) induces the production of reactive oxygen species in suspension-cultured A. thaliana (Col-0) cells. To identify proteins whose expression changes in an AtPNP-A dependent manner, we undertook a quantitative proteomic approach, employing tandem mass tag (TMT) labeling, to reveal temporal responses of suspension-cultured cells to 1 nM and 10 pM PNP at two different time-points post-treatment. Both concentrations yield a distinct differential proteome signature. Since only the higher (1 nM) concentration induces a ROS response, we conclude that the proteome response at the lower concentration reflects a ROS independent response. Furthermore, treatment with 1 nM PNP results in an over-representation of the gene ontology (GO) terms "oxidation-reduction process," "translation" and "response to salt stress" and this is consistent with a role of AtPNP-A in the adaptation to environmental stress conditions.
Collapse
Affiliation(s)
- Ilona Turek
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Claudius Marondedze
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Janet I. Wheeler
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash UniversityMelbourne, VIC, Australia
| | - Chris Gehring
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Helen R. Irving
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash UniversityMelbourne, VIC, Australia
| |
Collapse
|
13
|
Hafez EE, Abdelkhalek AA, El-Wahab ASEDA, Galal FH. Altered Gene Expression: Induction/Suppression in Leek Elicited by Iris Yellow Spot Virus Infection (IYSV) Egyptian Isolate. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2013.0068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
14
|
Akimoto-Tomiyama C, Furutani A, Ochiai H. Real time live imaging of phytopathogenic bacteria Xanthomonas campestris pv. campestris MAFF106712 in 'plant sweet home'. PLoS One 2014; 9:e94386. [PMID: 24736478 PMCID: PMC3988059 DOI: 10.1371/journal.pone.0094386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/14/2014] [Indexed: 11/18/2022] Open
Abstract
Xanthomonas is one of the most widespread phytobacteria, causing diseases on a variety of agricultural plants. To develop novel control techniques, knowledge of bacterial behavior inside plant cells is essential. Xanthomonas campestris pv. campestris, a vascular pathogen, is the causal agent of black rot on leaves of Brassicaceae, including Arabidopsis thaliana. Among the X. campestris pv. campestris stocks in the MAFF collection, we selected XccMAFF106712 as a model compatible pathogen for the A. thaliana reference ecotype Columbia (Col-0). Using modified green fluorescent protein (AcGFP) as a reporter, we observed real time XccMAFF106712 colonization in planta with confocal microscopy. AcGFP-expressing bacteria colonized the inside of epidermal cells and the apoplast, as well as the xylem vessels of the vasculature. In the case of the type III mutant, bacteria colonization was never detected in the xylem vessel or apoplast, though they freely enter the xylem vessel through the wound. After 9 days post inoculation with XccMAFF106712, the xylem vessel became filled with bacterial aggregates. This suggests that Xcc colonization can be divided into main four steps, (1) movement in the xylem vessel, (2) movement to the next cell, (3) adhesion to the host plant cells, and (4) formation of bacterial aggregates. The type III mutant abolished at least steps (1) and (2). Better understanding of Xcc colonization is essential for development of novel control techniques for black rot.
Collapse
Affiliation(s)
- Chiharu Akimoto-Tomiyama
- Plant-Microbe Interaction Research Unit, Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Japan
- * E-mail:
| | - Ayako Furutani
- Gene Research Center, Ibaraki University, Inashiki, Japan
| | - Hirokazu Ochiai
- Plant-Microbe Interaction Research Unit, Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Japan
| |
Collapse
|
15
|
