1
|
Liu G, Li D, Mai H, Lin X, Lu X, Chen K, Wang R, Riaz M, Tian J, Liang C. GmSTOP1-3 regulates flavonoid synthesis to reduce ROS accumulation and enhance aluminum tolerance in soybean. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136074. [PMID: 39383698 DOI: 10.1016/j.jhazmat.2024.136074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Aluminum (Al) toxicity is a significant limiting factor for crop production in acid soils. The functions and regulatory mechanisms of transcription factor STOP1 (Sensitive to Proton Rhizotoxicity 1) family genes in Al-tolerance have been widely studied in many plant species, except for soybean. Here, expression of GmSTOP1-3 was significantly enhanced by Al stress in soybean roots. Overexpression of GmSTOP1-3 resulted in enhanced root elongation and decreased Al content, which was accompanied by increased antioxidant capacity under Al treatment. Furthermore, RNA-seq identified 498 downstream genes of GmSTOP1-3, including genes involved in flavonoid biosynthesis. Among them, the expression of chalcone synthase (GmCHS) and isoflavone synthase (GmIFS) were highly enhanced by GmSTOP1-3 overexpression. Further quantitative flavonoid metabolome analysis showed that overexpression of GmSTOP1-3 significantly increased the content of naringenin chalcone, naringenin, and genistein in soybean roots under Al treatment, which positively correlated with the expression level of the genes relative to flavonoid biosynthesis. Notably, genistein had a significant positive correlation with the expression levels of GmIFS. Combination of Dual Luciferase Complementation (LUC) and Electrophoretic Mobility Shift Assays (EMSA) revealed that GmSTOP1-3 directly bound to the promoters of GmCHS/GmIFS and activated both genes' transcription. Taken together, these results suggest that GmSTOP1-3 enhances soybean Al tolerance partially through regulating the flavonoid synthesis.
Collapse
Affiliation(s)
- Guoxuan Liu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| | - Dongqian Li
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| | - Huafu Mai
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| | - Xiaoying Lin
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| | - Xing Lu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| | - Kang Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| | - Ruotong Wang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China.
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
2
|
Fang C, Wu J, Liang W. Systematic Investigation of Aluminum Stress-Related Genes and Their Critical Roles in Plants. Int J Mol Sci 2024; 25:9045. [PMID: 39201731 PMCID: PMC11354972 DOI: 10.3390/ijms25169045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Aluminum (Al) stress is a dominant obstacle for plant growth in acidic soil, which accounts for approximately 40-50% of the world's potential arable land. The identification and characterization of Al stress response (Al-SR) genes in Arabidopsis, rice, and other plants have deepened our understanding of Al's molecular mechanisms. However, as a crop sensitive to acidic soil, only eight Al-SR genes have been identified and functionally characterized in maize. In this review, we summarize the Al-SR genes in plants, including their classifications, subcellular localizations, expression organs, functions, and primarily molecular regulatory networks. Moreover, we predict 166 putative Al-SR genes in maize based on orthologue analyses, facilitating a comprehensive understanding of the impact of Al stress on maize growth and development. Finally, we highlight the potential applications of alleviating Al toxicity in crop production. This review deepens our understanding of the Al response in plants and provides a blueprint for alleviating Al toxicity in crop production.
Collapse
Affiliation(s)
- Chaowei Fang
- College of Life Science, Henan Normal University, Xinxiang 453007, China;
| | - Jiajing Wu
- Xinxiang Academy of Agricultural Sciences, Xinxiang 453000, China;
| | - Weihong Liang
- College of Life Science, Henan Normal University, Xinxiang 453007, China;
| |
Collapse
|
3
|
Ur Rahman S, Han JC, Ahmad M, Ashraf MN, Khaliq MA, Yousaf M, Wang Y, Yasin G, Nawaz MF, Khan KA, Du Z. Aluminum phytotoxicity in acidic environments: A comprehensive review of plant tolerance and adaptation strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115791. [PMID: 38070417 DOI: 10.1016/j.ecoenv.2023.115791] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
Aluminum (Al), a non-essential metal for plant growth, exerts significant phytotoxic effects, particularly on root growth. Anthropogenic activities would intensify Al's toxic effects by releasing Al3+ into the soil solution, especially in acidic soils with a pH lower than 5.5 and rich mineral content. The severity of Al-induced phytotoxicity varies based on factors such as Al concentration, ionic form, plant species, and growth stages. Al toxicity leads to inhibited root and shoot growth, reduced plant biomass, disrupted water uptake causing nutritional imbalance, and adverse alterations in physiological, biochemical, and molecular processes. These effects collectively lead to diminished plant yield and quality, along with reduced soil fertility. Plants employ various mechanisms to counter Al toxicity under stress conditions, including sequestering Al in vacuoles, exuding organic acids (OAs) like citrate, oxalate, and malate from root tip cells to form Al-complexes, activating antioxidative enzymes, and overexpressing Al-stress regulatory genes. Recent advancements focus on enhancing the exudation of OAs to prevent Al from entering the plant, and developing Al-tolerant varieties. Gene transporter families, such as ATP-Binding Cassette (ABC), Aluminum-activated Malate Transporter (ALMT), Natural resistance-associated macrophage protein (Nramp), Multidrug and Toxic compounds Extrusion (MATE), and aquaporin, play a crucial role in regulating Al toxicity. This comprehensive review examined recent progress in understanding the cytotoxic impact of Al on plants at the cellular and molecular levels. Diverse strategies developed by both plants and scientists to mitigate Al-induced phytotoxicity were discussed. Furthermore, the review explored recent genomic developments, identifying candidate genes responsible for OAs exudation, and delved into genome-mediated breeding initiatives, isolating transgenic and advanced breeding lines to cultivate Al-tolerant plants.
Collapse
Affiliation(s)
- Shafeeq Ur Rahman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jing-Cheng Han
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Muhammad Ahmad
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Nadeem Ashraf
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | | | - Maryam Yousaf
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuchen Wang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ghulam Yasin
- Department of Forestry and Range Management, FAS & T, Bahauddin Zakariya University Multan, Multan 60000, Pakistan
| | | | - Khalid Ali Khan
- Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia; Applied College, King Khalid University, Abha 61413, Saudi Arabia
| | - Zhenjie Du
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; Water Environment Factor Risk Assessment Laboratory of Agricultural Products Quality and Safety, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China.
| |
Collapse
|
4
|
Liu C, Hu X, Zang L, Liu X, Wei Y, Wang X, Jin X, Du C, Yu Y, He W, Zhang S. Overexpression of ZmSTOP1-A Enhances Aluminum Tolerance in Arabidopsis by Stimulating Organic Acid Secretion and Reactive Oxygen Species Scavenging. Int J Mol Sci 2023; 24:15669. [PMID: 37958653 PMCID: PMC10649276 DOI: 10.3390/ijms242115669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Aluminum (Al) toxicity and low pH are major factors limiting plant growth in acidic soils. Sensitive to Proton Rhizotoxicity 1 (STOP1) transcription factors respond to these stresses by regulating the expression of multiple Al- or low pH-responsive genes. ZmSTOP1-A, a STOP1-like protein from maize (Zea mays), was localized to the nucleus and showed transactivation activity. ZmSTOP1-A was expressed moderately in both roots and shoots of maize seedlings, but was not induced by Al stress or low pH. Overexpression of ZmSTOP1-A in Arabidopsis Atstop1 mutant partially restored Al tolerance and improved low pH tolerance with respect to root growth. Regarding Al tolerance, ZmSTOP1-A/Atstop1 plants showed clear upregulation of organic acid transporter genes, leading to increased organic acid secretion and reduced Al accumulation in roots. In addition, the antioxidant enzyme activity in roots and shoots of ZmSTOP1-A/Atstop1 plants was significantly enhanced, ultimately alleviating Al toxicity via scavenging reactive oxygen species. Similarly, ZmSTOP1-A could directly activate ZmMATE1 expression in maize, positively correlated with the number of Al-responsive GGNVS cis-elements in the ZmMATE1 promoter. Our results reveal that ZmSTOP1-A is an important transcription factor conferring Al tolerance by enhancing organic acid secretion and reactive oxygen species scavenging in Arabidopsis.
Collapse
Affiliation(s)
- Chan Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.L.); (X.H.); (L.Z.); (X.L.); (Y.W.); (X.W.); (X.J.); (C.D.); (Y.Y.)
| | - Xiaoqi Hu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.L.); (X.H.); (L.Z.); (X.L.); (Y.W.); (X.W.); (X.J.); (C.D.); (Y.Y.)
| | - Lei Zang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.L.); (X.H.); (L.Z.); (X.L.); (Y.W.); (X.W.); (X.J.); (C.D.); (Y.Y.)
| | - Xiaofeng Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.L.); (X.H.); (L.Z.); (X.L.); (Y.W.); (X.W.); (X.J.); (C.D.); (Y.Y.)
| | - Yuhui Wei
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.L.); (X.H.); (L.Z.); (X.L.); (Y.W.); (X.W.); (X.J.); (C.D.); (Y.Y.)
| | - Xue Wang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.L.); (X.H.); (L.Z.); (X.L.); (Y.W.); (X.W.); (X.J.); (C.D.); (Y.Y.)
| | - Xinwu Jin
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.L.); (X.H.); (L.Z.); (X.L.); (Y.W.); (X.W.); (X.J.); (C.D.); (Y.Y.)
| | - Chengfeng Du
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.L.); (X.H.); (L.Z.); (X.L.); (Y.W.); (X.W.); (X.J.); (C.D.); (Y.Y.)
| | - Yan Yu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.L.); (X.H.); (L.Z.); (X.L.); (Y.W.); (X.W.); (X.J.); (C.D.); (Y.Y.)
| | - Wenzhu He
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
| | - Suzhi Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.L.); (X.H.); (L.Z.); (X.L.); (Y.W.); (X.W.); (X.J.); (C.D.); (Y.Y.)
| |
Collapse
|
5
|
Li X, Tian Y. STOP1 and STOP1-like proteins, key transcription factors to cope with acid soil syndrome. FRONTIERS IN PLANT SCIENCE 2023; 14:1200139. [PMID: 37416880 PMCID: PMC10321353 DOI: 10.3389/fpls.2023.1200139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/25/2023] [Indexed: 07/08/2023]
Abstract
Acid soil syndrome leads to severe yield reductions in various crops worldwide. In addition to low pH and proton stress, this syndrome includes deficiencies of essential salt-based ions, enrichment of toxic metals such as manganese (Mn) and aluminum (Al), and consequent phosphorus (P) fixation. Plants have evolved mechanisms to cope with soil acidity. In particular, STOP1 (Sensitive to proton rhizotoxicity 1) and its homologs are master transcription factors that have been intensively studied in low pH and Al resistance. Recent studies have identified additional functions of STOP1 in coping with other acid soil barriers: STOP1 regulates plant growth under phosphate (Pi) or potassium (K) limitation, promotes nitrate (NO3 -) uptake, confers anoxic tolerance during flooding, and inhibits drought tolerance, suggesting that STOP1 functions as a node for multiple signaling pathways. STOP1 is evolutionarily conserved in a wide range of plant species. This review summarizes the central role of STOP1 and STOP1-like proteins in regulating coexisting stresses in acid soils, outlines the advances in the regulation of STOP1, and highlights the potential of STOP1 and STOP1-like proteins to improve crop production on acid soils.
Collapse
Affiliation(s)
- Xinbo Li
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan, China
- Center for Advanced Bioindustry Technologies, and Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yifu Tian
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan, China
- Center for Advanced Bioindustry Technologies, and Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Ofoe R, Thomas RH, Asiedu SK, Wang-Pruski G, Fofana B, Abbey L. Aluminum in plant: Benefits, toxicity and tolerance mechanisms. FRONTIERS IN PLANT SCIENCE 2023; 13:1085998. [PMID: 36714730 PMCID: PMC9880555 DOI: 10.3389/fpls.2022.1085998] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Aluminum (Al) is the third most ubiquitous metal in the earth's crust. A decrease in soil pH below 5 increases its solubility and availability. However, its impact on plants depends largely on concentration, exposure time, plant species, developmental age, and growing conditions. Although Al can be beneficial to plants by stimulating growth and mitigating biotic and abiotic stresses, it remains unknown how Al mediates these effects since its biological significance in cellular systems is still unidentified. Al is considered a major limiting factor restricting plant growth and productivity in acidic soils. It instigates a series of phytotoxic symptoms in several Al-sensitive crops with inhibition of root growth and restriction of water and nutrient uptake as the obvious symptoms. This review explores advances in Al benefits, toxicity and tolerance mechanisms employed by plants on acidic soils. These insights will provide directions and future prospects for potential crop improvement.
Collapse
Affiliation(s)
- Raphael Ofoe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
| | - Raymond H. Thomas
- School of Science and the Environment, Memorial University of Newfoundland, Grenfell Campus, Corner Brook, NL, Canada
| | - Samuel K. Asiedu
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
| | - Gefu Wang-Pruski
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
| | - Bourlaye Fofana
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, Charlottetown, PE, Canada
| | - Lord Abbey
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
| |
Collapse
|
7
|
Zhang L, Dong D, Wang J, Wang Z, Zhang J, Bai RY, Wang X, Rubio Wilhelmi MDM, Blumwald E, Zhang N, Guo YD. A zinc finger protein SlSZP1 protects SlSTOP1 from SlRAE1-mediated degradation to modulate aluminum resistance. THE NEW PHYTOLOGIST 2022; 236:165-181. [PMID: 35739643 DOI: 10.1111/nph.18336] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
In acidic soils, aluminum (Al) toxicity is the main factor inhibiting plant root development and reducing crops yield. STOP1 (SENSITIVE TO PROTON RHIZOTOXICITY 1) was a critical factor in detoxifying Al stress. Under Al stress, STOP1 expression was not induced, although STOP1 protein accumulated, even in the presence of RAE1 (STOP1 DEGRADATION E3-LIGASE). How the Al stress triggers and stabilises the accumulation of STOP1 is still unknown. Here, we characterised SlSTOP1-interacting zinc finger protein (SlSZP1) using a yeast-two-hybrid screening, and generated slstop1, slszp1 and slstop1/slszp1 knockout mutants using clustered regularly interspaced short palindromic repeats (CRISPR) in tomato. SlSZP1 is induced by Al stress but it is not regulated by SlSTOP1. The slstop1, slszp1 and slstop1/slszp1 knockout mutants exhibited hypersensitivity to Al stress. The expression of SlSTOP1-targeted genes, such as SlRAE1 and SlASR2 (ALUMINUM SENSITIVE), was inhibited in both slstop1 and slszp1 mutants, but not directly regulated by SlSZP1. Furthermore, the degradation of SlSTOP1 by SlRAE1 was prevented by SlSZP1. Al stress increased the accumulation of SlSTOP1 in wild-type (WT) but not in slszp1 mutants. The overexpression of either SlSTOP1 or SlSZP1 did not enhance plant Al resistance. Altogether, our results show that SlSZP1 is an important factor for protecting SlSTOP1 from SlRAE1-mediated degradation.
Collapse
Affiliation(s)
- Lei Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Danhui Dong
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jinfang Wang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Zhirong Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jiaojiao Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ru-Yue Bai
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuewei Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | | | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572000, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
8
|
Abd El-Moneim D, Contreras R, Silva-Navas J, Gallego FJ, Figueiras AM, Benito C. Repression of Mitochondrial Citrate Synthase Genes by Aluminum Stress in Roots of Secale cereale and Brachypodium distachyon. FRONTIERS IN PLANT SCIENCE 2022; 13:832981. [PMID: 35463451 PMCID: PMC9021840 DOI: 10.3389/fpls.2022.832981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Aluminum (Al) toxicity in acid soils influences plant development and yield. Almost 50% of arable land is acidic. Plants have evolved a variety of tolerance mechanisms for Al. In response to the presence of Al, various species exudate citrate from their roots. Rye (Secale cereale L.) secretes both citrate and malate, making it one of the most Al-tolerant cereal crops. However, no research has been done on the role of the mitochondrial citrate synthase (mCS) gene in Al-induced stress in the rye. We have isolated an mCS gene, encoding a mitochondrial CS isozyme, in two S. cereale cultivars (Al-tolerant cv. Ailés and Al-sensitive inbred rye line Riodeva; ScCS4 gene) and in two Brachypodium distachyon lines (Al-tolerant ABR8 line and Al-sensitive ABR1 line; BdCS4 gene). Both mCS4 genes have 19 exons and 18 introns. The ScCS4 gene was located on the 6RL rye chromosome arm. Phylogenetic studies using cDNA and protein sequences have shown that the ScCS4 gene and their ScCS protein are orthologous to mCS genes and CS proteins of different Poaceae plants. Expression studies of the ScCS4 and BdSC4 genes show that the amount of their corresponding mRNAs in the roots is higher than that in the leaves and that the amounts of mRNAs in plants treated and not treated with Al were higher in the Al-tolerant lines than that in the Al-sensitive lines of both species. In addition, the levels of ScCS4 and BdCS4 mRNAs were reduced in response to Al (repressive behavior) in the roots of the tolerant and sensitive lines of S. cereale and B. distachyon.
Collapse
|
9
|
Niedziela A, Domżalska L, Dynkowska WM, Pernisová M, Rybka K. Aluminum Stress Induces Irreversible Proteomic Changes in the Roots of the Sensitive but Not the Tolerant Genotype of Triticale Seedlings. PLANTS 2022; 11:plants11020165. [PMID: 35050053 PMCID: PMC8781804 DOI: 10.3390/plants11020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/16/2022]
Abstract
Triticale is a wheat–rye hybrid with a higher abiotic stress tolerance than wheat and is better adapted for cultivation in light-type soils, where aluminum ions are present as Al-complexes that are harmful to plants. The roots are the first plant organs to contact these ions and the inhibition of root growth is one of the first plant reactions. The proteomes of the root apices in Al-tolerant and -sensitive plants were investigated to compare their regeneration effects following stress. The materials used in this study consisted of seedlings of three triticale lines differing in Al3+ tolerance, first subjected to aluminum ion stress and then recovered. Two-dimensional electrophoresis (2-DE) was used for seedling root protein separation followed by differential spot analysis using liquid chromatography coupled to tandem mass spectrometry (LC-MS-MS/MS). The plants’ tolerance to the stress was evaluated based on biometric screening of seedling root regrowth upon regeneration. Our results suggest that the Al-tolerant genotype can recover, without differentiation of proteome profiles, after stress relief, contrary to Al-sensitive genotypes that maintain the proteome modifications caused by unfavorable environments.