Jalan N, Kumar D, Andrade MO, Yu F, Jones JB, Graham JH, White FF, Setubal JC, Wang N. Comparative genomic and transcriptome analyses of pathotypes of Xanthomonas citri subsp. citri provide insights into mechanisms of bacterial virulence and host range. BMC Genomics 2013; 14:551. [PMID: 23941402 PMCID: PMC3751643 DOI: 10.1186/1471-2164-14-551] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/06/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Citrus bacterial canker is a disease that has severe economic impact on citrus industries worldwide and is caused by a few species and pathotypes of Xanthomonas. X. citri subsp. citri strain 306 (XccA306) is a type A (Asiatic) strain with a wide host range, whereas its variant X. citri subsp. citri strain A(w)12879 (Xcaw12879, Wellington strain) is restricted to Mexican lime. RESULTS To characterize the mechanism for the differences in host range of XccA and Xcaw, the genome of Xcaw12879 that was completed recently was compared with XccA306 genome. Effectors xopAF and avrGf1 are present in Xcaw12879, but were absent in XccA306. AvrGf1 was shown previously for Xcaw to cause hypersensitive response in Duncan grapefruit. Mutation analysis of xopAF indicates that the gene contributes to Xcaw growth in Mexican lime but does not contribute to the limited host range of Xcaw. RNA-Seq analysis was conducted to compare the expression profiles of Xcaw12879 and XccA306 in Nutrient Broth (NB) medium and XVM2 medium, which induces hrp gene expression. Two hundred ninety two and 281 genes showed differential expression in XVM2 compared to in NB for XccA306 and Xcaw12879, respectively. Twenty-five type 3 secretion system genes were up-regulated in XVM2 for both XccA and Xcaw. Among the 4,370 common genes of Xcaw12879 compared to XccA306, 603 genes in NB and 450 genes in XVM2 conditions were differentially regulated. Xcaw12879 showed higher protease activity than XccA306 whereas Xcaw12879 showed lower pectate lyase activity in comparison to XccA306. CONCLUSIONS Comparative genomic analysis of XccA306 and Xcaw12879 identified strain specific genes. Our study indicated that AvrGf1 contributes to the host range limitation of Xcaw12879 whereas XopAF contributes to virulence. Transcriptome analyses of XccA306 and Xcaw12879 presented insights into the expression of the two closely related strains of X. citri subsp. citri. Virulence genes including genes encoding T3SS components and effectors are induced in XVM2 medium. Numerous genes with differential expression in Xcaw12879 and XccA306 were identified. This study provided the foundation to further characterize the mechanisms for virulence and host range of pathotypes of X. citri subsp. citri.
Collapse
Affiliation(s)
- Neha Jalan
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | - Dibyendu Kumar
- Waksman Genomics Core Facility, Rutgers University Busch Campus, Piscataway, NJ 08854, USA
| | - Maxuel O Andrade
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | - Fahong Yu
- ICBR, University of Florida, Gainesville, FL 32611, USA
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - James H Graham
- Department of Soil and Water Science, Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | - Frank F White
- Department of Plant Pathology, Kansas State University, 4024 Throckmorton Hall, Manhattan, KS 66506, USA
| | - João C Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060-0477, USA
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| |
Collapse
|
16
|
Carmo LST, Resende RO, Silva LP, Ribeiro SG, Mehta A. Identification of host proteins modulated by the virulence factor AC2 of Tomato chlorotic mottle virus in Nicotiana benthamiana. Proteomics 2013; 13:1947-60. [PMID: 23533094 DOI: 10.1002/pmic.201200547] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/08/2013] [Accepted: 02/25/2013] [Indexed: 11/09/2022]
Abstract
Tomato, one of the most important crops cultivated worldwide, has been severely affected by begomoviruses such as the Tomato chlorotic mottle virus (ToCMoV). Virulence factor AC2 is considered crucial for a successful virus-plant interaction and is known to act as a transcriptional activator and in some begomoviruses to function as an RNA silencing suppressor factor. However, the exact functions of the AC2 protein of the begomovirus ToCMoV are not yet established. The aim of the present study was to identify differentially expressed proteins of the model plant Nicotiana benthamiana in response to the expression of the AC2 gene, isolated from ToCMoV. N. benthamiana plants were inoculated with Agrobacterium tumefaciens containing the viral vector Potato virus X (PVX) and with the PVX-AC2 construction. 2DE was performed and proteins were identified by MS. The results showed that the expression of ToCMoV AC2 alters the levels of several host proteins, which are important for normal plant development, causing an imbalance in cellular homeostasis. This study highlights the effect of AC2 in the modulation of plant defense processes by increasing the expression of several oxidative stress-related and pathogenesis-related proteins, as well as its role in modulating the proteome of the photosynthesis and energy production systems.
Collapse
|
17
|
Petriccione M, Di Cecco I, Arena S, Scaloni A, Scortichini M. Proteomic changes in Actinidia chinensis shoot during systemic infection with a pandemic Pseudomonas syringae pv. actinidiae strain. J Proteomics 2013; 78:461-76. [DOI: 10.1016/j.jprot.2012.10.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/10/2012] [Accepted: 10/14/2012] [Indexed: 10/27/2022]
|
18
|
Unraveling plant responses to bacterial pathogens through proteomics. J Biomed Biotechnol 2011; 2011:354801. [PMID: 22131803 PMCID: PMC3216475 DOI: 10.1155/2011/354801] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/24/2011] [Accepted: 09/02/2011] [Indexed: 12/15/2022] Open
Abstract
Plant pathogenic bacteria cause diseases in important crops and seriously and negatively impact agricultural production. Therefore, an understanding of the mechanisms by which plants resist bacterial infection at the stage of the basal immune response or mount a successful specific R-dependent defense response is crucial since a better understanding of the biochemical and cellular mechanisms underlying these interactions will enable molecular and transgenic approaches to crops with increased biotic resistance. In recent years, proteomics has been used to gain in-depth understanding of many aspects of the host defense against pathogens and has allowed monitoring differences in abundance of proteins as well as posttranscriptional and posttranslational processes, protein activation/inactivation, and turnover. Proteomics also offers a window to study protein trafficking and routes of communication between organelles. Here, we summarize and discuss current progress in proteomics of the basal and specific host defense responses elicited by bacterial pathogens.
Collapse
|
19
|
Jalan N, Aritua V, Kumar D, Yu F, Jones JB, Graham JH, Setubal JC, Wang N. Comparative genomic analysis of Xanthomonas axonopodis pv. citrumelo F1, which causes citrus bacterial spot disease, and related strains provides insights into virulence and host specificity. J Bacteriol 2011; 193:6342-57. [PMID: 21908674 PMCID: PMC3209208 DOI: 10.1128/jb.05777-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 08/30/2011] [Indexed: 11/20/2022] Open
Abstract
Xanthomonas axonopodis pv. citrumelo is a citrus pathogen causing citrus bacterial spot disease that is geographically restricted within the state of Florida. Illumina, 454 sequencing, and optical mapping were used to obtain a complete genome sequence of X. axonopodis pv. citrumelo strain F1, 4.9 Mb in size. The strain lacks plasmids, in contrast to other citrus Xanthomonas pathogens. Phylogenetic analysis revealed that this pathogen is very close to the tomato bacterial spot pathogen X. campestris pv. vesicatoria 85-10, with a completely different host range. We also compared X. axonopodis pv. citrumelo to the genome of citrus canker pathogen X. axonopodis pv. citri 306. Comparative genomic analysis showed differences in several gene clusters, like those for type III effectors, the type IV secretion system, lipopolysaccharide synthesis, and others. In addition to pthA, effectors such as xopE3, xopAI, and hrpW were absent from X. axonopodis pv. citrumelo while present in X. axonopodis pv. citri. These effectors might be responsible for survival and the low virulence of this pathogen on citrus compared to that of X. axonopodis pv. citri. We also identified unique effectors in X. axonopodis pv. citrumelo that may be related to the different host range as compared to that of X. axonopodis pv. citri. X. axonopodis pv. citrumelo also lacks various genes, such as syrE1, syrE2, and RTX toxin family genes, which were present in X. axonopodis pv. citri. These may be associated with the distinct virulences of X. axonopodis pv. citrumelo and X. axonopodis pv. citri. Comparison of the complete genome sequence of X. axonopodis pv. citrumelo to those of X. axonopodis pv. citri and X. campestris pv. vesicatoria provides valuable insights into the mechanism of bacterial virulence and host specificity.
Collapse
Affiliation(s)
- Neha Jalan
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida 33850
| | - Valente Aritua
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida 33850
| | - Dibyendu Kumar
- Interdisciplinary Center for Biotechnology Research, 2033 Mowry Road, University of Florida, Gainesville, Florida 32611
| | - Fahong Yu
- Interdisciplinary Center for Biotechnology Research, 2033 Mowry Road, University of Florida, Gainesville, Florida 32611
| | - Jeffrey B. Jones
- Department of Plant Pathology, University of Florida, Gainesville, Florida 32611
| | - James H. Graham
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida 33850
| | - João C. Setubal
- Virginia Bioinformatics Institute and Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060-0477
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida 33850
| |
Collapse
|
20
|
Wang YH, Donaldson L, Gehring C, Irving HR. Plant natriuretic peptides: control of synthesis and systemic effects. PLANT SIGNALING & BEHAVIOR 2011; 6:1606-8. [PMID: 21918378 PMCID: PMC3256397 DOI: 10.4161/psb.6.10.17304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 07/11/2011] [Indexed: 05/23/2023]
Abstract
Plant natriuretic peptides (PNPs) are signalling molecules that are secreted into the apoplast particularly under conditions of biotic and abiotic stress. At the local level, PNPs modulate their own expression via feed forward and feedback loops to enable tuning of the response at the transcript and protein level and to prevent over-expression. PNPs also employ a systemic signal, possibly electrical, to rapidly alter photosynthesis and respiration not only in treated leaves but also in upper and lower leaves thereby modulating and integrating physiological responses at the level of the whole plant.