Collapse
Affiliation(s)
- Agnieszka Niedziela
- Department of Biochemistry and Biotechnology, Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Blonie, Poland;
- Correspondence: (A.N.); (K.R.); Tel.: +48-227-334-535 (A.N.); +48-227-334-537 (K.R.)
| | - Lucyna Domżalska
- Center for Biological Diversity Conservation in Powsin, Polish Academy of Sciences Botanical Garden, Prawdziwka 2, 02-973 Warsaw, Poland;
| | - Wioletta M. Dynkowska
- Department of Biochemistry and Biotechnology, Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Blonie, Poland;
| | - Markéta Pernisová
- Plant Sciences Core Facility, Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 62500 Brno, Czech Republic;
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Krystyna Rybka
- Department of Biochemistry and Biotechnology, Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Blonie, Poland;
- Correspondence: (A.N.); (K.R.); Tel.: +48-227-334-535 (A.N.); +48-227-334-537 (K.R.)
| |
Collapse
|
10
|
Cai S, Wu L, Wang G, Liu J, Song J, Xu H, Luo J, Shen Y, Shen S. DA-6 improves sunflower seed vigor under Al 3+ stress by regulating Al 3+ balance and ethylene metabolic. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113048. [PMID: 34883324 DOI: 10.1016/j.ecoenv.2021.113048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/05/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Aluminum (Al3+) stress restricts plant seed germination and seedling growth seriously. Here, the sunflower "S175″ variety was used to explore the technique of improving seed vigor under Al3+ stress and investigate the effect of diethyl aminoethyl hexanoate (DA-6) on physiological characteristics in sunflower seeds during germination under Al3+ stress. The results showed that 3.0 mmol·L-1 Al3+ treatment significantly suppressed the sunflower seed germination and seedling growth. Al3+ stress significantly increased Al3+ content and secretion rates of citric and malic acids in sunflower seeds during germination. Besides, endogenous ethylene content was increased in Al3+-treated seeds. DA-6 serves as a positive signal to regulate the sunflower seed germination under Al3+ stress. Moreover, DA-6 enhanced the activities of malic dehydrogenase, citrate synthase, and isocitrate dehydrogenase, up-regulated the expressions of organic acid transport-related genes (ALMT and MATE), resulting in reduced accumulation of Al3+. Furthermore, exogenous DA-6 mitigated excessive accumulation of ethylene by decreasing the 1-aminocyclopropane-1-dihydrodipicolinate synthase activity and related-gene expression. However, DA-6 treatment had no effect on abscisic acid or gibberellin metabolism in sunflower seeds under Al3+ stress. These results confirmed that DA-6 application enhanced the germination capacity through induction of the synthesis and transport of malic and citric acids, and suppression of the excessive accumulation of endogenous ethylene, thus contributing to alleviate Al3+ toxicity in sunflower seeds.
Collapse
Affiliation(s)
- Shuyu Cai
- School of Architectural Engineering, Shaoxing University Yuanpei College, Qunxianzhong Road 2799, Shaoxing 312000, China.
| | - Liyuan Wu
- School of Architectural Engineering, Shaoxing University Yuanpei College, Qunxianzhong Road 2799, Shaoxing 312000, China
| | - Guofu Wang
- School of Architectural Engineering, Shaoxing University Yuanpei College, Qunxianzhong Road 2799, Shaoxing 312000, China
| | - Jianxin Liu
- School of Architectural Engineering, Shaoxing University Yuanpei College, Qunxianzhong Road 2799, Shaoxing 312000, China
| | - Jiangping Song
- School of Architectural Engineering, Shaoxing University Yuanpei College, Qunxianzhong Road 2799, Shaoxing 312000, China
| | - Hua Xu
- School of Architectural Engineering, Shaoxing University Yuanpei College, Qunxianzhong Road 2799, Shaoxing 312000, China
| | - Jie Luo
- School of Architectural Engineering, Shaoxing University Yuanpei College, Qunxianzhong Road 2799, Shaoxing 312000, China
| | - Yi Shen
- School of Architectural Engineering, Shaoxing University Yuanpei College, Qunxianzhong Road 2799, Shaoxing 312000, China
| | - Shuyu Shen
- School of Architectural Engineering, Shaoxing University Yuanpei College, Qunxianzhong Road 2799, Shaoxing 312000, China
| |
Collapse
|
11
|
Jin JF, Zhu HH, He QY, Li PF, Fan W, Xu JM, Yang JL, Chen WW. The Tomato Transcription Factor SlNAC063 Is Required for Aluminum Tolerance by Regulating SlAAE3-1 Expression. FRONTIERS IN PLANT SCIENCE 2022; 13:826954. [PMID: 35371150 PMCID: PMC8965521 DOI: 10.3389/fpls.2022.826954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/31/2022] [Indexed: 05/11/2023]
Abstract
Aluminum (Al) toxicity constitutes one of the major limiting factors of plant growth and development on acid soils, which comprises approximately 50% of potentially arable lands worldwide. When suffering Al toxicity, plants reprogram the transcription of genes, which activates physiological and metabolic pathways to deal with the toxicity. Here, we report the role of a NAM, ATAF1, 2 and CUC2 (NAC) transcription factor (TF) in tomato Al tolerance. Among 53 NAC TFs in tomatoes, SlNAC063 was most abundantly expressed in root apex and significantly induced by Al stress. Furthermore, the expression of SlNAC063 was not induced by other metals. Meanwhile, the SlNAC063 protein was localized at the nucleus and has transcriptional activation potentials in yeast. By constructing CRISPR/Cas9 knockout mutants, we found that slnac063 mutants displayed increased sensitivity to Al compared to wild-type plants. However, the mutants accumulated even less Al than wild-type (WT) plants, suggesting that internal tolerance mechanisms but not external exclusion mechanisms are implicated in SlNAC063-mediated Al tolerance in tomatoes. Further comparative RNA-sequencing analysis revealed that only 45 Al-responsive genes were positively regulated by SlNAC063, although the expression of thousands of genes (1,557 upregulated and 636 downregulated) was found to be affected in slnac063 mutants in the absence of Al stress. The kyoto encyclopedia of genes and genomes (KEGG) pathway analysis revealed that SlNAC063-mediated Al-responsive genes were enriched in "phenylpropanoid metabolism," "fatty acid metabolism," and "dicarboxylate metabolism," indicating that SlNAC063 regulates metabolisms in response to Al stress. Quantitative real-time (RT)-PCR analysis showed that the expression of SlAAE3-1 was repressed by SlNAC063 in the absence of Al. However, the expression of SlAAE3-1 was dependent on SlNAC063 in the presence of Al stress. Taken together, our results demonstrate that a NAC TF SlNAC063 is involved in tomato Al tolerance by regulating the expression of genes involved in metabolism, and SlNAC063 is required for Al-induced expression of SlAAE3-1.
Collapse
Affiliation(s)
- Jian Feng Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hui Hui Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qi Yu He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Peng Fei Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wei Fan
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Ji Ming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jian Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Jian Li Yang,
| | - Wei Wei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- Research Centre for Plant RNA Signaling, Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Wei Wei Chen,
| |
Collapse
|
12
|
Silva-Navas J, Salvador N, Del Pozo JC, Benito C, Gallego FJ. The rye transcription factor ScSTOP1 regulates the tolerance to aluminum by activating the ALMT1 transporter. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110951. [PMID: 34315581 DOI: 10.1016/j.plantsci.2021.110951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Plants have evolved different mechanisms to increase their tolerance to aluminum (Al) toxicity and low pH in the soil. The Zn finger transcription factor SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1) plays an essential role in the adaptation of plants to Al and low pH stresses. In this work, we isolated the ScSTOP1 gene from rye (Secale cereale L.), which is located on chromosome 3RS. The ectopic expression of ScSTOP1 complements the Arabidopsis stop1 mutation in terms of root growth inhibition due to Al and pH stress, as well as phosphate starvation tolerance, suggesting that rye ScSTOP1 is a functional ortholog of AtSTOP1. A putative STOP1 binding motif was identified in the promoter of a well-known STOP1 target from rye and Arabidopsis and was later corroborated by genomic DAP-seq analyses. Coexpression analyses verified that ScSTOP1 activated the promoter of ScALMT1. We have also identified a putative phosphorylatable serine in STOP1 that is phylogenetically conserved and critical for such activation. Our data indicated that ScSTOP1 also regulated Al and pH tolerance in rye.