Collapse
Affiliation(s)
- Yu Hua Wang
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | | | | |
Collapse
|
21
|
Ruzvidzo O, Donaldson L, Valentine A, Gehring C. The Arabidopsis thaliana natriuretic peptide AtPNP-A is a systemic regulator of leaf dark respiration and signals via the phloem. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1710-1714. [PMID: 21550130 DOI: 10.1016/j.jplph.2011.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/01/2011] [Accepted: 03/04/2011] [Indexed: 05/30/2023]
Abstract
Plant natriuretic peptides (PNPs) belong to a novel class of peptidic signaling molecules that share some structural similarity to the N-terminal domain of expansins and affect physiological processes such as water and ion homeostasis at nano-molar concentrations. Here we show that a recombinant Arabidopsis thaliana PNP (AtPNP-A) rapidly increased the rate of dark respiration in treated leaves after 5 min. In addition, we observed increases in lower leaves, and with a lag time of 10 min, the effect spread to the upper leaves and subsequently (after 15 min) to the opposite leaves. This response signature is indicative of phloem mobility of the signal, a hypothesis that was further strengthened by the fact that cold girdling, which affects phloem but not xylem or apoplastic processes, delayed the long distance AtPNP-A effect. We conclude that locally applied AtPNP-A can induce a phloem-mobile signal that rapidly modifies plant homeostasis in distal parts.
Collapse
Affiliation(s)
- Oziniel Ruzvidzo
- Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | | | | | | |
Collapse
|
22
|
Garavaglia BS, Thomas L, Gottig N, Zimaro T, Garofalo CG, Gehring C, Ottado J. Shedding light on the role of photosynthesis in pathogen colonization and host defense. Commun Integr Biol 2011; 3:382-4. [PMID: 20798833 DOI: 10.4161/cib.3.4.12029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 04/08/2010] [Indexed: 11/19/2022] Open
Abstract
The role of photosynthesis in plant defense is a fundamental question awaiting further molecular and physiological elucidation. To this end we investigated host responses to infection with the bacterial pathogen Xanthomonas axonopodis pv. citri, the pathogen responsible for citrus canker. This pathogen encodes a plant-like natriuretic peptide (XacPNP) that is expressed specifically during the infection process and prevents deterioration of the physiological condition of the infected tissue. Proteomic assays of citrus leaves infected with a XacPNP deletion mutant (DeltaXacPNP) resulted in a major reduction in photosynthetic proteins such as Rubisco, Rubisco activase and ATP synthase as a compared with infection with wild type bacteria. In contrast, infiltration of citrus leaves with recombinant XacPNP caused an increase in these host proteins and a concomitant increase in photosynthetic efficiency as measured by chlorophyll fluorescence assays. Reversion of the reduction in photosynthetic efficiency in citrus leaves infected with DeltaXacPNP was achieved by the application of XacPNP or Citrus sinensis PNP lending support to a case of molecular mimicry. Finally, given that DeltaXacPNP infection is less successful than infection with the wild type, it appears that reducing photosynthesis is an effective plant defense mechanism against biotrophic pathogens.
Collapse
|
23
|
Wang YH, Gehring C, Irving HR. Plant natriuretic peptides are apoplastic and paracrine stress response molecules. PLANT & CELL PHYSIOLOGY 2011; 52:837-50. [PMID: 21478192 DOI: 10.1093/pcp/pcr036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Higher plants contain biologically active proteins that are recognized by antibodies against human atrial natriuretic peptide (ANP). We identified and isolated two Arabidopsis thaliana immunoreactive plant natriuretic peptide (PNP)-encoding genes, AtPNP-A and AtPNP-B, which are distantly related members of the expansin superfamily and have a role in the regulation of homeostasis in abiotic and biotic stresses, and have shown that AtPNP-A modulates the effects of ABA on stomata. Arabidopsis PNP (PNP-A) is mainly expressed in leaf mesophyll cells, and in protoplast assays we demonstrate that it is secreted using AtPNP-A:green fluorescent protein (GFP) reporter constructs and flow cytometry. Transient reporter assays provide evidence that AtPNP-A expression is enhanced by heat, osmotica and salt, and that AtPNP-A itself can enhance its own expression, thereby generating a response signature diagnostic for paracrine action and potentially also autocrine effects. Expression of native AtPNP-A is enhanced by osmotica and transiently by salt. Although AtPNP-A expression is induced by salt and osmotica, ABA does not significantly modulate AtPNP-A levels nor does recombinant AtPNP-A affect reporter expression of the ABA-responsive RD29A gene. Together, these results provide experimental evidence that AtPNP-A is stress responsive, secreted into the apoplastic space and can enhance its own expression. Furthermore, our findings support the idea that AtPNP-A, together with ABA, is an important component in complex plant stress responses and that, much like in animals, peptide signaling molecules can create diverse and modular signals essential for growth, development and defense under rapidly changing environmental conditions.