Collapse
Affiliation(s)
- J Silva-Navas
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain; Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - N Salvador
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - J C Del Pozo
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain.
| | - C Benito
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain.
| | - F J Gallego
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain
| |
Collapse
|
13
|
Szurman-Zubrzycka M, Chwiałkowska K, Niemira M, Kwaśniewski M, Nawrot M, Gajecka M, Larsen PB, Szarejko I. Aluminum or Low pH - Which Is the Bigger Enemy of Barley? Transcriptome Analysis of Barley Root Meristem Under Al and Low pH Stress. Front Genet 2021; 12:675260. [PMID: 34220949 PMCID: PMC8244595 DOI: 10.3389/fgene.2021.675260] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Aluminum (Al) toxicity is considered to be the most harmful abiotic stress in acidic soils that today comprise more than 50% of the world’s arable lands. Barley belongs to a group of crops that are most sensitive to Al in low pH soils. We present the RNA-seq analysis of root meristems of barley seedlings grown in hydroponics at optimal pH (6.0), low pH (4.0), and low pH with Al (10 μM of bioavailable Al3+ ions). Two independent experiments were conducted: with short-term (24 h) and long-term (7 days) Al treatment. In the short-term experiment, more genes were differentially expressed (DEGs) between root meristems grown at pH = 6.0 and pH = 4.0, than between those grown at pH = 4.0 with and without Al treatment. The genes upregulated by low pH were associated mainly with response to oxidative stress, cell wall organization, and iron ion binding. Among genes upregulated by Al, overrepresented were those related to response to stress condition and calcium ion binding. In the long-term experiment, the number of DEGs between hydroponics at pH = 4.0 and 6.0 were lower than in the short-term experiment, which suggests that plants partially adapted to the low pH. Interestingly, 7 days Al treatment caused massive changes in the transcriptome profile. Over 4,000 genes were upregulated and almost 2,000 genes were downregulated by long-term Al stress. These DEGs were related to stress response, cell wall development and metal ion transport. Based on our results we can assume that both, Al3+ ions and low pH are harmful to barley plants. Additionally, we phenotyped the root system of barley seedlings grown in the same hydroponic conditions for 7 days at pH = 6.0, pH = 4.0, and pH = 4.0 with Al. The results correspond to transcriptomic data and show that low pH itself is a stress factor that causes a significant reduction of root growth and the addition of aluminum further increases this reduction. It should be noted that in acidic arable lands, plants are exposed simultaneously to both of these stresses. The presented transcriptome analysis may help to find potential targets for breeding barley plants that are more tolerant to such conditions.
Collapse
Affiliation(s)
- Miriam Szurman-Zubrzycka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Karolina Chwiałkowska
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Mirosław Kwaśniewski
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | - Małgorzata Nawrot
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Monika Gajecka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Paul B Larsen
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Iwona Szarejko
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
14
|
Matonyei TK, Barros BA, Guimaraes RGN, Ouma EO, Cheprot RK, Apolinário LC, Ligeyo DO, Costa MBR, Were BA, Kisinyo PO, Onkware AO, Noda RW, Gudu SO, Magalhaes JV, Guimaraes CT. Aluminum tolerance mechanisms in Kenyan maize germplasm are independent from the citrate transporter ZmMATE1. Sci Rep 2020; 10:7320. [PMID: 32355284 PMCID: PMC7193623 DOI: 10.1038/s41598-020-64107-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/07/2020] [Indexed: 11/09/2022] Open
Abstract
Aluminum (Al) toxicity on acid soils adversely affects maize yields, which can be overcome by combining soil amendments with genetic tolerance. In maize, ZmMATE1 confers Al tolerance via Al-activated citrate release, whereby citrate forms non-toxic complexes with Al3+ in the rhizosphere. Here, we investigated Al tolerance mechanisms in maize germplasm originated from Kenya based on quantitative trait loci (QTL) mapping. Five QTLs and four epistatic interactions explained ~51% of the phenotypic variation for Al tolerance. The lack of Al tolerance QTL on chromosome 6 and the much lower expression of ZmMATE1 in both Kenyan lines than in Cateto Al237, which donates the superior allele of ZmMATE1, strongly indicate that this gene does not play a significant role in Al tolerance in neither parent. In turn, maize homologs to genes previously implicated in Al tolerance in other species, ZmNrat1, ZmMATE3, ZmWRKY and ZmART1, co-localized with Al tolerance QTL and were more highly expressed in the parent that donate favorable QTL alleles. However, these candidate genes will require further studies for functional validation on maize Al tolerance. The existence of Al tolerance mechanisms independent from ZmMATE1 suggests it is possible to develop highly Al tolerant cultivars by pyramiding complementary Al tolerance genes in maize.
Collapse
Affiliation(s)
- Thomas K Matonyei
- University of Kabianga, Agroforestry and Rural Development Department, P.O. Box 2030-20200, Kericho, Kenya
| | - Beatriz A Barros
- Embrapa Milho e Sorgo, Rodovia MG 424 km 65, Sete Lagoas, 35701-970, Brazil
| | - Roberta G N Guimaraes
- Universidade Federal de São João del Rei, Campus Sete Lagoas, Rodovia MG 424 km 47, Sete Lagoas, 35701-970, Brazil
| | - Evans O Ouma
- Rongo University, P.O. Box 103-40404, Rongo, Kenya
| | | | - Leandro C Apolinário
- Faculdade Ciências da Vida, Av. Prefeito Alberto Moura, 12632, Sete Lagoas, MG, Brazil
| | - Dickson O Ligeyo
- Kenya Agricultural Research Institute, P.O. Box 450-30200, Kitale, Kenya
| | - Marcella B R Costa
- Universidade Federal de Minas Gerais, Departamento de Biologia Geral, Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil
| | | | | | | | - Roberto W Noda
- Embrapa Milho e Sorgo, Rodovia MG 424 km 65, Sete Lagoas, 35701-970, Brazil
| | | | | | - Claudia T Guimaraes
- Embrapa Milho e Sorgo, Rodovia MG 424 km 65, Sete Lagoas, 35701-970, Brazil.
| |
Collapse
|
15
|
Yang JL, Fan W, Zheng SJ. Mechanisms and regulation of aluminum-induced secretion of organic acid anions from plant roots. J Zhejiang Univ Sci B 2019; 20:513-527. [PMID: 31090277 DOI: 10.1631/jzus.b1900188] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Aluminum (Al) is the most abundant metal element in the earth's crust. On acid soils, at pH 5.5 or lower, part of insoluble Al-containing minerals become solubilized into soil solution, with resultant highly toxic effects on plant growth and development. Nevertheless, some plants have developed Al-tolerance mechanisms that enable them to counteract this Al toxicity. One such well-documented mechanism is the Al-induced secretion of organic acid anions, including citrate, malate, and oxalate, from plant roots. Once secreted, these anions chelate external Al ions, thus protecting the secreting plant from Al toxicity. Genes encoding the citrate and malate transporters responsible for secretion have been identified and characterized, and accumulating evidence indicates that regulation of the expression of these transporter genes is critical for plant Al tolerance. In this review, we outline the recent history of research into plant Al-tolerance mechanisms, with special emphasis on the physiology of Al-induced secretion of organic acid anions from plant roots. In particular, we summarize the identification of genes encoding organic acid transporters and review current understanding of genes regulating organic acid secretion. We also discuss the possible signaling pathways regulating the expression of organic acid transporter genes.
Collapse
Affiliation(s)
- Jian-Li Yang
- Institute of Plant Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Fan
- Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Shao-Jian Zheng
- Institute of Plant Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Molecular Mechanisms for Coping with Al Toxicity in Plants. Int J Mol Sci 2019; 20:ijms20071551. [PMID: 30925682 PMCID: PMC6480313 DOI: 10.3390/ijms20071551] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 01/03/2023] Open
Abstract
Aluminum (Al) toxicity is one of the major constraints to agricultural production in acid soils. Molecular mechanisms of coping with Al toxicity have now been investigated in a range of plant species. Two main mechanisms of Al tolerance in plants are Al exclusion from the roots and the ability to tolerate Al in the roots. This review focuses on the recent discovery of novel genes and mechanisms that confer Al tolerance in plants and summarizes our understanding of the physiological, genetic, and molecular basis for plant Al tolerance. We hope this review will provide a theoretical basis for the genetic improvement of Al tolerance in plants.
Collapse
|
17
|
Kundu A, Das S, Basu S, Kobayashi Y, Kobayashi Y, Koyama H, Ganesan M. GhSTOP1, a C2H2 type zinc finger transcription factor is essential for aluminum and proton stress tolerance and lateral root initiation in cotton. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:35-44. [PMID: 30098101 DOI: 10.1111/plb.12895] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/04/2018] [Indexed: 05/25/2023]
Abstract
Aluminum (Al) and proton (H+ ) ions are major acid soil stress factors deleteriously affecting plant root growth and crop yield. In our preliminary studies, cotton (Gossypium hirsutum L.) seedlings displayed very sensitive phenotypes to Al and H+ rhizotoxicities. Based on previous Arabidopsis results, we aimed to characterise the Al stress responsive Sensitive to Proton rhizotoxicity 1 (GhSTOP1) transcription system in cotton using RNAi-mediated down-regulation. With the help of seed embryo apex explants, we developed transgenic cotton plants overexpressing a GhSTOP1-RNAi cassette with NPTII selection. Kanamycin-tolerant T1 seedlings were further considered for Al and H+ stress tolerance studies. Down-regulation of the GhSTOP1 increased sensitivity to Al and proton rhizotoxicities, and root growth was significantly reduced in RNAi lines. The expression profile of GhALMT1 (Aluminum-activated Malate Transporter 1), GhMATE (Multidrug and Toxic Compound Extrusion), GhALS3 (Aluminium Sensitive 3) and key genes involved in the GABA shunt were down-regulated in the transgenic RNAi lines. Additionally, the lateral root initiation process was delayed and expression of GhNAC1, which is involved in lateral roots, was also suppressed in transgenic lines. Besides, overexpression of GhSTOP1 in Arabidopsis accelerated root growth and AtMATE and AtALMT1 expression under Al stress conditions. These analyses indicate that GhSTOP1 is essential for the expression of several genes which are necessary for acid soil tolerance mechanisms and lateral root initiation.
Collapse
Affiliation(s)
- A Kundu
- Department of Life Sciences, Presidency University Kolkata, West Bengal, India
| | - S Das
- Department of Life Sciences, Presidency University Kolkata, West Bengal, India
| | - S Basu
- Department of Life Sciences, Presidency University Kolkata, West Bengal, India
| | - Y Kobayashi
- Department of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Y Kobayashi
- Department of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - H Koyama
- Department of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - M Ganesan
- Department of Life Sciences, Presidency University Kolkata, West Bengal, India
- Department of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
18
|
Che J, Tsutsui T, Yokosho K, Yamaji N, Ma JF. Functional characterization of an aluminum (Al)-inducible transcription factor, ART2, revealed a different pathway for Al tolerance in rice. THE NEW PHYTOLOGIST 2018; 220:209-218. [PMID: 29888411 DOI: 10.1111/nph.15252] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
High aluminum (Al) tolerance in rice (Oryza sativa) is controlled by a Cys2His2-type zinc finger transcription factor ART1 (Al resistance transcription factor 1). There are five close homologs of ART1 in the rice genome, but the role of these homologs is unknown. We functionally characterized one of the ART1 homologs, ART2, in terms of tissue and spatial expression, subcellular localization, transcriptional activation activity, and phenotypic analysis of the knockout lines. ART2 was localized to the nucleus and showed a transcriptional activation potential in yeast. ART2 was mainly expressed in the roots, but the expression level was much lower than that of ART1. The ART2 expression was rapidly induced by Al in the roots of the wild-type rice, but not in art1 mutant. Knockout of ART2 resulted in increased sensitivity to Al toxicity, but did not alter sensitivity to different pH values. Expression profile analysis by RNA-sequencing showed that ART2 was not involved in activation of genes regulated by ART1; however, four genes seems to be regulated by ART2, which are implicated in Al tolerance. These results indicate that ART1 and ART2 regulate different pathways leading to Al tolerance, and ATR2 plays a supplementary role in Al tolerance in rice.
Collapse
Affiliation(s)
- Jing Che
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Tomokazu Tsutsui
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Kengo Yokosho
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| |
Collapse
|
19
|
Garcia-Oliveira AL, Benito C, Guedes-Pinto H, Martins-Lopes P. Molecular cloning of TaMATE2 homoeologues potentially related to aluminium tolerance in bread wheat (Triticum aestivum L.). PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:817-824. [PMID: 29908003 DOI: 10.1111/plb.12864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Recently, members of the MATE family have been implicated in aluminium (Al) tolerance by facilitating citrate efflux in plants. The aim of the present work was to perform a molecular characterisation of the MATE2 gene in bread wheat. Here, we cloned a member of the MATE gene family in bread wheat and named it TaMATE2, which showed the typical secondary structure of MATE-type transporters maintaining all the 12 transmembrane domains. Amplification in Chinese Spring nulli-tetrasomic and ditelosomic lines revealed that TaMATE2 is located on the long arm of homoeologous group 1 chromosomes. The transcript expression of TaMATE2 homoeologues in two diverse bread wheat genotypes, Barbela 7/72/92 (Al-tolerant) and Anahuac (Al-sensitive), suggested that TaMATE2 is expressed in both root and shoot tissues of bread wheat, but mainly confined to root rather than shoot tissues. A time-course analysis of TaMATE2 homoeologue transcript expression revealed the Al responsive expression of TaMATE2 in root apices of the Al-tolerant genotype, Barbela 7/72/92. Considering the high similarity of TaMATE2 together with similar Al responsive expression pattern as of ScFRDL2 from rye and OsFRDL2 from rice, it is likely that TaMATE2 also encodes a citrate transporter. Furthermore, the TaMATE2-D homoeologue appears to be near the previously reported locus (wPt0077) on chromosome 1D for Al tolerance. In conclusion, molecular cloning of TaMATE2 homoeologues, particularly TaMATE2-D, provides a plausible candidate for Al tolerance in bread wheat that can be used for the development of more Al-tolerant cultivars in this staple crop.
Collapse
Affiliation(s)
- A L Garcia-Oliveira
- Department of Genetics, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - C Benito
- Department of Genetics, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - H Guedes-Pinto
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - P Martins-Lopes
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- BioISI-Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
20
|
Niedziela A. The influence of Al 3+ on DNA methylation and sequence changes in the triticale (× Triticosecale Wittmack) genome. J Appl Genet 2018; 59:405-417. [PMID: 30159773 PMCID: PMC7902597 DOI: 10.1007/s13353-018-0459-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/24/2018] [Accepted: 08/07/2018] [Indexed: 01/28/2023]
Abstract
Abiotic stressors such as drought, salinity, and exposure to heavy metals can induce epigenetic changes in plants. In this study, liquid chromatography (RP-HPLC), methylation amplified fragment length polymorphisms (metAFLP), and methylation-sensitive amplification polymorphisms (MSAP) analysis was used to investigate the effects of aluminum (Al) stress on DNA methylation levels in the crop species triticale. RP-HPLC, but not metAFLP or MSAP, revealed significant differences in methylation between Al-tolerant (T) and non-tolerant (NT) triticale lines. The direction of methylation change was dependent on phenotype and organ. Al treatment increased the level of global DNA methylation in roots of T lines by approximately 0.6%, whereas demethylation of approximately 1.0% was observed in NT lines. DNA methylation in leaves was not affected by Al stress. The metAFLP and MSAP approaches identified DNA alterations induced by Al3+ treatment. The metAFLP technique revealed sequence changes in roots of all analyzed triticale lines and few mutations in leaves. MSAP showed that demethylation of CCGG sites reached approximately 3.97% and 3.75% for T and NT lines, respectively, and was more abundant than de novo methylation, which was observed only in two tolerant lines affected by Al stress. Three of the MSAP fragments showed similarity to genes involved in abiotic stress.
Collapse
Affiliation(s)
- Agnieszka Niedziela
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute, National Research Institute, 05-870, Radzików, Błonie, Poland.
| |
Collapse
|
21
|
Association of Proteomics Changes with Al-Sensitive Root Zones in Switchgrass. Proteomes 2018; 6:proteomes6020015. [PMID: 29565292 PMCID: PMC6027131 DOI: 10.3390/proteomes6020015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/13/2018] [Accepted: 03/21/2018] [Indexed: 12/25/2022] Open
Abstract
In this paper, we report on aluminum (Al)-induced root proteomic changes in switchgrass. After growth in a hydroponic culture system supplemented with 400 μM of Al, plants began to show signs of physiological stress such as a reduction in photosynthetic rate. At this time, the basal 2-cm long root tips were harvested and divided into two segments, each of 1-cm in length, for protein extraction. Al-induced changes in proteomes were identified using tandem mass tags mass spectrometry (TMT-MS)-based quantitative proteomics analysis. A total of 216 proteins (approximately 3.6% of total proteins) showed significant differences between non-Al treated control and treated groups with significant fold change (twice the standard deviation; FDR adjusted p-value < 0.05). The apical root tip tissues expressed more dramatic proteome changes (164 significantly changed proteins; 3.9% of total proteins quantified) compared to the elongation/maturation zones (52 significantly changed proteins, 1.1% of total proteins quantified). Significantly changed proteins from the apical 1-cm root apex tissues were clustered into 25 biological pathways; proteins involved in the cell cycle (rotamase FKBP 1 isoforms, and CDC48 protein) were all at a reduced abundance level compared to the non-treated control group. In the root elongation/maturation zone tissues, the identified proteins were placed into 18 pathways, among which proteins involved in secondary metabolism (lignin biosynthesis) were identified. Several STRING protein interaction networks were developed for these Al-induced significantly changed proteins. This study has identified a large number of Al-responsive proteins, including transcription factors, which will be used for exploring new Al tolerance genes and mechanisms. Data are available via ProteomeXchange with identifiers PXD008882 and PXD009125.