Collapse
Affiliation(s)
- Yu Hua Wang
- Monash Institute of Pharmaceutical Sciences, Monash University 381 Royal Parade, Parkville, Vic 3052, Australia
| | | | | |
Collapse
|
24
|
Sharathchandra RG, Stander C, Jacobson D, Ndimba B, Vivier MA. Proteomic analysis of grape berry cell cultures reveals that developmentally regulated ripening related processes can be studied using cultured cells. PLoS One 2011; 6:e14708. [PMID: 21379583 PMCID: PMC3040747 DOI: 10.1371/journal.pone.0014708] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 01/04/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND This work describes a proteomics profiling method, optimized and applied to berry cell suspensions to evaluate organ-specific cultures as a platform to study grape berry ripening. Variations in berry ripening within a cluster(s) on a vine and in a vineyard are a major impediment towards complete understanding of the functional processes that control ripening, specifically when a characterized and homogenous sample is required. Berry cell suspensions could overcome some of these problems, but their suitability as a model system for berry development and ripening needs to be established first. METHODOLOGY/PRINCIPAL FINDINGS In this study we report on the proteomic evaluation of the cytosolic proteins obtained from synchronized cell suspension cultures that were established from callus lines originating from green, véraison and ripe Vitis vinifera berry explants. The proteins were separated using liquid phase IEF in a Microrotofor cell and SDS PAGE. This method proved superior to gel-based 2DE. Principal component analysis confirmed that biological and technical repeats grouped tightly and importantly, showed that the proteomes of berry cultures originating from the different growth/ripening stages were distinct. A total of twenty six common bands were selected after band matching between different growth stages and twenty two of these bands were positively identified. Thirty two % of the identified proteins are currently annotated as hypothetical. The differential expression profile of the identified proteins, when compared with published literature on grape berry ripening, suggested common trends in terms of relative abundance in the different developmental stages between real berries and cell suspensions. CONCLUSIONS The advantages of having suspension cultures that accurately mimic specific developmental stages are profound and could significantly contribute to the study of the intricate regulatory and signaling networks responsible for berry development and ripening.
Collapse
Affiliation(s)
- Ramaschandra G. Sharathchandra
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Stellenbosch, South Africa
| | - Charmaine Stander
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Stellenbosch, South Africa
| | - Dan Jacobson
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Stellenbosch, South Africa
| | - Bongani Ndimba
- Proteomics Research Laboratory, Department of Biotechnology, University of Western Cape, Bellville, South Africa
| | - Melané A. Vivier
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Stellenbosch, South Africa
- * E-mail:
| |
Collapse
|
25
|
Balbuena TS, Dias LLC, Martins MLB, Chiquieri TB, Santa-Catarina C, Floh EIS, Silveira V. Challenges in proteome analyses of tropical plants. ACTA ACUST UNITED AC 2011. [DOI: 10.1590/s1677-04202011000200001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Genome sequencing of various organisms allow global analysis of gene expression, providing numerous clues on the biological function and involvement in the biological processes studied. Proteomics is a branch of molecular biology and biotechnology that has undergone considerable development in the post-genomic era. Despite the recent significant advancements in proteomics techniques, still there is much to be improved. Due to peculiarities to the plant kingdom, proteomics approaches require adaptations, so as to improve efficiency and accuracy of results in plants. Data generated by proteomics can substantially contribute to the understanding and monitoring of plant physiological events and development of biotechnological strategies. Especially for tropical species, challenges are even greater, in the light of the abundance of secondary metabolites, as well as of the lack of complete genome sequences. This review discusses current topics in proteomics concerning challenges and perspectives, with emphasis on the proteomics of tropical plant species.
Collapse
|