Collapse
|
22
|
Hu H, He J, Zhao J, Ou X, Li H, Ru Z. Low pH stress responsive transcriptome of seedling roots in wheat (Triticum aestivum L.). Genes Genomics 2018; 40:1199-1211. [PMID: 30315523 DOI: 10.1007/s13258-018-0680-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/28/2018] [Indexed: 12/22/2022]
Abstract
Soil acidification is one of major problems limiting crop growth and especially becoming increasingly serious in China owing to excessive use of nitrogen fertilizer. Only the STOP1 of Arabidopsis was identified clearly sensitive to proton rhizotoxicity and the molecular mechanism for proton toxicity tolerance of plants is still poorly understood. The main objective of this study was to investigate the transcriptomic change in plants under the low pH stress. The low pH as a single factor was employed to induce the response of the wheat seedling roots. Wheat cDNA microarray was used to identify differentially expressed genes (DEGs). A total of 1057 DEGs were identified, of which 761 genes were up-regulated and 296 were down-regulated. The greater percentage of up-regulated genes involved in developmental processes, immune system processes, multi-organism processes, positive regulation of biological processes and metabolic processes of the biological processes. The more proportion of down-regulation genes belong to the molecular function category including transporter activity, antioxidant activity and molecular transducer activity and to the extracellular region of the cellular components category. Moreover, most genes among 41 genes involved in ion binding, 17 WAKY transcription factor genes and 17 genes related to transport activity were up-regulated. KEGG analysis showed that the jasmonate signal transduction and flavonoid biosynthesis might play important roles in response to the low pH stress in wheat seedling roots. Based on the data, it is can be deduced that WRKY transcription factors might play a critical role in the transcriptional regulation, and the alkalifying of the rhizosphere might be the earliest response process to low pH stress in wheat seedling roots. These results provide a basis to reveal the molecular mechanism of proton toxicity tolerance in plants.
Collapse
Affiliation(s)
- Haiyan Hu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.
- Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003, Henan, China.
- Henan Engineering Research Center of Crop Genome Editing, Xinxiang, 453003, Henan, China.
| | - Jie He
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Junjie Zhao
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Xingqi Ou
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
- Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003, Henan, China
| | - Hongmin Li
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
- Henan Engineering Research Center of Crop Genome Editing, Xinxiang, 453003, Henan, China
| | - Zhengang Ru
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.
- Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003, Henan, China.
| |
Collapse
|
23
|
Wu W, Lin Y, Chen Q, Peng W, Peng J, Tian J, Liang C, Liao H. Functional Conservation and Divergence of Soybean GmSTOP1 Members in Proton and Aluminum Tolerance. FRONTIERS IN PLANT SCIENCE 2018; 9:570. [PMID: 29755502 PMCID: PMC5932199 DOI: 10.3389/fpls.2018.00570] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/11/2018] [Indexed: 05/13/2023]
Abstract
Proton (H+) and aluminum (Al) rhizotoxicity are two major factors limiting crop production in acid soils. Orthologs of the zinc-finger transcription factor, Sensitive To Proton Rhizotoxicity1 (STOP1), have been found to play an essential role in the tolerance to both stresses by regulating the transcription of multiple H+ and Al tolerant genes. In the present study, color three GmSTOP1 homologs were identified in the soybean genome. All three GmSTOP1 exhibited similar properties as reflected by the harboring of four potential zinc finger domains, localizing in the nucleus, and having transactivation activity. Expression profiling showed that H+ stress slightly modulated transcription of all three GmSTOP1s, while Al significantly up-regulated GmSTOP1-1 and GmSTOP1-3 in root apexes and GmSTOP1-3 in basal root regions. Furthermore, complementation assays in an Arabidopsis Atstop1 mutant line overexpressing these GmSTOP1s demonstrated that all three GmSTOP1s largely reverse the H+ sensitivity of the Atstop1 mutant and restore the expression of genes involved in H+ tolerance. In contrast, only GmSTOP1-1 and GmSTOP1-3 could partially recover Al tolerance in the Atstop1 mutant. These results suggest that the function of three GmSTOP1s is evolutionarily conserved in H+ tolerance, but not in Al tolerance.
Collapse
Affiliation(s)
- Weiwei Wu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Yan Lin
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Qianqian Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Wenting Peng
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junchu Peng
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- *Correspondence: Cuiyue Liang,
| | - Hong Liao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
24
|
Contreras R, Figueiras AM, Gallego FJ, Benavente E, Manzaneda AJ, Benito C. Neutral molecular markers support common origin of aluminium tolerance in three congeneric grass species growing in acidic soils. AOB PLANTS 2017; 9:plx060. [PMID: 29302302 PMCID: PMC5739048 DOI: 10.1093/aobpla/plx060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Aluminium (Al) toxicity is the main abiotic stress limiting plant productivity in acidic soils that are widely distributed among arable lands. Plant species differ in the level of Al resistance showing intraspecific and interspecific variation in many crop species. However, the origin of Al-tolerance is not well known. Three annual species, difficult to distinguish phenotypically and that were until recently misinterpreted as a single complex species under Brachypodium distachyon, have been recently separated into three distinct species: the diploids B. distachyon (2n = 10) and B. stacei (2n = 20), and B. hybridum (2n = 30), the allotetraploid derived from the two diploid species. The aims of this work were to know the origin of Al-tolerance in acidic soil conditions within these three Brachypodium species and to develop new DNA markers for species discrimination. Two multiplex SSR-PCRs allowed to genotype a group of 94 accessions for 17 pentanucleotide microsatellite (SSRs) loci. The variability for 139 inter-microsatellite (ISSRs) markers was also examined. The genetic relationships obtained using those neutral molecular markers (SSRs and ISSRs) support that all Al-tolerant allotetraploid accessions of B. hybridum have a common origin that is related with both geographic location and acidic soils. The possibility that the adaptation to acidic soils caused the isolation of the tolerant B. hybridum populations from the others is discussed. We finally describe a new, easy, DNA barcoding method based in the upstream-intron 1 region of the ALMT1 gene, a tool that is 100 % effective to distinguish among these three Brachypodium species.
Collapse
Affiliation(s)
- Roberto Contreras
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana M Figueiras
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - F Javier Gallego
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Elena Benavente
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Antonio J Manzaneda
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Paraje Las Lagunillas s⁄n, Jaén, Spain
| | - César Benito
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
25
|
Noori N, Hamedi H, Kargozari M, Shotorbani PM. Investigation of potential prebiotic activity of rye sprout extract. FOOD BIOSCI 2017. [DOI: 10.1016/j.fbio.2017.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
26
|
TaPIMP2, a pathogen-induced MYB protein in wheat, contributes to host resistance to common root rot caused by Bipolaris sorokiniana. Sci Rep 2017; 7:1754. [PMID: 28496196 PMCID: PMC5431884 DOI: 10.1038/s41598-017-01918-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 04/06/2017] [Indexed: 11/08/2022] Open
Abstract
MYB transcription factors (TFs) have been implicated in various biology processes in model plants. However, functions of the great majority of MYB TFs in wheat (Triticum aestivum L.) have not been characterized. The soil-borne fungal pathogens Bipolaris sorokiniana and Rhizoctonia cerealis are the causal agents of important destructive diseases of wheat. Here, the TaPIMP2 gene, encoding a pathogen-induced MYB protein in wheat, was isolated through comparative transcriptomic analysis, and its defensive role was studied. TaPIMP2 was proved to localize in nuclei. TaPIMP2 responded in a different extent and speed upon infections of B. sorokiniana or R. cerealis. TaPIMP2 displayed different expression patterns after exogenous application of phytohormones, including abscisic acid, ethylene, and salicylic acid. Silencing of TaPIMP2 repressed resistance of wheat cultivar Yangmai 6 to B. sorokiniana, but did not alter resistance of wheat line CI12633 to R. cerealis. TaPIMP2 overexpression significantly improved resistance to B. sorokiniana rather than R. cerealis in transgenic wheat. Moreover, TaPIMP2 positively modulated the expression of pathogenesis-related genes, including PR1a, PR2, PR5, and PR10. Collectively, TaPIMP2 positively contributes to wheat resistance to B. sorokiniana possibly through regulating the expression of defense-related genes, and TaPIMP2 plays distinct roles in defense responses to different fungal infection.
Collapse
|
27
|
Tavakoli HR, Jonaidi Jafari N, Hamedi H. The effect of Arabic gum on frozen dough properties and the sensory assessments of the bread produced. J Texture Stud 2017; 48:124-130. [PMID: 28370115 DOI: 10.1111/jtxs.12223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/28/2016] [Accepted: 08/08/2016] [Indexed: 12/21/2022]
Abstract
The use of hydrocolloids in frozen dough has become frequent as bread improvers due to their anti-staling effect. Nevertheless, the impact of both different frozen storage and Arabic gum level in non-prefermented flat dough with following thawing procedure have not been studied. This work intended to study the effect of three different ratio of Arabic gum on rheological properties of 1, 7, and 30 days of frozen storage and the quality of the bread made from. In order to gain the least detrimental effects on gluten network, we used rapid rate freezing and microwave heating in thawing stage. Rheological results showed that the unfrozen samples to which Arabic gum had been added rendered the highest resistance to extension. The resistance of gum fortified samples were less than fresh dough, however the decline was not significant in 3.0% Arabic gum dough kept in a month storage (p > .05). The similar findings were obtained for extensibility and adhesiveness; in which the maximum incorporation of Arabic gum lessen the destructive impact of long freezing storage. Addition of 3% gum could be able to retard staling through an increment in hydrophilic bonds between water molecules and amylose during thawing (p < .05). The overall rating of Arabic gum enriched samples was similar with bread made from non-frozen dough, even after 30 days of storage as indicated by the sensory evaluation of breads. PRACTICAL APPLICATIONS Producing a chapatti-like fermented bread without long fermentation period. Formulation a frozen dough without using chemical additives. Introducing a proper use of a new defrosting method with the aim of achieving a better texture. Improvement in retarding staling by the use of Gum Arabic after 7 days.
Collapse
Affiliation(s)
- Hamid Reza Tavakoli
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Hassan Hamedi
- Department of Food Hygiene, Faculty of Medical Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
28
|
Dmitriev AA, Krasnov GS, Rozhmina TA, Kishlyan NV, Zyablitsin AV, Sadritdinova AF, Snezhkina AV, Fedorova MS, Yurkevich OY, Muravenko OV, Bolsheva NL, Kudryavtseva AV, Melnikova NV. Glutathione S-transferases and UDP-glycosyltransferases Are Involved in Response to Aluminum Stress in Flax. FRONTIERS IN PLANT SCIENCE 2016; 7:1920. [PMID: 28066475 PMCID: PMC5174120 DOI: 10.3389/fpls.2016.01920] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/02/2016] [Indexed: 05/19/2023]
Abstract
About 30% of the world's ice-free land area is occupied by acid soils. In soils with pH below 5, aluminum (Al) releases to the soil solution, and becomes highly toxic for plants. Therefore, breeding of varieties that are resistant to Al is needed. Flax (Linum usitatissimum L.) is grown worldwide for fiber and seed production. Al toxicity in acid soils is a serious problem for flax cultivation. However, very little is known about mechanisms of flax resistance to Al and the genetics of this resistance. In the present work, we sequenced 16 transcriptomes of flax cultivars resistant (Hermes and TMP1919) and sensitive (Lira and Orshanskiy) to Al, which were exposed to control conditions and aluminum treatment for 4, 12, and 24 h. In total, 44.9-63.3 million paired-end 100-nucleotide reads were generated for each sequencing library. Based on the obtained high-throughput sequencing data, genes with differential expression under aluminum exposure were revealed in flax. The majority of the top 50 up-regulated genes were involved in transmembrane transport and transporter activity in both the Al-resistant and Al-sensitive cultivars. However, genes encoding proteins with glutathione transferase and UDP-glycosyltransferase activity were in the top 50 up-regulated genes only in the flax cultivars resistant to aluminum. For qPCR analysis in extended sampling, two UDP-glycosyltransferases (UGTs), and three glutathione S-transferases (GSTs) were selected. The general trend of alterations in the expression of the examined genes was the up-regulation under Al stress, especially after 4 h of Al exposure. Moreover, in the flax cultivars resistant to aluminum, the increase in expression was more pronounced than that in the sensitive cultivars. We speculate that the defense against the Al toxicity via GST antioxidant activity is the probable mechanism of the response of flax plants to aluminum stress. We also suggest that UGTs could be involved in cell wall modification and protection from reactive oxygen species (ROS) in response to Al stress in L. usitatissimum. Thus, GSTs and UGTs, probably, play an important role in the response of flax to Al via detoxification of ROS and cell wall modification.
Collapse
Affiliation(s)
- Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Tatiana A. Rozhmina
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
- All-Russian Research Institute for FlaxTorzhok, Russia
| | | | | | - Asiya F. Sadritdinova
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | | | - Maria S. Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Olga Y. Yurkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Olga V. Muravenko
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| |
Collapse
|
29
|
Differential Physiological Responses of Portuguese Bread Wheat (Triticum aestivum L.) Genotypes under Aluminium Stress. DIVERSITY 2016. [DOI: 10.3390/d8040026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Aluminum Toxicity-Induced Alterations of Leaf Proteome in Two Citrus Species Differing in Aluminum Tolerance. Int J Mol Sci 2016; 17:ijms17071180. [PMID: 27455238 PMCID: PMC4964550 DOI: 10.3390/ijms17071180] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/13/2016] [Accepted: 07/13/2016] [Indexed: 11/17/2022] Open
Abstract
Seedlings of aluminum-tolerant ‘Xuegan’ (Citrus sinensis) and Al-intolerant ‘sour pummelo’ (Citrus grandis) were fertigated for 18 weeks with nutrient solution containing 0 and 1.2 mM AlCl3·6H2O. Al toxicity-induced inhibition of photosynthesis and the decrease of total soluble protein only occurred in C. grandis leaves, demonstrating that C. sinensis had higher Al tolerance than C. grandis. Using isobaric tags for relative and absolute quantification (iTRAQ), we obtained more Al toxicity-responsive proteins from C. sinensis than from C. grandis leaves, which might be responsible for the higher Al tolerance of C. sinensis. The following aspects might contribute to the Al tolerance of C. sinensis: (a) better maintenance of photosynthesis and energy balance via inducing photosynthesis and energy-related proteins; (b) less increased requirement for the detoxification of reactive oxygen species and other toxic compounds, such as aldehydes, and great improvement of the total ability of detoxification; and (c) upregulation of low-phosphorus-responsive proteins. Al toxicity-responsive proteins related to RNA regulation, protein metabolism, cellular transport and signal transduction might also play key roles in the higher Al tolerance of C. sinensis. We present the global picture of Al toxicity-induced alterations of protein profiles in citrus leaves, and identify some new Al toxicity-responsive proteins related to various biological processes. Our results provide some novel clues about plant Al tolerance.
Collapse
|
31
|
|
32
|
Fan W, Lou HQ, Yang JL, Zheng SJ. The roles of STOP1-like transcription factors in aluminum and proton tolerance. PLANT SIGNALING & BEHAVIOR 2016; 11:e1131371. [PMID: 26689896 PMCID: PMC4883824 DOI: 10.1080/15592324.2015.1131371] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 05/18/2023]
Abstract
Aluminum (Al) and proton (H(+)) are 2 coexisting rhizotoxicities limiting plant growth in acid soils. Sensitive to Proton Rhizotoxicity (STOP) 1-like zinc finger transcription factors play important roles in regulating expression of downstream genes involved in tolerance mechanism of either stress. In this mini-review, we summarized recent advances in characterizing STOP1-like proteins with respect to plant Al and H(+) tolerance. The possible involvement of structure-function of STOP1-like proteins in differential regulation of Al and H(+) tolerance are discussed. In addition, we also direct research in this area to protein phosphorylation.
Collapse
Affiliation(s)
- Wei Fan
- a College of Resources and Environment, Yunnan Agricultural University , Kunming 650201 , China
- b State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou 310058 , China
| | - He Qiang Lou
- b State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou 310058 , China
| | - Jian Li Yang
- b State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou 310058 , China
| | - Shao Jian Zheng
- b State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
33
|
Shavrukov Y, Hirai Y. Good and bad protons: genetic aspects of acidity stress responses in plants. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:15-30. [PMID: 26417020 DOI: 10.1093/jxb/erv437] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Physiological aspects of acidity stress in plants (synonymous with H(+) rhizotoxicity or low-pH stress) have long been a focus of research, in particular with respect to acidic soils where aluminium and H(+) rhizotoxicities often co-occur. However, toxic H(+) and Al(3+) elicit different response mechanisms in plants, and it is important to consider their effects separately. The primary aim of this review was to provide the current state of knowledge regarding the genetics of the specific reactions to low-pH stress in growing plants. A comparison of the results gleaned from quantitative trait loci analysis and global transcriptome profiling of plants in response to high proton concentrations revealed a two-stage genetic response: (i) in the short-term, proton pump H(+)-ATPases present the first barrier in root cells, allocating an excess of H(+) into either the apoplast or vacuole; the ensuing defence signaling system involves auxin, salicylic acid, and methyl jasmonate, which subsequently initiate expression of STOP and DREB transcription factors as well as chaperone ROF; (2) the long-term response includes other genes, such as alternative oxidase and type II NAD(P)H dehydrogenase, which act to detoxify dangerous reactive oxygen species in mitochondria, and help plants better manage the stress. A range of transporter genes including those for nitrate (NTR1), malate (ALMT1), and heavy metals are often up-regulated by H(+) rhizotoxicity. Expansins, cell-wall-related genes, the γ-aminobutyric acid shunt and biochemical pH-stat genes also reflect changes in cell metabolism and biochemistry in acidic conditions. However, the genetics underlying the acidity stress response of plants is complicated and only fragmentally understood.
Collapse
Affiliation(s)
- Yuri Shavrukov
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia School of Biological Sciences, Flinders University, Bedford Park, SA 5042, Australia
| | - Yoshihiko Hirai
- The Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
34
|
Chen H, Lu C, Jiang H, Peng J. Global Transcriptome Analysis Reveals Distinct Aluminum-Tolerance Pathways in the Al-Accumulating Species Hydrangea macrophylla and Marker Identification. PLoS One 2015; 10:e0144927. [PMID: 26660093 PMCID: PMC4682798 DOI: 10.1371/journal.pone.0144927] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/25/2015] [Indexed: 02/05/2023] Open
Abstract
Hydrangea (Hydrangea macrophylla) is a well known Al-accumulating plant, showing a high level of aluminum (Al) tolerance and accumulation. Although the physiological mechanisms for detoxification of Al and the roles of Al in blue hydrangea sepals have been reported, the molecular mechanisms of Al tolerance and accumulation are poorly understood in hydrangea. In this study, we conducted a genome-wide transcriptome analysis of Al-response genes in the roots and leaves of hydrangea by RNA sequencing (RNA-seq). The assembly of hydrangea transcriptome provides a rich source for gene identification and mining molecular markers, including single nucleotide polymorphism (SNP) and simple sequence repeat (SSR). A total of 401,215 transcripts with an average length of 810.77bp were assembled, generating 256,127 unigenes. After annotation, 4,287 genes in the roots and 730 genes in the leaves were up-regulated by Al exposure, while 236 genes in the roots and 719 genes in the leaves were down-regulated, respectively. Many transporters, including MATE and ABC families, were involved in the process of Al-citrate complex transporting from the roots in hydrangea. A plasma membrane Al uptake transporter, Nramp aluminum transporter was up-regulated in roots and leaves under Al stress, indicating it may play an important role in Al tolerance by reducing the level of toxic Al. Although the exact roles of these candidate genes remain to be examined, these results provide a platform for further functional analysis of the process of detoxification of Al in hydrangea.
Collapse
Affiliation(s)
- Haixia Chen
- College of Horticulture and landscape, Hunan Agriculture University, Changsha, 410128, People republic of China
- * E-mail:
| | - Changping Lu
- College of Horticulture and landscape, Hunan Agriculture University, Changsha, 410128, People republic of China
| | - Hui Jiang
- College of Horticulture and landscape, Hunan Agriculture University, Changsha, 410128, People republic of China
| | - Jinhui Peng
- College of Horticulture and landscape, Hunan Agriculture University, Changsha, 410128, People republic of China
| |
Collapse
|
35
|
Niedziela A, Mańkowski D, Bednarek PT. Diversity Arrays Technology-based PCR markers for marker assisted selection of aluminum tolerance in triticale ( x Triticosecale Wittmack). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2015; 35:209. [PMID: 26561429 PMCID: PMC4631718 DOI: 10.1007/s11032-015-0400-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 10/12/2015] [Indexed: 06/05/2023]
Abstract
The tolerance of triticale (x Triticosecale Wittmack) cultivars to aluminum (Al) stress observed in acid soils is an important agronomic trait affecting seed yield. Traditionally, breeding of Al-tolerant cultivars was selection based; for example, using a physiological test. However, such selection methods are relatively slow and require numerous plants for phenotype evaluation. Alternatively, DNA-based molecular marker systems could be applied to identify markers useful for selection purposes. Among many marker platforms available, Diversity Arrays Technology (DArT) is one of the most promising. DArT markers preselected for conversion to specific PCR assays were chosen based on association mapping studies using diverse materials. Forty-nine DArT markers were selected and tested for redundancy based on their segregation patterns and sequences, and 40 were successfully converted into specific PCR assays. However, only 24 of these proved to be polymorphic. Where possible, the chromosomal locations of the converted markers were verified. The markers assigned to chromosome 7R that were the most highly correlated with Al-tolerant and non-tolerant plants were chosen for marker assisted selection using genetically diverse triticale materials.
Collapse
Affiliation(s)
- Agnieszka Niedziela
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Dariusz Mańkowski
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Piotr T. Bednarek
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870 Błonie, Poland
| |
Collapse
|
36
|
Fan W, Lou HQ, Gong YL, Liu MY, Cao MJ, Liu Y, Yang JL, Zheng SJ. Characterization of an inducible C2 H2 -type zinc finger transcription factor VuSTOP1 in rice bean (Vigna umbellata) reveals differential regulation between low pH and aluminum tolerance mechanisms. THE NEW PHYTOLOGIST 2015; 208:456-68. [PMID: 25970766 DOI: 10.1111/nph.13456] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 04/12/2015] [Indexed: 05/18/2023]
Abstract
The rice bean (Vigna umbellata) root apex specifically secretes citrate through expression activation of Vigna umbellata Multidrug and Toxic Compound Extrusion 1 (VuMATE1) under aluminum (Al(3+) ) stress. However, the underlying mechanisms regulating VuMATE1 expression remain unknown. We isolated and characterized a gene encoding Sensitive to Proton Rhizotoxicity1 (STOP1)-like protein, VuSTOP1, from rice bean. The role of VuSTOP1 in regulating VuMATE1 expression was investigated using the yeast one-hybrid assay. We characterized the function of VuSTOP1 in Al(3) (+) - and H(+) -tolerance using in planta complementation assays. We demonstrated that VuSTOP1 has transactivation potential. We found that VuSTOP1 expression is inducible by Al(3+) and H(+) stress. However, although VuSTOP1 binds to the promoter of VuMATE1, the inconsistent tissue localization patterns of VuSTOP1 and VuMATE1 preclude VuSTOP1 as the major factor regulating VuMATE1 expression. In addition, when a protein translation inhibitor increased expression of VuSTOP1, VuMATE1 expression was inhibited. In planta complementation assay demonstrated that VuSTOP1 could fully restore expression of genes involved in H(+) tolerance, but could only partially restore expression of AtMATE. We conclude that VuSTOP1 plays a major role in H(+) tolerance, but only a minor role in Al(3+) tolerance. The differential transcriptional regulation of VuSTOP1 and VuMATE1 reveals a complex regulatory system controlling VuMATE1 expression.
Collapse
Affiliation(s)
- Wei Fan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - He Qiang Lou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Long Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mei Ya Liu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Meng Jie Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
37
|
Transcriptional Regulation of Al Tolerance in Plants. ALUMINUM STRESS ADAPTATION IN PLANTS 2015. [DOI: 10.1007/978-3-319-19968-9_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
38
|
Garcia-Oliveira AL, Martins-Lopes P, Tolrá R, Poschenrieder C, Tarquis M, Guedes-Pinto H, Benito C. Molecular characterization of the citrate transporter gene TaMATE1 and expression analysis of upstream genes involved in organic acid transport under Al stress in bread wheat (Triticum aestivum). PHYSIOLOGIA PLANTARUM 2014; 152:441-52. [PMID: 24588850 DOI: 10.1111/ppl.12179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 05/25/2023]
Abstract
In bread wheat, besides malate, the importance of citrate efflux for Al tolerance has also been reported. For better understanding the Al tolerance mechanism in bread wheat, here, we performed both a molecular characterization of the citrate transporter gene TaMATE1 and an investigation on the upstream variations in citrate and malate transporter genes. TaMATE1 belong to multidrug transporter protein family, which are located on the long arm of homoeologous group 4 chromosomes (TaMATE1-4A, TaMATE1-4B TaMATE1-4D). TaMATE1 homoeologues transcript expression study exhibited the preponderance of homoeologue TaMATE1-4B followed by TaMATE1-4D whereas homoeologue TaMATE1-4A seemed to be silenced. TaMATE1, particularly homoeologue TaMATE1-4B and TaALMT1 transcripts were much more expressed in the root apices than in shoots of Al tolerant genotype Barbela 7/72/92 under both control and Al stress conditions. In addition, in both tissues of Barbela 7/72/92, higher basal levels of these gene transcripts were observed than in Anahuac (Al sensitive). Noticeably, the presence of a transposon in the upstream of TaMATE1-4B in Barbela 7/72/92 seems to be responsible for its higher transcript expression where it may confer citrate efflux. Thus, promoter variations (transposon in TaMATE1-4B upstream and type VI promoter in TaALMT1) associated with higher basal transcript expression of TaMATE1-4B and TaALMT1 clearly show how different mechanisms for Al tolerance operate simultaneously in a single genotype. In conclusion, our results demonstrate that Barbela 7/72/92 has favorable alleles for these organic acids transporter genes which could be utilized through genomic assisted selection to develop improved cultivars for acidic soils.
Collapse
Affiliation(s)
- Ana Luísa Garcia-Oliveira
- Centro de Genómica e Biotecnologia, Instituto de Biotecnologia e Bioengenharia (CGB/IBB), Universidade de Trás-os-Montes e Alto Douro (UTAD), PO Box 1013, 5001-801, Vila Real, Portugal; Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|